LD

Similar documents
Microsoft Word - 学士論文(表紙).doc

空気の屈折率変調を光学的に検出する超指向性マイクロホン

吸収分光.PDF

飽和分光

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

c 2009 i


4‐E ) キュリー温度を利用した消磁:熱消磁

0.1 I I : 0.2 I

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

( ) ,

Mott散乱によるParity対称性の破れを検証

untitled

160GHz

Microsoft PowerPoint - 02_資料.ppt [互換モード]



スライド タイトルなし

untitled

85 4

untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

橡実験IIINMR.PDF

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

14 2 5

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

pc725v0nszxf_j

pc817xj0000f_j

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

impulse_response.dvi

Microsoft Word - 章末問題

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

筑波大学大学院博士課程

main.dvi

35

学習内容と日常生活との関連性の研究-第2部-第4章-1

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )


修士論文


PDF

JIS Z803: (substitution method) 3 LCR LCR GPIB

LLG-R8.Nisus.pdf

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

高等学校学習指導要領

高等学校学習指導要領

chap1.dvi


untitled

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

news

VA-12取扱説明書

PowerPoint Presentation

The Physics of Atmospheres CAPTER :

main.dvi

untitled

Gmech08.dvi

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

untitled

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

pc123xnnsz_j

I

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

OPA134/2134/4134('98.03)

QMI_10.dvi

QMI_09.dvi

情報通信工学2-ocw.dvi

2

keisoku01.dvi

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

ohpr.dvi

2005 1

uPC2745TB,uPC2746TB DS

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

2章.doc

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

mt_4.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2000年度『数学展望 I』講義録

Chap10.dvi

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Transcription:

989935

1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37

38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56

Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC

1 4 LDV LDV He-Ne Acousto-optic modulater; AOM LDV He-Ne Laser diode ; LD 1mm [3] [4] LDV [5] FM [6]LD FM FM LDV LD FM FM 5

1 5

6 Abstract - FM LD S4V46,TOSHIBA (0) Fig..1 Fig..1 68.5nm68.57nm 5.0GHz/mA [3] 6

7 Fig.4 Lasing wavelength vs. the injection current (T=4 Fig..1LD Fig.. l LD i i m LD ν ν l Fig..3 t b Fig..4 ( c t l = c ) b l = ν (.1) c b m (1) b l Fig..5 1mm 15kHz 550Hz ν 7

8 ν =3.7GHz/mA 3mA 7.4GHz FM FM Fig..4 i 0 i Reerence mirror [ ] m khz t LD Hal-mirror l i PD Vibrating object V v [Hz] t Fig.. 8

9 Scattered light Reerence light Beat signal ν t 1 m t Fig..3 Output voltage o PD [V] Injection current Output voltage o PD Time [ µs ] Injection current [ma] Fig..4 9

10 Fig..5 ω 0 Hz E 1 ( t) t E () () E 1 t = E1 cos{ ( ω ω 0 ) ωt k0n1 ( l1 + D1 + D )} () E t E { t k n ( l + D + )} cos 0 1 D. = ω.3 k i i i 0,n 1, θ = k 0 n l n = 1, (.4) ( ) 10

11 I = E + () t E () 1 t 1 + I + I1I cos ( ω + θ ) = I t θ (.5) 0 1 I 1 = E 1 E I = (.6).6 ( ) v v v v = v cosω t (.7) 0 v 0 c + v 0 = (.8) c c v 1 c 1 c v c + v = c v = 0 (.9) λ LD 11

1 ω = π = π ( ) 1 4πv c 4πv = λ 4πv 0 = cos λ ω v t (.10).4 ω 0 ω + ω 0 [5] cos { ( ω ω ) + θ θ } 4πv 0 0 + dt 1 = cos ω 0 + cosω v t dt + θ1 θ λ 4πv 0 1 cos ω + 0t sinω vt + θ1 θ λ ω v =.11 ( ) FM FM FM.4 LD LD FM FM 3 FM 1 1

13 3 Abstract FM 0[Vp-p] 0.0910[kHz] Fig.3.1 (.10) Fig.3.1 c LD 0 [ m s] 8 c = 3 10 / 8 3 10 0 = c / λ = 4.48 10 9 670 10 14 [ Hz] 13

