マクロ経済スライド下における積立金運用でのリスク

Similar documents
Public Pension and Immigration The Effects of Immigration on Welfare Inequality The immigration of unskilled workers has been analyzed by a considerab

<95DB8C9288E397C389C88A E696E6462>

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

II III II 1 III ( ) [2] [3] [1] 1 1:



No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

評論・社会科学 119号(P)☆/1.福田

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

財政赤字の経済分析:中長期的視点からの考察

構造と連続体の力学基礎

高齢化とマクロ投資比率―国際パネルデータを用いた分析―

「国債の金利推定モデルに関する研究会」報告書

December 28, 2018

201711grade1ouyou.pdf

) ,

2011de.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

公務員人件費のシミュレーション分析

Note.tex 2008/09/19( )

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

Core Ethics Vol. a

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

pdf

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Part () () Γ Part ,

IPRS_vol9_A4_fix.indd

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

meiji_resume_1.PDF

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

CVaR

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

阿部Doc

BJ-No.7 01 三好秀和.indd

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

わが国のコモディティ投資信託とETF

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

2 146

TOP URL 1

28 Horizontal angle correction using straight line detection in an equirectangular image

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

成長機構

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I 1


ボーナス制度と家計貯蓄率-サーベイ・データによる再検証-

mugensho.dvi

keisoku01.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

評論・社会科学 123号(P)☆/1.福田

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

振動と波動


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) ,

<303288C991BD946797C797592E696E6464>

人工知能学会研究会資料 SIG-FPAI-B Predicting stock returns based on the time lag in information diffusion through supply chain networks 1 1 Yukinobu HA

企業価値重視、効率化経営の時代到来へ

p.

<31322D899C8CA982D982A95F985F95B65F2E696E6464>

2 1 ( ) 2 ( ) i

OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Br

yasi10.dvi

30 (11/04 )

Microsoft Word - 11問題表紙(選択).docx

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

262 F s PRO A Community Investment and the Role of Non-profit Organizations: Present Conditions in the US, the UK, and Japan Takashi Koseki Abstract 1

08-Note2-web

Financial Reporting Standard 17 FRS17 FAS87 87 Financial Accounting Standard 87 FAS87 International Accounting Standard Board IASB 19 Internat

DE-resume

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

Perspective-Taking Perspective-Taking.... Vol. No.

(2) IPP Independent Power Producers IPP 1995 NCC(New Common Carrier NCC NTT NTT NCC NTT NTT IPP 2. IPP (3) [1] [2] IPP [2] IPP IPP [1] [2]

液晶の物理1:連続体理論(弾性,粘性)

The Physics of Atmospheres CAPTER :

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

_念3)医療2009_夏.indd

K E N Z OU


gr09.dvi

Vol.8 No (July 2015) 2/ [3] stratification / *1 2 J-REIT *2 *1 *2 J-REIT % J-REIT J-REIT 6 J-REIT J-REIT 10 J-REIT *3 J-

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

(1) (2) (3) (4) 1

Transcription:

2004 2005 ALM 2030 2050 50 JEL Classification: H55, G11 Key words: 2 H16 007 102-0073 4-1-7 FAX: 03-5211-1082, E-mail: kitamura@nli-research.co.jp E-mail: nakasima@nli-resaech.co.jp E-mail: usuki@nli-research.co.jp 1

Risk Analysis of Pension Reserve Investment with Macro Economy Indexation under the 2004 Public Pension Reform By Tomoki Kitamura, Kunio Nakashima, and Masaharu Usuki Abstract The 2004 public pension reform, by introducing a fixed premium system and macro economy indexation, has intimately linked pension reserve investment policies with benefit levels and financial soundness. Thus, we developed a stochastic ALM simulation model in which the length of benefit adjustment period and replacement ratio (ratio of standard benefits to standard wages) are endogenous variables, and analyzed how pension investment performance affects the replacement ratio and funding ratio (reserve assets divided by annual benefit payments). The results show that if the pension reserve is invested in accordance with the current asset allocation policy set by the Ministry of Health Labor and Welfare, it is possible to avert a financial crisis until 2030, while the funding ratio could deteriorate substantially by 2050. Moreover, if we accept certain conditions such as a longer benefit adjustment period, even an asset allocation consisting exclusively of low-risk domestic bonds can achieve the goals of a 50% replacement ratio and financial soundness. However, if we reduce the expected return on domestic bonds to the current market yield, a riskier asset allocation is needed to achieve the same investment performance, increasing the downside risk for the funding ratio. For all asset allocation policies we analyzed, the funding ratio and financial soundness are vulnerable to poor investment performance, suggesting that further pension reform may be necessary in the near future. Considering that plan design and pension investment decisions strongly influence each other, our results imply the need to coordinate asset allocation policy, pension plan design, and the financial and actuarial recalculation process with utmost care when the Government Pension Investment Fund begins the revision of asset allocation policies in the future. JEL Classification: H55, G11 Key words: public pension, macro economy indexation, investment of public pension reserve, asset allocation, risk management 2

