(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Similar documents
『共形場理論』

Z: Q: R: C: sin 6 5 ζ a, b


TOP URL 1

TOP URL 1


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

meiji_resume_1.PDF

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

( ) (, ) ( )

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

TOP URL 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Part () () Γ Part ,

Z: Q: R: C: 3. Green Cauchy

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

gr09.dvi

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

( )

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

(1) (2) (3) (4) 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

= = = = = = 1, 000, 000, 000, = = 2 2 = = = = a,

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

prime number theorem

,,..,. 1


転位の応力場について

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

newmain.dvi

TOP URL 1

中央大学セミナー.ppt

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

73

: , 2.0, 3.0, 2.0, (%) ( 2.

untitled

1 0/1, a/b/c/ {0, 1} S = {s 1, s 2,..., s q } S x = X 1 X 2 X 3 X n S (n = 1, 2, 3,...) n n s i P (X n = s i ) X m (m < n) P (X n = s i X n 1 = s j )

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

基礎数学I

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

all.dvi

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í


プリント

( ) ,

Untitled

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

untitled

Z: Q: R: C:

Microsoft Word - 11問題表紙(選択).docx


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

本文/目次(裏白)

量子力学 問題

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

arxiv: v1(astro-ph.co)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

第1章 微分方程式と近似解法


φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)



構造と連続体の力学基礎


II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

all.dvi

I II III IV V

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

30

n ( (

液晶の物理1:連続体理論(弾性,粘性)

Einstein ( ) YITP

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

untitled

Armstrong culture Web

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

Transcription:

S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ gg ij i X µ j X ν η µν dτ dτ dσ( τ Xµ dσ g (δ ab a X µ b X ν )η µν τ Xν + σ Xµ σ Xν )η µν τ ( ) e is e S E S E = 4π dτ dσδ ab a X µ b X ν η µν = 4π dτ dσ( τ Xµ τ Xν + σ Xµ σ Xν )η µν

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w ( g = g ww, g = g ww, g = g ww, g = g ww ) g µν = x x µ x β x ν g β g = x x w w δ + x x w w δ = τ τ w w + σ σ w w = 4 4 = 0 g = x x w w δ + x x w w δ = τ τ w w + σ σ w w = 4 + 4 = g = g, g = g g ab = ( 0 0 ), g ab = ( 0 0 ) gdτdσ ( ) gd D x = g d D x g dτdσ g dwdw dτdσ = 4 dwdw w, w

S = 4π 4π dτ dσ (δ ab a X µ b X ν )η µν = 4π = π dwdw ( gab a X µ b X ν )η µν dwdw ( wx µ w X ν + w X µ w X ν )η µν ( w = w, w = w ) dwdw w X µ (w, w) w X ν (w, w)η µν w =, w = δx µ S + δs = π = π dwdw((x µ + δx µ )X µ + X µ (X µ + δx µ )) dwdw(x µ X µ + δx µ X µ + X µ δx µ ) δs δs = π = π = π dwdw(δx µ X µ + X µ δx µ ) dwdw( δx µ X µ δx µ X µ ) dwdwδx µ (X µ ) δx µ w, w δs 0 X µ (w, w) = 0 X µ (w, w) = X µ (w) + X µ (w) X µ (w) (holomorphic function) X µ (w) (anti-holomorphic function) X µ (w) = X µ (τ iσ) right moving X µ (w) = X µ (τ + iσ) left moving ( τ ± σ i(τ ± iσ)) w w right left τ, σ w, w X µ w z z = e w = e τ iσ, z = e w = e τ+iσ 3

τ σ z σ σ = σ + π τ ( < τ < ) σ (σ π τ ) z σ π z z = e τ e τ τ (τ = ) τ = τ z e τ τ τ + a σ σ + b τ + a e a e τ iσ = e a z σ + b e ib e τ iσ = e ib z z σ 0 l z = e τ+iσ iσ X µ (τ, σ) X µ (τ, σ) = X µ L (τ + σ) + Xµ R (τ σ) X µ (τ, σ) = X µ (τ, σ + π) X µ L (τ + σ) = xµ 0 + pµ (τ + σ) + i n µ ne in(τ+σ) X µ R (τ σ) = xµ 0 + pµ (τ σ) + i n µ ne in(τ σ) w X µ L (w = τ + iσ) = xµ 0 + pµ ( iτ + σ) + i n µ ne in( iτ+σ) = xµ 0 i pµ (τ + iσ) + i = xµ 0 i pµ w + i n µ ne nw n µ ne n(τ+iσ) z = e w X µ L (z) = xµ 0 i pµ log z + i 4 n µ nz n