13 3 v = aω a (3.1) Fig.3. 500[Hz] 00[Vp-p] Fig.3.33.4 Fig.3.1 14

13 3 Fig.3. Fig.3.3 15

13 3 Fig.3.4 (3.1) 10kHz FM [8] Fig.3.5 FM ωb v = v cosω t ω cos 0 v d ω v t 16

13 3 { ω + φ} () t cos ( + ω cosω t) = dt b ω d = cos{ ω + sinω + φ} ω b t vt v d v 3. ω d 4πv 0 ω d = λ (3.3) λ LD A φ ω d d ( sin ω vt ω v ) 90 cos ( ω t), sin( ω st) s s (3.4)3.5 () t 1 ω d ω d cosω {cos ω sinω cos sinω + φ} + ω ω st = st + vt vt v v d d () t sinω t = {sin ω t + sinω t sin sinω t + φ} (3.4) 1 ω ω l s v ω v ω (3.5) v v (3.4)3.5 s + d s s + d d LPF d (3.6)3.7 I ( t) Q() t I 1 ω ω v d () t = Lowpass{ ( 3.) } = cos{ sinω t + φ} v (3.6) 17

13 3 Q 1 ω ω v d () t = Lowpass{ ( 3.3) } = sin{ sinω t + φ} v (3.7) ( ) I t Q t d [3] I () t Q() t tan a I, Q φ I, Q t () t I() t jq() t S = + 3.8 t = t, 1 t = t = t + t S, S 1 ( ) S = jφ1 1 = I1 + jq1 A1 e (3.9) jφ = I + jq Ae (3.10) S = S, S 1 S, S 1 S, S 1 S, S 1 S S 1 = A A e = I 1 ( φ φ ) j 1 = ( I1 + jq1 ) ( I jq ) ( I Q I ) 1I + Q1Q + j 1 1Q ( S jφ = I jq = A e ) (3.11) 18

13 3 I Q I Q 1 1 1 φ 1 φ = tan (3.1) I1I + Q1Q φ v = 1 φ t (3.13) t 3.6 3.7 φ ω d sin ω vt ω v t φ Im. S 1 S φ 1 φ φ1 φ S 1 S Re. S Fig.3.6 19

13 3 3.3 I, Q 4 FM 0

13 3 Intererometer beat signal cos( ω b t) sin( ω b t) PD HPF COMP exclusive or b + d d LPF d d I Q Local oscillator Fig.3.5 1

4 Abstract LPF 4.1 FFT FM Fig.4.1 HPF (TTL ) [9] b 90 (Ex-OR [9] ) b + d d LPF [10] d I Q

4 Fig.4.1 3

4 Fig.4.1 130[kHz]HPF Fig4.1 a Fig.4. HPF Fig.4.3 15kHz -13dB Fig.4.3 Fig.4.1 c b [10] b Fig.4.4 Fig.4.5 00[kHz] Fig.4.5 00[mV] Fig.4.HPF 5

4 Gain[dB] -13 15kHz Frequency[kHz] Fig.4.3 HPF Fig.4.4 6

4 00kHz Fig.4.5 ( TTL ) c TTL cos( ω bt), sin( ω bt) Fig.4.6 b NOT TTL TTL 7

4 Beat signal TTL signal cosω b t sinω b t 0 Time[s] Fig.4.6 TTL 1 c TTL Fig.4.7(a)(b) Fig.4.7(a)(b) exclusive or exclusive or 8

4 cos ω b t TTL signal 1 Fig.4.7(a) sin ω b t TTL signal Fig.4.7(b) 9

4 10[Hz] Fig.13 Output o a demodulation[v] Lo,Osc=burst Lo,Osc=Cont. Time[s] Fig.4.8 LD ν l m LPF LPF N LD (DL-3149-056,SANYO, 670nm) (3) 39mA i mapp ν 8.9GHz Fig.4.9 l =430mm 1 / (1) 1 10Hz b m 30

4 15kHz 193kHz HPF LPF 35kHz16Hz i 0 i Reerence mirror [ ] m khz t LD Hal-mirror l i PD Vibrating object V v [Hz] t Fig.4.9 4.3.1 Fig.4.9 Fig.4.10 1 1 Fig.4.11 1 31

4 Output voltage o PD [V] Injection current Output voltage o PD Time [ µs ] Injection current [ma] Fig.4.10Fig.4.9 Fig.4.11 3

4 4.. 1 17510kHz Fig.4.1 LPF Hz LPF Fig.4.1 4..3 1 l = ν (4.1) c b m 33

4 ( ) m b 540kHz Fig.4.13 1 193kHz 0.1100kHz Fig.16 S/N 0dB 1/ 7.5kHz ( ) Fig.4.13 34