1.1 2004 1 2017 18.3 100 1 50 50 2 P P 2000 1 (2005) 2 3

3 P P P P P ALM Asset Liability Management ALM 2 4 P (1993) (1999)1999 (1999)1999 (2003) (2002)(2004) 2004 (2003) Lee et al.(1998)congressional Budget Office(2002) 5 ALM Sharpe(1990) 3 2006 4 4 ( ) 5 4 1 4

Sharpe and Tint(1990) ALM (2004) (2005) p15 P 2 ALM 3 4 1.2 2004 6 P P 7 15 20 24 2.80 3.27 0.58 0.66 1.8 2.1 1 1% 2.8 3.1 1979 2003 1973 2003 8 9 10 5 3.2 3.7 0.05 11 P 1999 2003 6 (2005) 7 (2005) 8 NOMURA-BPI TOPIX CITI MSCI-KOKUSAI 9 10 5

11 2 2 2029 257.9 P 50% 50 (2004) P 12 1 13 14 P 3.2 50 11 12 13 14 6

2 2 2029 P 2023 15 2029 3 3.0 16 17 18 10 30 4 19 3.2 15 16 10 1.2720 2.0030 2.362005 7 29 17 18 20 30 19 7

2-1 P A 1 B 2 C 5 P ALM x() t ( ) dx() t = θ λ x() t dt + σ dw () t (1) x x x x yt () ( ) dy() t = θ λ y() t dt + σ dw () t (2) y y y y 20 θx, θy, λx, λy, σx, σ y Wx, Wy ρ θ, θ λ, λ xy σ, σ t x y 1 1 Gourieroux and Jasiak(2001) p251 (1) x y x y 20 x() t yt () Vasicek x() t yt () (2000) p826 8

9

(2) 1 exp( λx) 1 exp( λx) x() t = θx + exp( λx) x( t 1) + σx ε x() t (3) λx 2λx 1 exp( λy) 1 exp( λy) yt () = θy + exp( λy) yt ( 1) + σ y ε () t λ y 2λ y (4) y 21 ε x () t ε y () t 0 ρxy λ, λ σ, σ, ρ 25 1981 2005 x y x y xy λ = 0.439 (0.0056) λ = 0.644(0.105) σ = 0.013 σ = 0.018 22 x y x θ, θ x y θ x = 0.01 θ y = 0.011 ri () t r() t = µ + σ ε () t (5) i i i r i i µ, σ i y i 1 2 1 2 21 (3) AR(1)Congressional Budget Office (2002) AR(1) VAR(2) 22 10

ε r () t 0 1 ρ i xr i ρ 23 yr i α() t β () t τ ( τ < t ) at () bt () yt () 3 ( ) ( ) ( ) 1 3 yt ( ) 1 + yt ( 1) 1 + yt ( 2) 1 + yt ( 3) 1 zn () t z () t x( t 1) + y() t n zn () t x() t 1 3 x() t zn () t x( t 1) > 0, and z ( t) > 0, and x( t 1) > z ( t ) x( t 1) 0, and z ( t) 0 x( t 1) < 0, and z ( t) < 0, and x( t 1) > z ( t ) at () zn (), t at () 0, xt ( 1), n n n bt () xt ( 1), bt () 0, zn () t 1 xt ( 1) zn () t x( t 1) > z n ( t) at () zn () t 1 at () bt () 1 xt ( 1) n n (6) (7) 23 i r x xr i ρ j 4 wj r j σ i σ x cov( ab, ) a b ρ xr = cov( r, ) /( ) cov(, ) /( ) cov(, ) /( ) i i x σσ i x = wjrj x σσ i x = w j j rj x σi σx cov( rj, x), σ x, σ j 1970 2003 CITI 1985 ρ xy = 0.3 11

