IV (2)

Similar documents
untitled

all.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

量子力学 問題

「産業上利用することができる発明」の審査の運用指針(案)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

数値計算:有限要素法

JFE.dvi


numb.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Chap10.dvi

Untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(Jacobi Gauss-Seidel SOR ) 1. (Theory of Iteration Method) Jacobi Gauss-Seidel SOR 2. Jacobi (Jacobi s Iteration Method) Jacobi 3. Gauss-Seide


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

第1章 微分方程式と近似解法

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2011de.dvi

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

日本統計学会誌, 第44巻, 第2号, 251頁-270頁


meiji_resume_1.PDF

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Part () () Γ Part ,


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

吸収分光.PDF

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

第3章 非線形計画法の基礎

SO(2)

chap9.dvi

第5章 偏微分方程式の境界値問題


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

untitled

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

: , 2.0, 3.0, 2.0, (%) ( 2.

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

多体問題

K E N Z OU


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

高等学校学習指導要領

高等学校学習指導要領

TOP URL 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

重力方向に基づくコントローラの向き決定方法

main.dvi

タイの食品市場(国庫用)訂正.PDF


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Gmech08.dvi

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

main.dvi

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

keisoku01.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

gr09.dvi

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

TOP URL 1

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

main.dvi

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

untitled

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

ohpr.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ

OHP.dvi

I II III 28 29


通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

基礎数学I

Transcription:

COMPUTATIONAL FLUID DYNAMICS (CFD) IV (2) The Analysis of Numerical Schemes (2) 11. Iterative methods for algebraic systems Reima Iwatsu, e-mail : iwatsu@cck.dendai.ac.jp Winter Semester 2007, Graduate School, Tokyo Denki University 19, 2007 11 16F, 1601 1

IV (2) 10. 10.1 10.2 10.3 11. 11.1 11.2 11.3 11.4 11.5 2

11. Iterative methods for algebraic systems CFD 3D RANS (7 100 = 700 ),,, :, Varga (1962), Dahlquist & Bjork (1974), Saad (2003) Dongarra 3

11.1 11.1.1 2 5 u = f 0 x, y L (1) u = g on the bounradies (2) (u i+1,j 2u ij + u i 1,j ) + (u i,j+1 2u ij + u i 1,j ) = f ij x 2 (3) M j 1 0 y 6 6 6 6 0 1 i M 6 x 4

U = (u 11, u 21,, u M,1, u 1,2, u 2,2,, u 1,j, u 2,j,, u M,j, ) (4) 4 1 1 1 4 1 1 1 4 1 1 (i) S SU = F x 2 + G Q (5) (ii) S (, ) N = M 2, I = i + (j 1)M N J=1 u 11. u i1. = x2 f 11. f i1. g 10 + g 01. g i0. s IJ u J = Q I I = 1,, N (7) (6) 5

11.1.2 / ( ) u n ij u n+1 un+1 ij (n ) ij = 1 4 (un i+1,j + un i 1,j + un i,j+1 + un i,j 1 ) + 1 4 qn ij (8) u n+1 i = 1 N q n s i s ij u n j (9) ij j=1,j i 6 6 6 6 : Unknown at iteration n + 1 : Known from iteration n 6

D:, E:, F : S = D + E + F (10) DU n+1 = Q n (E + F )U n (11) (D + E + F )U = Q (12) - R n R n R(U n ) = SU n + Q n = (D + E + F )U n + Q n (13) D U n = R n (14) U n U n+1 U n (15) 4(u n+1 ij u n ij ) = (un i+1,j + un i 1,j + un i,j+1 + un i,j 1 4un ij ) + qn ij (16) 7

u n+1 ij u n+1 I = 1 s II = 1 4 (un+1 i+1,j + un i 1,j + un i,j+1 + un+1 i,j 1 ) + 1 4 qn ij I 1 qi n N s IJ u n+1 J s IJ u n J J=1 J=I+1 (17a) (17b) (D + E)U n+1 = Q n F U n (18) (D + E) U n = R n (19) 6 6 : Unknown at iteration n + 1 : Known from iteration n + 1 : Known from iteration n 8

11.1.3 n e n 0, e n = U n Ū Ū : (20) S S = P + A (21) P U n+1 = Q n AU n (22) P U n = R n (23) P : ( (22) ) SU n+1 = Q n or S U n = R n (24) (25) (22) SŪ = (P + A)Ū = Q (25) 9