X µ R X µ R (z) = xµ 0 i pµ log z + i n µ nz n µ [x µ 0, pν ] = [xµ 0, ν 0] = iη µν [ µ m, ν n] = [ µ m, ν n] = mη µν δ m+n,0 η µν µ n, µ n n µ n = na µ n, µ n = na µ n µ n = n(a µ n), µ n = n(a µ n) n, µ µ n 0 µ n 0 = µ n 0 = 0, 0 µ n = 0 µ n = 0 (n ) p µ p µ 0 = 0 X µ ( )G X(τ, σ ), X(τ, σ ) τ, τ ( ) T (X µ (τ, σ )X ν (τ, σ )) = : X µ (τ, σ )X ν (τ, σ ) : +G(τ, σ ; τ, σ ) T : : G(τ, σ ; τ, σ ) = T (X µ (τ, σ )X ν (τ, σ )) : X µ (τ, σ )X ν (τ, σ ) : τ, σ z, z G(z, z ; z, z ) = T (X µ (z, z )X ν (z, z )) : X µ (z, z )X ν (z, z ) : () τ > τ z, z τ z > z c c τ > τ ( z > z ) 0 X µ (z, z )X ν (z, z ) 0 X µ X µ L + Xµ R 5

X µ (z, z )X ν (z, z ) = (X µ L (z ) + X µ R (z ))(X ν L(z ) + X ν R(z )) = (X µ L (z )X ν L(z ) + X µ R (z )X ν R(z ) + X µ L (z )X ν R(z ) + X µ R (z )X ν L(z )) () X µ L (z )X ν L (z ) 0 X µ L (z )X ν L(z ) 0 = 4 0 xµ 0 xν 0 0 4 log z log z 0 p µ p ν 0 i 4 log z 0 x µ 0 pν 0 + i i 4 log z 0 p µ x ν 0 0 + m 0 m 0 m, m z m 0 x µ 0 ν m 0 m z m 0 p µ ν m 0 + i n z n 0 µ nx ν 0 0 + i n z n 0 µ np ν 0 = 4 0 xµ 0 xν 0 0 m, mn z n z m 0 µ n ν m 0 mn z n z m 0 µ n ν m 0 i 4 log z 0 p µ x ν 0 0 (3) x 0, p µ n ( n n > 0 n < 0 ) 0 µ n ν m 0 m, mn z n z m 0 µ n ν m 0 = = = m= m= m= = η µν n= mn z n zm 0 µ n ν m 0 mn z n zm 0 ([ µ n, ν m] + ν m µ n) 0 mn z n zm nη µν δ n m,0 ( 0 0 = ) n z n zn n m = 0 n n 0 p µ x ν 0 0 0 p µ x ν 0 0 = 0 ([p µ, x ν 0] + x ν 0p µ ) 0 = 0 ( iη µν ) 0 = iη µν 0 X µ L (z )X ν L(z ) 0 = 4 0 xµ 0 xν 0 0 4 ηµν log z + ηµν 6 n= n (z z ) n (4)

X µ R (z )X ν R (z ) z z 0 X µ R (z )X ν R(z ) 0 = 4 0 xµ 0 xν 0 0 4 ηµν log z + ηµν n= n (z z ) n (5) X µ L (z )X ν R (z ) 0 µ n ν m 0 µ n ν m µ n ν m x µ 0 xν 0 xµ 0 pν 0 X µ L (z )X ν R(z ) 0 = 4 0 xµ 0 xν 0 0 i 4 log z 0 x µ 0 pν 0 = 4 0 xµ 0 xν 0 0 4 ηµν log z (6) X µ R (z )X ν L (z ) 0 X µ R (z )X ν L(z ) 0 = 4 0 xµ 0 xν 0 0 4 ηµν log z (7) () (4) (7) 0 X µ (z, z )X ν (z, z ) 0 = 0 x µ 0 xν 0 0 4 ηµν log z + ηµν 4 ηµν log z + ηµν n= 4 ηµν log z 4 ηµν log z n (z z ) n n= n (z z ) n = 0 x µ 0 xν 0 0 ηµν log z ηµν log z + ηµν n= n (z z ) n + ηµν n= n (z z ) n n= x n n = log[ x] n= n (z z ) n = log[ z z ] = log z [z z ] = log z log[z z ] 7