zn () t x( t 1) > z n ( t) bt () 1 xt ( 1) at () 1 xt ( 1) bt () z () t ct () ct () ct () 2 1 H 1 () t 2 H 2 () t 3 H 24 3 () t M () t mt () M()/ t M( t 1) mt () 3 mt () ct () c ( t) max(0, m( t) + 0.003) (8) (8) 0.003 0.3 25 α() t max( at ( ),0) + max( at ( ) ct ( ),0) if τ > t α () t at () if τ t β () t max( bt ( ),0) + max( bt ( ) ct ( ),0) if τ > t β () t bt () if τ t (9)(10) τ > t ct () max ct () ct () τ t 2-2 (9) (9) (9) ct () at () > 0 ct () α() t at () 0 ct () at () bt () (6) (7) n (9) (10) H (), t H (), t H () t 24 1 2 3 25 ct () ct () 12

at () α() t ct () at () > 0 ct () α() t at () 0 ct () ct () φ() t φ() t φ() t Hm () t Pm () t zt () xt () + yt () 26 Pm ( t 1) (1 + α( t)) (1 + α( t)) φ() t = φ( t 1) H ( t 1) (1 + zt ( )) (1 + zt ( )) m At () Ut () Gt () B() t Kt () (5) i r() t i (11) A() t = (1 + r()) t A( t 1) + U() t + G() t B() t K() t (12) i At () Gt () B() t Kt () P i F() t t Hm () t 393000 P 231000 m () t zt () 2016 0.0019 26 13

( PV ) () B t U t K t 27 At () F() t ( PV ) () ( PV ) ( PV ) ( PV ) ( PV ) () F() t A() t B () t K () t + U () t (13) ψ ( t) ψ ( t) t 1 ψ ( t) At ( 1) ψ () t B() t + K() t τ 28 φ() t 50 φ() t 50 2010 2050 Ft () 0 50( φ 0.5 )2050 2051 29 2100 τ F τ φ 50 30 τ φ τ F { φ F } (14) τ min τ, τ,2051 (15) τ min{ t = 2010, L,2100; φ( t) 0.5} φ τ min{ t = 2010, L,2100; F( t) 0} F 31 τ φ( τ ) ψ () t 3 (16) 27 ( PV ) () ( PV ) () ( PV ) () B t U t K t 28 2023 50.2 3.9 2015 5.2 2030 4.5 2050 29 2050 30 φ() t 50 31 (2004) 65 2 3 1 14

3-1 A P1 P3 P P3 52 P1 2025 50 P1 P3 5 P1 50 30 30 50 30 B P1 P3 3-2 A A 5 15 30 50 3 P 2023 11 5 2011 2011 595 2043 50 5050 32 3.2 P3 3.374.1 2015 5.8 2030 4.4 2050 1 2.6 2015 2.7 2030 0.1 2050 2015 2030 2050 0.1 33 95 5.3 2015 8.5 2030 8.7 2050 95 57.6 32 50 50% 50 33 15

φ( τ ) φ( τ ) ψ () t ψ () t 16

(15) φ( τ ) τ (11) (14) 17

(15) φ( τ ) τ (11)(14) 18

(15) φ( τ ) τ (11)(14) 19

3-1 A B P1P3 P 2 1 50.7 3.9 2015 5.5 2030 50% P3 P1 5 3.0 2015 3.5 2030 3 2023 P3 2030 P1 2050 P1 50 50 3.0% ) 34 4 5 35 1 P4 0.3 2050 P5 1.0 2050 50 50 50 3-2 B 50 50% 34 35 2 1 2 3 + 5050 20