P e n+1 = Ae n (26) e n+1 = (P 1 A)e n = (P 1 A) n e 1 = (1 P 1 S) n e 1 (27) n e n+1 0 P 1 A ( ) G G = 1 P 1 S (28) ρ(g) 1 (29) λ J (G) 1 for all J (30) S P ˆP 1 O(N) ˆP S 10

R e R n = Se n (31) 0 0 ( ) R R U n Ū SU 2 x = 10 2 U 10 4 U n+1 = (1 P 1 S)U n P 1 Q = GU n P 1 Q (32) e n+1 = Ge n = G n+1 e 0 (33) n 11

G = D 1 (E + F ) = 1 D 1 S G = (D + E) 1 F = 1 (D + E) 1 S, : S S : S S, (2D S) (S 2D) : S S, (2D S) 12

n (33) Varga (1962) e n ( e n ) 1/n e 0 (34) e n G n 1/n (35) log s n 1 (10 ) s lim n Gn 1/n = ρ(g) (36) ρ(g) < 1 13 ( ) 1 n s = ρ(g) (37) 10 n 1/ log ρ(g) (38)

11.1.4 G (P 1 S ) U n = J=1 (λ J ) n U 0 V (J) J=1 Q J Ω J [1 (λ J ) n ]V (J) (39) V (J) : S, U 0 :, Ω J : S, S, G, (λ J : G ) lim n U n = J=1 U = S 1 Q Q J Ω J V (J) (40) Ū = J=1 U J V (J) (41) SŪ = J=1 Ω J U J V (J) = J=1 Q J V (J) (42) U J = Q J Ω J (43) 14

n (e 0J : ) e n = J=1(λ J ) n e 0J V (J) (44) V (J) ( ) R n = J=1 (λ J ) n e 0J SV (J) = J=1(λ J ) n Ω J e 0J V (J) (45) L 2 R n L2 = J=1[(λ J ) n Ω J e 0J ] 2 (46) n (λ J ) (λ J ) 1 R b a n 15

G S λ J = λ(ω J ) D G J = 1 D 1 S (47) λ J = 1 1 d J Ω J (S) (48) 16

11.1.5 S, G S Ω = 4(sin 2 φ x /2 + sin 2 φ y /2) φ x = lπ/m φ y = mπ/m J = l+(m 1)M l, m = 1,, M (49) G J λ(g J ) = 1 (sin 2 φ x /2 + sin 2 φ y /2) = 1 2 (cos φ x + cos φ y ) (50) (φ x, φ y 0) (λ 1) (Ω- ) x = y ρ(g J ) = cos πm (51) ρ(g J ) 1 π2 2M 2 = 1 π2 2N = 1 O( x2 ) (52) 17

(4 e iφ x e iφ y )λ GS = e iφ x + e iφ y (53) 2 (Young, 1971) λ(g GS ) = 1 4 (cos φ x + cos φ y ) 2 = λ(g J ) 2 (54) ρ(g GS ) = ρ(g J ) 2 = cos 2 π/m (55) M ρ(g GS ) 1 π2 M 2 = 1 π2 N 2 1 N/(0.43π 2 ) Varga (1962) (56) 18

10.2 U n = U n+1 U n (Frankel & Young, 1950) U n+1 ω U n+1 = ωū n+1 + (1 ω)u n (57) U n = U n+1 U n with U n = ω U n (58) ω 19

10.2.1 u n+1 ij = ω 4 (un i+1,j + un i 1,j + un i,j+1 + un i,j 1 + qn ij ) + (1 ω)un ij (59) ( ) DU n+1 = ωq n ω(e+f )U n +(1 ω)du n = ω(su n +Q n )+DU n (60) D U n = ωr n (61) G J (ω) = (1 ω)i + ωg J = 1 ωd 1 S (62) ρ(g J (ω)) 1 ω + ωρ(g J ) < 1 (63) 20

0 < ω < 2 1 + ρ(g J ) (64) λ(g J (ω)) = (1 ω) + ωλ(g J ) (65) ω ω = 1/(1 λ(g J )) λ(g J ) = 0 λ 1, ω < 1 λ 1, ω ω max 21