4 S/N[dB] Vibration requency[khz] Fig.4.14 S/N [10] 441 3. I, Q I, Q Fig.4.15 5V () πrad ()() I 5V Q 5V πrad (5.1) t 35

4 1 rad λ π v (5.) v = λ 1 1 I Q1 I1Q tan 4π t I I + Q Q 1 1 (5.3) LD 670nm () Beat signal T = π 5V T π [ rad ] () cos sin () I =0 I = 5 () Q = 5 Q = 5 T/ 5V 5 V π [ rad ] Fig4.15 36

4 4.4. 5Vp-p 15kHz LDV Fig.4.16 5kHz Fig.4.17 Fig.4.16 15kHz 37

4 Fig4.17 5kHz 15kHz5kHz LDV 1. 38

4 39

5 40 Abstract LDV LDV FFT Fig.5.1 1 FFT Fig.5.1 FFT v ν ν d c ν v = v d (5.1) 40

5 41 m v m v Vibration velocity Modulation signal Beat signal Beat signal b FFT analysis t Fig.5.1 41

5 4 ( 1) l / b m b ν = l c (5.) m l c l = ν (5.3) ν ν =13GHz 4 l = mm ) FFT FFT 1 m khz 10kHz FFT 10kHz 6.8mm/s(o-p) Fig.5. ( HM) ( M) LD Fig.5.3 Fig.5.4 ω b1 HPF 4

5 43 Mirror Reerence light Scattered light l1/ Hal-mirror Mirror Laser Diode Hal-mirror Scattered light 1 D1 l/ l3/ i m[khz] D Piezo-actuator i[ma] t Fig.5. Reerence light Scattered light 1 Scattered light optical requency ω b t ω ω b1 b 3 t 1 t 3 ν 1/ m time Fig.5.3 43

5 44 Fig.5. HM M (4) ν 1.7GHz M HM l 1=45mm l =345mml 3=445mm (1) b=315khz b3=415khz Fig.5.4 FFT Fig.5.5 HM M HM+M 1kHz 0.1mm 10kHzν 4GHz HM 100mm HM M 1.5kHz,1kHz 3mm/s 10kHz FFT 10kHz Fig.5.6 FFT 1 4 a1 a 4 peak peak 4 n= 1 = 4 a n= 1 n a n n (5) Fig.5.7 LDV 44

5 45 1.5 Injection current 61.5 [V] Output voltage o PD 1 0.5 0-0.5 Output voltage o PD 60.0 58.5 57.0 Injection current [ma] -1 55.5-5.0E-05-50 -.5E-05-5 0.0E+00 0.5E-05 5 5.0E-05 50 [ ] Time µs Fig.5.4 1.6E-0 Hal mirror + Mirror Power(arb.) 8.0E-03 Hal mirror Mirror 0.0E+00 0 100 00 300 400 500 600 Frequency[kHz] Fig.5.5Fig.5.4 45

5 46 Amp. a1 a 1 a3 34 a4 peak = Fig.5.6 Fig.5.7 4 n=1 4 n=1 an n a n 46

5 47 Fig.5. Ex-OR Fig.5.8 (DBM) HMM 750Hz1kHz HPF HMM LPF 100kHz1.1kHz 0 600kHz FFT 750Hz 1kHz Fig.5.9 750Hz 30kHz 1kHz 415kHz Triangular signal Beat signal PD HPF DBM LPF d I Local oscillator cos sin ( ω t ) b ( ω t ) b + and b d d d Fig.5.8 47

5 48 Amplitude(arb.) 750 Hz component 1 khz component Frequency o the local oscillator [khz] Fig.5.9 Fig.5. M 1kHz l 3=445mm 415kHz 35mm75mm 5mm HM M 15dB 3 Fig.5.10 Fig.5.10 5.3 48

5 49 Eq.(3) Fig.5.10 45mm 49

5 50 50

50 Abstract LDV 10Hz LD LDV LDV 1

51 45mm 1 LPF I, Q (0kHz )

James RFriend 1 1 4 53

[1] 1983pp.188-197 [] Vol.9,No.1,pp.15-19,000 [3] A.Dandridge and L.Goldberg, Current-induced requency modulation in diode lasers, Electrum.Lett., Vol.18, No.7. pp.30-304,198. [4] [5] 1999 [6] 000 [7] 1989 [8], 1999 [9] 1997 [10] Vol.8,No.1.pp.J15J3(001) [11] Proceedingso 6th Meeting on Light wave Sensing Technology, 000, pp51-58 54

[1] 14 00pp.831-83 [] 14 00pp.811 81 [3] 15 [4] Simultaneous Vibration Measurements o Two Separate Objects Using a Wavelength-Swept Optical Heterodyne Method S. Wakisaka, T. Koike, K. Nakamura and S. UehaWCU003pp.99-100 55

DBM 56

Ex-OR 57

58

59

60