Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Similar documents
1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

1 Part I (warming up lecture). (,,...) 1.1 ( ) M = G/K :. M,. : : R-space. R-space..

Dynkin Serre Weyl

等質空間の幾何学入門

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

直交座標系の回転


日本内科学会雑誌第102巻第4号

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

SO(2)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

untitled

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

数学Ⅱ演習(足助・09夏)

II Lie Lie Lie ( ) 1. Lie Lie Lie

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

OCAMI

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

高校生の就職への数学II



x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

目次

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

(1) PQ (2) () 2 PR = PR P : P = R : R (2) () = P = P R M = XM : = M : M (1) (2) = N = N X M 161 (1) (2) F F = F F F EF = F E

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

SUSY DWs

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

newmain.dvi


( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18


読めば必ずわかる 分散分析の基礎 第2版

all.dvi

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n


2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

85 4

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

『共形場理論』

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

熊本県数学問題正解

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

1 Euclid Euclid Euclid

16 B

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

量子力学 問題

n ( (

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

all.dvi

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

入試の軌跡

6.1 (P (P (P (P (P (P (, P (, P.101

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.


IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

K g g g g; (x, y) [x, y] g Lie algebra [, ] bracket (i) [, ] (ii) x g [x, x] = 0 (iii) ( Jacobi identity) [x, [y, z]] + [y, [z, x]] +

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

II Time-stamp: <05/09/30 17:14:06 waki> ii

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

6.1 (P (P (P (P (P (P (, P (, P.

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

meiji_resume_1.PDF

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

nakata/nakata.html p.1/20

TOP URL 1

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.


1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

研修コーナー

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1


Transcription:

1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0 (n, R)).. SO(n), O(n), n = 3. 1.4 Step 0 O(3) Sym 0 (R 3 ), : X, Y := tr( t XY ) = tr(xy ). O(3), S 4. 1.5 Step 1 O(3) Sym 0 (R 3 ), : λ 1 a := λ 2 λ 3 tr = 0.

2 1 1.6 Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), X := diag(λ 1, λ 2, λ 3 ) a +, : (1) λ 1 = λ 2 = λ 3 (= 0), O(3) X = O(3). (2) λ 1 > λ 2 = λ 3, O(3) X = O(1) O(2). (3) λ 1 = λ 2 > λ 3, O(3) X = O(2) O(1). (4) λ 1 > λ 2 > λ 3, O(3) X = O(1) O(1) O(1)., {0}, RP 2, F 1,2 (R 3 ). S 4 RP 2 Veronese, S 4 F 1,2 (R 3 ) Cartan. 1.8 F 1,2 (R 3 ) = O(3)/(O(1) O(1) O(1)).,, (SL(n, R), SO(n), σ) with σ(g) := t g 1. 1.2 1.9 (G, K, σ) ( ), : G, K G, σ Aut(G), σ 2 = id, Fix(σ, G) 0 K Fix(σ, G). 1.10 (SL(n, R), SO(n), σ), : σ(g) := t g 1. 1.3. 1.11 g, [, ] : g g g. (g, [, ]), : (i) X, Y g, [X, Y ] = [Y, X]. (ii) X, Y, Z g, [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0.

1.4 3 g.. 1.12 gl(n, R) := M(n, R) : [X, Y ] := XY Y X., gl(n, R). 1.13 g. g g, : (i) g g. (ii) X, Y g, [X, Y ] g.,. 1.14 gl(n, R) : (1) sl(n, R) := {X gl(n, R) tr(x) = 0}. (2) o(p, q) := {X gl(p + q, R) t XI p,q + I p,q X = 0}., ( ), sl(n, C). 1.4 1.15 (g, k, θ) ( ), : g, k g, θ Aut(g), σ 2 = id, k = Fix(θ, g).. 1.16 (sl(n, R), o(n), θ), : θ(x) := t X., g, θ Cartan. (.), sl(n, R), θ Cartan. 1.5. g. 1.17 g g, : (i) g g. (ii) X g, Y g, [X, Y ] g.

4 1,. 1.18 sl(n, R) gl(n, R). 1.19 g, dim g > 1,. 1.20 sl(n, R). 1.21 n = 3. 1.6 Killing, g Killing,. 1.22 B : g g R Killing : B(X, Y ) := tr(ad X ad Y ). 1.23 Killing B, : B([X, Y ], Z) + B(Y, [X, Z]) = 0 ( X, Y, Z g). 1.24 Lie sl n (R) Killing B : B(X, Y ) = 2ntr(XY ). 1.25 g, Killing B. 1.26 h 3 = Span{x, y, z}, : [x, y] = z, [y, z] = [z, x] = 0 ( 3 Heisenberg ). h 3 Killing,. 1.7 Cartan, g Lie, B g Killing. θ : g g, θ Lie, θ 2 = id. 1.27 : θ : g g Cartan, B θ B θ (X, Y ) := B(X, θ(y )) (for X, Y g).

1.8 5 Cartan θ, ±1. 1.28 Cartan θ g = k p Cartan., k 1, p 1. 1.29 sl(n, R), θ(x) := t X Cartan., Cartan sl(n, R) = k p, : k = so(n), p = {X sl(n, R) X = t X}. 1.30 Cartan g = k p : [k, k] k, [k, p] p, [p, p] k. 1.31 g, Cartan., Cartan (G ). 1.8 1.32 (G, K, σ), (g, k, θ), θ Cartan. : (1) G g. G < GL(n, R) ( ), g gl(n, R), g.x := gxg 1. (2) K g, Cartan g = k p. K p., sl(n, R),.