ω ω opt 1 + ω opt (1 λ min ) = 1 ω opt (1 λ max ) (66) λ min λ max ω opt = (50) ω opt = 1 2 2 (λ min + λ max ) (67) λ max = λ min = cos π/m (68) λ(g J (ω)) Unstable 1 1 1 λ min ω opt 1 λ max ω 22

10.2.2 : SOR (Successive Overrelaxation) ( ) ū n+1 ij = ω 4 (un i+1,j + un+1 i 1,j + un i,j+1 + un+1 i,j 1 + qn ij ) + (1 ω)un ij u n+1 ij = ωū n+1 ij + (1 ω)u n ij (69) D U n = R n E U n (70) - ( (D + ωe)) (D + ωe) U n = ωr n (71) G SOR (ω) = 1 ω(d + ωe) 1 S = (D + ωe) 1 [(1 ω)d ωf ] (72) 23

det G SOR (ω) = det(i + ωd 1 E) 1 det[(1 ω)i ωd 1 F ] = I det[(1 ω)i ωd 1 F ] = (1 ω) N (73) ρ(g SOR (ω)) N det G SOR (ω) = (1 ω) N (74) 1 (1 ω) ρ(g SOR (ω)) < 1 (75) SOR (Young, 1971) 0 < ω < 0 < ω < 2 (76) 2 1 + ρ(g GS ) (77) 24

( ) D S = 1 F F T (78) D 2 D 1, D 2 :, λ(g SOR (ω)) = λ(ω) i) SOR λ(ω) = 1 ω + ωλ 1/2 (ω)λ(g J ) (79) ii) ω = 1 λ(ω = 1) λ(g GS ) = λ 2 (G J ) (80) iii) ω opt = 2 1 + 1 ρ 2 (G J ) (81) ρ(g SOR (ω opt )) = ω opt 1 (82) 25

ω opt = ρ(g SOR (ω opt )) = ρ(g J ) = cos π/m (83) 2 1 + sin π/m 2(1 π M + π2 M 2) (84) 1 sin π/m 1 + sin π/m 1 2π M + O( 1 M 2) (85) 1 2.3M/π N SOR k kn N ρ(g) = lim n e n+1 e n n (79) ρ(g J ) (81) ω (86) 26

10.2.3 SSOR (Symmetric Successive Overrelaxation) SOR U n+1 SOR (D + ωe) U n+1/2 = ωr n (87) (D + ωf ) U n = ωr(ū n+1/2 ) (88) U n+1 = Ū n+1/2 + Ū n+1/2 = U n + U n = U n + U n+1/2 U n+1/2 + U n (90) SSOR SOR ω opt 2 1 + 2(1 ρ 2 (G J )) (91) SOR 2 ;2 27

10.2.4 SLOR (Successive Line Overrelaxation) U n SLOR (VLOR) ū n+1 ij = ω 4 (un i+1,j + un+1 i 1,j + ūn i,j+1 + ūn i,j 1 + 1 4 qn ij ) u n+1 ij = ωū n+1 ij + (1 ω)u n ij (92) 4 Uij n U i,j 1 n U i,j+1 n ω U i 1,j n = ωrn ij (93) SLOR ω opt 2 6 : Unknown at iteration n + 1 : Known from iteration n : Known from iteration n + 1 28

- : I = i + (j 1)M, : I : Red point : Black point 29

10.3 ( -form) n P U n τ = ω(su n + Q n ) = ωr n (94) τ P du dt = ω(su + Q) (95) ( ) P 1 G = 1 ωτp 1 S (96) ρ(g) 1 ( ωτp 1 )S ( ) P = (ωτs), G = 0 1 P/ωτ S P 30

10.3.1 P U n τ = ω(su n + Q n ) = ωr n P/τ = 1 ( S ) U n+1 = U n + ω(su n + Q n ) = (1 + ωs)u n + ωq n G R U n + ωq n (97) ( ) G R = 1 + ωs G R S Ω J λ J = 1 + ωω J (98) 0 < ω < 2 = 2 Ω J max ρ(s) (99) 31

λ 1 Ω ω 1 max opt ω opt = Unstable Ω min ( ) S ρ(g R ) = 1 2 Ω J max + Ω J min (100) 2 Ω J max = κ(s) 1 Ω J max + Ω J min κ(s) + 1 ω (101) κ(s) = Ω J max Ω J min (102) Ω J max = 8 Ω J min = 8 sin 2 π 2M 2π2 N 32 (103)