ηµν log z ηµν log z + ηµν n= n (z z ) n + ηµν n= n (z z ) n = ηµν log z ηµν log z + ηµν (log z log[z z ]) + ηµν (log z log[z z ]) = ηµν log[z z ] ηµν log[z z ] 0 X µ X ν 0 0 X µ (z, z )X ν (z, z ) 0 = 0 x µ 0 xν 0 0 ηµν log[(z z )(z z )] (8) z, z (τ, τ ) (µ, ν z, z ) 0 X µ (z, z )X ν (z, z ) 0 = 0 X ν (z, z )X µ (z, z ) 0 (8) () () : p µ x ν 0 := x ν 0p µ, : m n := n m, : m n := n m (m, n ) (3) 0 x µ 0 xν 0 0 (8) 0 : X µ (z, z )X ν (z, z ) : 0 = 0 x µ 0 xν 0 0 0 X µ (z, z )X ν (z, z ) 0 0 : X µ (z, z )X ν (z, z ) : 0 = ηµν log[(z z )(z z )] = ηµν log z z G(z, z ; z, z ) = ηµν log[(z z )(z z )] = ηµν log z z (9) z z (9) z, z z z G(z, z ; z, z ) = z X µ (z, z ) z X ν (z, z ) = ηµν z z z = ηµν (z z ) 8

X(z, z )X(z, z ) z X(z, z ) z X(z, z ) ((8) ) ( ) z z λz ϕ(z, z) ϕ(z, z) ϕ (z, z) = λ h λ h ϕ(λz, λz) h, h (conformal dimension) (h h ) A = ab a λa, b λb A λλa z f(z) ϕ(z, z) ϕ (z, z) = ( f z )h ( f z )h ϕ(f(z), f(z)) (0) primary field ϕ primary field quari-primary field z = z + n ϵ n ( z n+ ), z = z + n ϵ n ( z n+ ) l n = z n+ z, l n = z n+ z z n+ z = 0 z = n ( ) n z = 0 z = z = /v z = v z v = z v = v v l n = z n+ z = ( v )n+ ( v ) v = ( v )n v z = v 0 n + l n l, l 0, l + l, l 0, l +, l, l 0, l + (globally) primary field quasi-primary field primary fieldϕ (u), ϕ (v) (u, v ) ϕ (u)ϕ (v) n = u = u + ϵ = u + a, v = v + a ϕ (u)ϕ (v) ϕ (u + a)ϕ (v + a) ϕ (u)ϕ (v) 9

D(u, v) = ϕ (u)ϕ (v) D(u, v) = D(u v) n = 0 u = u + ϵ 0 ( u) = λu, v = λv primary field ϕ (u)ϕ (v) λ h ϕ (λu)λ h ϕ (λv) = λ h +h ϕ (λu)ϕ (λv) λ h +h ϕ (λu)ϕ (λv) = λ h +h D(λ(u v)) λ h+h D(λ(u v)) = D(u v) D(u v) d D(u v) = () (u v) h+h ( (λu λv) h +h = λ (h +h ) ) (u v) h +h d n = + u = u + ϵ + ( u ) = ( cu)u, v = ( cv)v (x /x) u = u, v = v D(u v) = ϕ (u)ϕ (v) D( u v ) = ϕ ( u )ϕ ( v ) = ϕ ( u u)ϕ ( v v) = u h v h ϕ ( u )ϕ ( v ) () 0

u h v h ϕ ( u )ϕ ( v ) = u h v h d ( u + v )h+h D(u v) = D( u v ) d (u v) h +h = u h v h d ( u + v )h +h h = h = h d u h v h ( u + = d v )h u h v h (u v/uv) h = d (u v) h n =, 0, + u = u + a, v = v + a u = λu, v = λv u = ( cu)u, v = ( cv)v ϕ (u)ϕ (v) ϕ (u)ϕ (v) = d (u v) h l, l 0, l + quasi-primary field 3 (Möbius transformation) z z = az + b cz + d (ad cb =, ( cz)z z cz + ) G(z, z ; z, z ) = X µ (z, z )X ν (z, z = ηµν log[(z z )(z z )] X µ (z, z) (quasi)-primary field (0) z X µ z X µ (z, z ) z X ν (z, z ) = ηµν (z z ) z X µ (z, z) primary field (0)