6 1 1.9, g Lie, θ Cartan, g = k p Cartan. K p. 1.33 p a, : (1) a., X, Y a, [X, Y ] = 0. (2) a a p, a, a = a. 1.34 a = sl(n, R), : { } a := ak E kk tr = 0. 1.35 1.36. ( n = 3 ) p K-. SL(n, R), O(n) Sym 0 (R n ) a ( ). 1.10, g Lie, B Killing, θ Cartan, g = k p Cartan, a p. 1.37 X, Y, Z g, : (1) ad [X,Y ] = ad X ad Y ad Y ad X, (2) B([X, Y ], Z) + B(Y, [X, Z]) = 0, (3) X p, B θ (ad X (Y ), Z) = B θ (Y, ad X (Z))., X p, ad X B θ. ad X,. X a.,. a a. 1.38 α a, α : g α := {X g [H, X] = α(h)x ( H a)}. 1.39 α a (a ), : α 0, g α 0.,, = (g, a).

1.11 7 1.40 = (g, a), : (1) g = g 0 ( α g α) B θ, (2) [g α, g β ] g α+β ( α, β {0}), (3) θ(g α ) = g α ( α {0}). (4) g 0 = k 0 a, k 0 := g 0 k. (1). 1.41 sl n (R), Cartan, : (1) a := { a k E kk tr = 0} p, (2) g 0 = a, (3) g εi ε j = span{e ij }, ε i ( a k E kk ) := a i, (4) = {ε i ε j i j}. 1.42 sl(2, C) ( ), Cartan sl(2, C) = su(2) p. p,,. 1.11 O(n) Sym 0 (R n ), a, a +.,. 1.43. Λ := {α 1,..., α r }, : (i) Λ a, (ii) α, c 1,..., c r Z 0 c 1,..., c r Z 0 : α = c 1 α 1 + + c r α r. 1.44, Λ = {α 1,..., α r }, α = c 1 α 1 + + c r α r. (1) α, c 1,..., c r Z 0. (2) α, c 1,..., c r Z 0. (3) α, : c 1α 1 + + c rα r, c 1 c 1,..., c r c r.

8 1 1.45 sl n (R), α i := ε i ε i+1 (i = 1,..., n 1), {α 1,..., α n 1 }., α = ε 1 ε n = α 1 + + α n 1. = (g, a),.,. 1.46 = (g, a),., {α 1,..., α r }, H a, : a + := {X a α i (X) 0 ( i)}. 1.47 g = sl(3, R), a,, Λ, λ 1 a + = λ 2 λ 3 a λ 1 λ 2 λ 3.

9 2 2.1 2.1 RH 2 1, : {( ) } {( ) } a 0 1 b A := 0 a 1 a > 0, N := b R. 0 1 2.2 2.2 g. (1) [g, g] := { n i=1 [X i, Y i ] X i, Y i g} derived ideal. (2) g, g 1 := [g, g],..., g k := [g, g k ] {0}. (3) g, [g, g]. 2.3 : s := {( a b 0 a ) } a, b R. : sl(2, R) = o(2) s. 2.4 gl(n, R) ( n = 3 Heisenberg ),.

10 2 2.3., g, g = k p Cartan, a p, = (g, a), Λ = {α 1,..., α r }. 2.5 α = c 1 α 1 + + c r α r, level(α) := c 1 + + c r α. 2.6 g k := level(α)=k g α, : [g k, g l ] g k+l. 2.7 : (1) n := α>0 g α, (2) s := a n ( [a, n] n), (3) k s = 0. 2.8 g = k a n, ( ).,,., G = KAN. 2.9 S, s G. M := G/K = S/{e} = S. RH 2 = SL(2, R)/SO(2),.. 2.10 : (1) α > 0, g α g α = (1 + θ)g α (1 θ)g α, (2) p = a α>0 (1 θ)g α, (3) dim n = dim p (= dim G/K). (4) M S.[e] = S/S [e] = S/(S K).

2.4 ( ) 11 2.4 ( ) 2.8, 2.10.,. 2.7. 2.11 α > 0, : (1) (1 + θ)g α = (1 + θ)g α (=: k α ), (2) (1 θ)g α = (1 θ)g α (=: p α )., g g = g 0 α g α (1 ± θ), ( ). 2.12 : (1) k = k 0 α>0 k α, (2) p = a α>0 p α., α > 0 g α k α g α., 2.8 ( g k a n). 2.5 1 2.13 M = G/K ( (g, k, θ), g θ Cartan ). 1 : (K), (A),, (N),., (A)-type, (N)-type,.. 2.14 S, S 1. S S 1,. S, 1, 1. (B θ ).

12 2 2.15 0 H a. s H := s span{h} = (a span{h}) n 1. S H M = G/K 1,. 2.16 α Λ ( ), 0 X g α. s X := s span{x} = a (n span{x}) 1. S X M = G/K 1,. 2.17 Berndt-T. (2003) S H (N)-type, S X (A)-type., (A)-type (N)-type 1,.,. 2.18 G, G M, : f : M M : (or diffeo, ) : p M, f(g.p) = G.f(p).