43.1 ( 143.9 ( 3)50%2030 50 50 A (=3.0 ) 2.0 2 10 36 37 38 3-2 C P (P2-2 P2-5)P2-1 τ φ( τ ) ψ () t P2-2 P A P3 P2015 2030 1 9 502050 P2-12015 2030 A P12050 1.5 2.0 50 36 (=)1.89 50 2.26 25 1.72 20 0.21 10 37 4.8-2.02.8 1973 2003 CITI 1985 38 21

2 C 1 A P2-4 P2 P2-5 P3 P2-5 11.2 2015 0.7 2030 2.6 2050 P3 1.0 2.5 (2005) p.17 100 2015 2 2050 1 5 39 50 50 P3 P 3-1 A 5 50 2015 50 3-2 (1)(2) (3)(3) (4) 3-3 P 1 40 1% 19.3 10 12 50% 18.3 1 39 (2005) 4 10 40 50% 22

23

P P 2 P 2006 4 P P P 2 P P 2 P 24

5.1. g k t 15 41 He (, t g, k ) 2 H 2 (, t g, k ) Hm (, t g, k ) H 2 (, t g, k) Otgk (,, ) δ L (, tgk, ) 2 δ 2 (, tgk, ) 42 ( ) ( ) δ ( ) δ ( ) H2 tgk,, Otgk,, L tgk,, 2 tgk,, He () t (17) (17) kh () t [ 2 m ] (18) H() t H(, tgk, ) H (, tgk, ) e g k= 15 Hm (, t g, k ) (2000) t kj (, t g) 43 108 J ( tgk,, ) d( t, g, k) J (, tgk, ) Jt ( 1, gk, 1) (1 dtgk (,, )) (19) t J (, tgk, j (, tg)) Ttgk (,, ) 60 65 kj (, t g) 1 Ttgk (,, ) Ttgk (,, ) Tt ( 1, gk, 1) (1 dtgk (,, )) (20) f () t 60 Ttg (,,60) ft ( ) H( t 1, g,59) (1 dtg (,,60)) e 1 T d J ( t, g, k ( t, g)) T( t 1, g, k ( t, g) 1) (1 d( t, g, k ( t, g))) j j j W( t, g, k) (,, ) I( g, k) ( ) (21) W t g k 1 zt Wtgk (,, ) Wt ( 1, gk, 1) (1 + zt ( )) Igk (, )/ Igk (, 1) R(, tgk, ) Ptgk (,, (, tg)) R(, tgk, ) Rt ( 1, gk, 1) j (22) β ( t) 41 2015 59 2018 60 2021 61 2024 62 2027 63 64 42 2 43 25

W( t, g, k) ( β ()) ( ) L h () ( β ()) () L Rt ( 1, gk, 1) 1 + t + W tgk,,, k= 21,, k t Rtgk (,, ) Rt ( 1, gk, 1) 1 + t, k= kh t + 1,, kj( tg, ) 1 (23) (23) 20 20 20 Ptgk (,, (, tg)) κ( t, g, k ( t, g)) (23) j Ptgk (,, (, tg)) Rtgk (,, (, tg)) κ (, tgt, g), k ( t, g)) (24) (12)U t (22)W t, g, k () ( ) H t g k ht ( ) e (,, ) j j j (18) Ut kh () t () ht () Wtgk (,, ) H e (, tgk, ) (25) g k= 15 (19) J ( tgk,, ) (,, ) j( t) 44 B() t P t g k 108 (26) g k= k (, t g) B() t j() t P(, t g, k) J(, t g, k) P( t, g, k) α ( t) j Ptgk (,, ) Pt ( 1, gk, 1) (1 + α()) t (27) (12) Kt () 3 H 3 () t 1 H 1 () t BK () t H 3 () t c g 2 c H (, t g, k) 2 3 δ 3 ( g, k) 2 j 60 c 3 g k= 15 2 3 H () t H (, t g, k ) δ ( g, k ) (28) 1 H 1 () t 60 1 g k = 20 H () t H (, t g, k) 1 (29) H1 (, t g, k ) O 2 2 3 H 1 δ 1 ( t) 1 2 3 H 3 H( tgk,, ) ( Otgk (,, ) H( tgk,, ) H( tgk,, )) (1 δ ( t)) BK () t PK () t 1 44 (26) jt () (2005)225 5 51 2002 1 jt () 26

