IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

Similar documents
調査レポート

40 3 / 3 i i 1 E1 e = E = 4 3 (1) (2) = (3) = (4) = % AA 1.365% % 0.02% 3

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

「国債の金利推定モデルに関する研究会」報告書

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

DE-resume

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

body.dvi

Q E Q T a k Q Q Q T Q =

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

DVIOUT

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.


FX ) 2

FX自己アフリエイトマニュアル

2011de.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

TOP URL 1

橡計画0.PDF

[PDF] ザルトバインド総合カタログ


untitled

December 28, 2018

06佐々木雅哉_4C.indd

ds2.dvi

曲面のパラメタ表示と接線ベクトル

chap1.dvi

量刑における消極的責任主義の再構成

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

201711grade1ouyou.pdf


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

< C93878CBB926E8C9F93A289EF8E9197BF2E786264>

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

untitled

fa-problem.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =



untitled

Note.tex 2008/09/19( )

「住宅に関する防犯上の指針」案

2000年度『数学展望 I』講義録

P CS1.indd

構造と連続体の力学基礎

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

ú r(ú) t n [;t] [;t=n]; (t=n; 2t=n]; (2t=n; 3t=n];:::; ((nä 1)t=n;t] n t 1 (nä1)t=n e Är(t)=n (nä 2)t=n e Är(t)=n e Är((nÄ1)t=n)=n t e Är(t)=n e Är((n

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

meiji_resume_1.PDF


経済原論

untitled

橡07第1章1_H160203_.PDF

2

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

数学の基礎訓練I

iR-ADV C2230/C2220 製品カタログ

,


sim0004.dvi

untitled

- II

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

untitled

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

0 0. 0

( ) (Appendix) *

: , 2.0, 3.0, 2.0, (%) ( 2.


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

text.dvi

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

( ) f a, b n f(b) = f(a) + f (a)(b a) + + f (n 1) (a) (n 1)! (b a)n 1 + R n, R n = b a f (n) (b t)n 1 (t) (n 1)! dt. : R n = b a f (n) (b t

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I

Transcription:

1 2

2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( )

2.3. 3 2.3 1 (yield to maturity) (rate of return) 2.3.1 1 1 n 1+x = x 100 (2.3) n r (1 + r) n =1+x r = np 1+x 1 y c n c x r r y = c (1 + r) + c (1 + r) + + c + x 2 (1 + r) n (1 + r) n 1+r y(1 + r) n c(1 + r) n 1 c(1 + r) n 2 (c + x) =0 (2.4) n 5 0 y>0 n c 1 0;c 2 0; ;c n 1 0;c n > 0

4 2 1 y = c 1 (1 + r) + c 2 (1 + r) 2 + + c n (1 + r) n (2.5) r ( ) y (2.5) i c i (1 + r) i 0 r i c i x = 1 (2.5) 1+r y = c 1 x + c 2 x 2 + + c n x n (2.6) n f(x) f(0) = 0; f 0 (0) > 0; f 00 (x) > 0(n 2 ) f 0 (x) > 0; (x >0) f 00 (x) > 0; (x >0) f(x) x 0 (2.6) x>0 x>0 x<1 3. i c i >y 0 <x<1 1. g(x) =c i x i y = g(x) y = f(x) 1. r r>0 () nx i=1 c i >y [ ] (2.6) f(x) P n i=1 c i >y f(1) >y f(x) x 0 f(0)=00 <x<1 x y = f(x) P r>0 0 <x<1 n y = f(x) <f(1) = i=1 c i 1. 1 cn > 0 cn =0 n

2.3. 5 2.3.2 y c 1 ;c 2 ; ;c n (2.6) 4 2 2 g(x) =f(x) y g(x) =0 x>0 g(0) = y g(x) x =0 x g(x) =0 x 1 x<1 x =1 x r =0:5 x =2=3 P n x i=1 c i y 1 x =1 x r r x Excel 2. y =100, c 1 =10;c 2 =11;c 3 =9;c 4 =15;c 5 =25;c 6 =33 visual BASIC 2.3.3 2 g(x) =0 2 g(x) =0 [a; b] a b P n i=1 c i >y 0 <x<1 1. a 0 =0;b 0 =1 2. 2 z =(a i + b i )=2 g(z) 3. g(z) 0 3.No g(z) < 0 a i+1 = z; b i+1 = b i 2 3.No g(z) > 0 a i+1 = a i ;b i+1 = z 2 2 3 4

6 2 3.Yes g(z) ß 0 z ( ) 3. 2 2 2 g(x) =0 g(x) 2 1 x 0 x =1 x n+1 = x n g(x n) g 0 (x n ) (2.7) g(x n+1 ) ß 0 4. (2.4) r c + x y n y + n 1 (x y) 2n c n c x y r (2.4) y @y @r @y r @r x 4. y r @y @r ; @ 2 y @r 2 y c @y @c ; @ 2 y @c 2

2.4. 7 2.4 (amortization) y i s n y 1 y + iy s 2 (y + iy s)+i(y + iy s) s = y +2iy + i 2 y 2s is n k P k k P k+1 P k P k+1 = P k + ip k s (2.8) P 0 = y P k = y(1 + i) k sf(1 + i)k 1g i P n =0 iy s = (2.9) 1 (1 + i) n 1 (1 + i) n i amortization factor 5. y n s s 2.5 (credit risk) 3 1 1 ( ) (discount bond) 3

8 2 T 1 t v(t; T ) t» T 1 (present value) (discount function) ( 0 ) t T (t; T ) v(t; T ) 5. v(t; t) =1 1. v c (t; T ) t =(T t)=n v c (t; T )= nx i=1 cv(t; t + t) +xv(t; T ) 2.6 r 1 (t; T )= 1 v(t;t ) 1 T t (2.10) 1 v(t; T ) =1+(T t)r 1(t; T ) T t 1 r 2 (t; T ) ρ ff 1 v(t; T ) = 1+ (T t)r 2 2(t; T ) 2 T t n 1 r n (t; T ) ρ ff 1 v(t; T ) = 1+ (T t)r n n(t; T ) (2.11) n

2.6. 9 ρ ff v(t; T )= 1+ (T t)r n n(t; T ) (2.12) n n!1 e x = lim 1+ x n n!1 n (2.12) y(t; T )= lim n!1 r n(t; T ) (2.13) v(t; T )=e (T t)y(t;t ) (2.14) y(t; T ) 1 (yield to maturity) ln v(t; T ) y(t; T )= ; (T >t) (2.15) T t 6. y(t; T ) t T t T (term structure) 6. (2.15) 1. 2. 3. 4.

10 2 2.7 T! t (2.15) fi ln v(t; T ) fififi r(t) = lim = @ T!t T ln t @T v(t; T ) T =t (2.16) (spot rate) 1 t T t B(t) 0 B(0) = 1 db(t) = r(t)dt dt R T r(fi )dfi B(t) =e t (2.17) 7. 2.8 t <T <fi T fi ( ) (2.15) f(t; T; fi) = ln v(t;fi ) v(t;t ) fi T (2.18) 8. (forward) (futures) fi! T ln v(t; T + h) ln v(t; T ) f(t; T ) = lim h!0 h = @ ln v(t; T ) @T

2.9. 11 r(t) =f(t; t) 9. v(t; T )=e R T t f (t;s)ds (2.19) r(t )=f(t; T ); (T >t) T (2.19) v(0;t)=e R T 0 r(s)ds (2.17) 1 B(T )= v(0;t) 7. 8. R T f(t; s)ds t y(t; T )= T t 2.9 (