κ(s) = 1 sin 2 π 4N 2M π 2 (104) M 50 50 κ(s) 1000 ( ) ρ(g R ) = 1 2π2 N = 1 2 κ(s) (105) ω 1/ Ω J max 1/ Ω J min non-stationary cf. stationary 33

10.3.2 ADI (Alternating Direction Implicit) P ADI (1 τs x )(1 τs y )(1 τs z ) = τω(su n + Q n ) (106) (1 τs x ) U = τω(su n + Q n ) (1 τs y ) U = U (1 τs z ) U = U (107) ω, τ ADI N log N ( ) ω opt 2 τ opt = τ 1 ΩJ min Ω J max (108) λ(g ADI ) = (1 4τ 1 sin 2 φ x /2)(1 4τ 1 sin 2 φ y /2) (1 + 4τ 1 sin 2 φ x /2)(1 + 4τ 1 sin 2 φ y /2) (109) 34

10.3.3 P P U n τ = ω(su n + Q n ) = ωr n U n+1 = U n τωp 1 (SU n + Q n ) B = τp 1 S G = 1 τp 1 S, G ω opt = λ(g) = 1 ωλ(τp 1 S) (110) 2 λ min (τp 1 S) + λ max (τp 1 S) ρ(g) = κ(τp 1 s) 1 κ(τp 1 s) + 1 (111) = 10 5 10 6 : τp 1 S P 35

(Choleski) Meijerink & Van der Vorst U n+1 = U n τωp 1 (SU n + Q n ) (112) Strongly Implicit Procedure (SIP) Stone, Schneider & Zedan λ(g) = 1 ωλ(τp 1 S) (113) CG (Conjugate Gradient) Reid, Concus, Kershaw ω opt = 2 λ min (τp 1 S) + λ max (τp 1 S) GMRES (Generalized Minimum Residual) (114) Saad & Schultz ρ(g) = κ(τp 1 s) 1 κ(τp 1 s) + 1 (115) 36

10.4 S(U) = Q (116) S(U n+1 ) = S(U n + U) = S(U n ) + (Jacobian) ( ) J(U) Ū ( ) S U ( ) S U = Q (115) U (116) J(U) U n = R n (117) Ū = U n J(U) 1 R n (118) 37

e n = U n Ū J(U)e n = R n (119) (117) J(U) U n = R n P/τ P τ U n = R n (120) e n G e n+1 = U n+1 Ū = en + U = e n τp 1 R n = (1 τp 1 J)e n Ge n P 1 (121) G = 1 τp 1 J (122) 38

10.5 Brandt (1972,1977,1982), Thomas et al. (2003), Briggs (2000) = = G 1 = S Ω J min φ x = φ y = π/m S (λ J ) n (G ) λ J = 0.5 n 2 n λ J = 0.999 1 10 23000 Error after smoothing x 39

10.5.1 (smoothing) µ = max π/2 φ π : φ x = φ y = π 1 λ(g J ) = 1, +1/2 λ(g) (123) µ(g J (ω)) = max[ 1 2ω, 1 ω/2 ] (124) ω = 4/5 µ = 0.6 0.6 0.5 0.447 0.25 0.25 0.048 40

10.5.2 CGC (Coarse Grid Correction) h:, H:, ex. H = 2h (, residual form) S h U h = Q h (125) P U h = R h (126) 1. (restriction) 2. R H = I H h R h (127) S H U H = Q H (128) S H U H = R H (129) 3. U H (prolongation) U H = I h H U H (130) 41

10.5.3 Two-grid Iteration Method h, H 1. Uh n S 1 n 1 2. U n+1 h = Uh n + U h 3. U n+1 h S 2 n 2 S 1 6 6 n 1 S 2 n 2 6 coarse grid correstion h ( N) N ( N) 42

10.5.4 FAS (Full Approximation Scheme) Ih H, Îh H S h (U h ) = Q h (131) S h (U h + U h ) S h (U h ) = R h (132) R H = Ih H R h (133) U H = ÎH h U H (134) S H (U H + U H ) S H (U H ) = R H (135) 43

( ) P G = 1 P 1 S G S O(N) 44

n ˆ 1 ˆ 2 n ˆ ( 6 ), I, Toro ˆ Chorin (1967,1968), Harlow & Welch (1965) Patankar & Spalding (1972) 45