P ( n ) K () t 45 ( n) ( n) K K P () t P ( t 1) (1 + β ()) t ( n) K K + α + K P ( t) 0.95 P ( t 1) (1 ( t)) 0.05 P ( t) (30) t k () t 46 108 O K δ () t B () t K K B () t P () t O (, t g, k ) () t (31) 108 K K δ g k= k () t K Kt () (18)(28) (31) e 3 1 e 3 m K K() t ( H () t + H ())/( t H () t + H () t + H () t + H ()) t B () t (32) Gt () δ () K G t Gt () δ () t Kt () (33) G (13) F() t B ( ) () t PV PV t+ 96 ( + ) j j= t i (34) B ( ) () t B ( j )/1 µ B() t θ ( = 1.0%) θ ( = 1.1%) x (26) B() t J (, tgk, ) P( t, g, k) α() t β () t θ x θ y µ i K ( PV ) () t i PV t+ 96 j δ j t G µ = i (35) ( K ) () t (1 ()) t K( j)/(1 + ) δ G () t K ( j ) (30) α () t θx β () t θ y 47 PV t+ 95 j + µ j= t i (36) ( U ) () t U( j)/(1 ) y 45 α() t β () t 5 46 47 (34) (35) (36) t + 96 t + 95 1 27

48 5.2. Otgk (,, ) ( 14 1 ) 2100 2150 49 δ L (, tgk, ) 2001 2005 2002 7 2025 5 5 1 2000 2010 2025 3 1 δ 2 (, tgk, ) 2000 2001 5 50 2002 1999 2001 2003 (1999) p142-143 35 2003 35 2003 35 50 δ 3 (, tgk, ) 2002 2 51 2003 2003 Hm (, t g, k ) (1999) p144 2025 2025 Wtgk (,, ) 2001 2000 5 1 R(, tgk, ) 1985 2000 2000 52 5 1 20 59 59 κ (, tg) 2000 60 48 5 100 5 95 2100 2105 5 1 49 2100 2100 2100 1.7038 2150 2.0402 50 5 1 51 2000 15 54 5 52 2000 8 4 2 1984 1985 28

53 Ik ( ) 2001 2000 1 20 1 ht () 2004 0.354 2017 18.3 J (, tgk, ) ( 12 ) Ptgk (,, ) ( 12 ) Ptgk (,, ) 54 5.3. 1981 2005 (3) x() t AR(1) x() t = a + b x( t 1) + c ε () t (37) ( λ ) x x x x 1 exp 1 exp( ) 1/2 x λx ax θx, bx exp ( λx), cx σx (38) λ λ (4) x yt () yt () = a + b yt ( 1) + c ε () t (39) ( λy) y y y y 1 exp 1 exp( λ ) 1/2 y ay θy, by exp ( λy), cy σ y (40) λy λy b = 1 b = 1 Dickey-Fuller 55 y 56 25 57 OLS (37)(39) a OLS (37)(40) x x a y x 53 54 75 2000 55 Dickey-Fuller Hayashi(2000) p575 5 1 1 56 50 57 3 3 25 29

λ = exp( b ), σ = (2ln( b ) /(1 b ) c x x x x x λ = exp( b ), σ = (2ln( b ) /(1 b ) c y y y y y 2 x 2 y (41) Congressional Budget Office 2002Uncertainty in Social Security's Long-Term Finances: A Stochastic Analysis Gourieroux C and J Jasiak 2001Financial EconometricsPrinceton Hayashi F (2000)EconometricsPrinceton Lee, D., M.W. Anderson, and S. Tuljapurkar 2003Stochastic Forecasts of the Social Security Trust Fund, Report prepared for the Social Security Administration Sharpe W (1990) Asset Allocation in Managing Investment Portfolios-Dynamic Processeds J. Magin and D. Tuttle Warren, Gorham, and Camont Sharpe W and L G Tint 1990Liabilities: A New ApproachJournal of Portfolio Management 16(2) pp5-10 2003 Vol.29, pp1-59 1993 No.25 pp 7-33 2004 20042004 Vol.32 pp1-29. (2000) 11. 2002 2005 31 2005 16 2001 2003 28, pp.101-112. 1998Vol.50 No.3 pp.249-258. 1999 30