untitled

Similar documents
C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

KENZOU Karman) x

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

チャネル乱流における流体線の伸長

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Untitled

,, Mellor 1973),, Mellor and Yamada 1974) Mellor 1973), Mellor and Yamada 1974) 4 2 3, 2 4,

mains.dvi


Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

2 日本航 空 字宙 学 会 誌 第41巻 第470号(1993年3月) 特 集 乱 流 モ デ ル と 圧 縮 性*1 吉 Key Words 1.ま え が : Turbulence, Modeling, 澤 徴*2 Compressibility の 特 性 を推 測 す る 際 様 々 な

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

TM

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

OHP.dvi

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

名称未設定


2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

工学的な設計のための流れと熱の数値シミュレーション

315 * An Experimental Study on the Characteristic of Mean Flow in Supersonic Boundary Layer Transition Shoji SAKAUE, Department of Aerospace Engineeri

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

(Mamoru Tanahashi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology ,,., ,, $\sim$,,

note1.dvi

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$


untitled

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

untitled

Fig. 1 Experimental apparatus.

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


untitled

2012専門分科会_new_4.pptx

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

2 (Preface) (potential flow) viscosty ( 0 (vorticity) (boundary layer) (shearing stress) (frictional stress) (frictional drag)) (laminar flow) (turbul

untitled

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

1-22_tsubokura.indd

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

A03-2.dvi

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

IV (2)

i

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

i 18 2H 2 + O 2 2H 2 + ( ) 3K

数値計算:有限要素法

第5章 偏微分方程式の境界値問題

空間多次元 Navier-Stokes 方程式に対する無反射境界条件

b3e2003.dvi

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2003 9

316 on One Hundred Years of Boundary Layer Research, Proceedings of the IUTAM Symposium held at DLR-Göttingen, Germany, 2004, (eds. G. E. A. Meier and

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

K E N Z OU

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

December 28, 2018

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

A

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

difgeo1.dvi

70の法則

chap03.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Microsoft PowerPoint - product_run_report(K_Abe).pptx

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論


Microsoft PowerPoint - 第3回OpenCAE初歩情報交換会@北東北_若嶋2.pptx

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

all.dvi

平板翼の後流に形成される定在波とコヒーレント構造

untitled

A 99% MS-Free Presentation

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

構造と連続体の力学基礎

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

空力騒音シミュレータの開発

Effect of Radiation on a Spray Jet Flame Ryoichi KUROSE and Satoru KOMORI Engineering Research Laboratory, Central Research Institute of Electric Powe

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

numb.dvi

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

4/15 No.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si


Transcription:

10 10.1 (eddy ) Navier-Stokes Navier-Stokes du dt u t +uru = 1 ; rp+r u (10.1) u p (kinematic viscosity) (convection term) 1 (viscous diusion term) d=dt =t+ur (substantial derivative) xt (interior derivative) (10.1) Bernoulli t Z t+t ; 1 u(x+x t+t) =u(x t)+ ; t rp+r u t (10.) x = R t+t ut (10.) t (uid particle) t x R t+t f;(1=)rp+r ugt t r u u r u u u (10.) u 1 (Reynolds number) Re = UL= 1 1

(10.1) [ ]/[ ] U L (hypersonic) Navier-Stokes r ru =0 (vorticity transport equation) d dt t +(ur) =(r)u + r (10.3) 1 (generation term ) (10.3) ( r)u 10.1: x (x) x 0 (x 0 ) a x 0 +a Taylor (x 0 +a) =(x 0 )+(ar)(x 0 )+ (1=!)(ar) (x 0 )+ 1 10.1 A u A B u+(r)u A u C +=t+(r) = +d=dt (10.3) d=dt =(r)u u+( r)u +d=dt D (frozen in) AB CD A B ( r)u AB (vortex laments) 3 AB (isotropic turburence) (anisotropy) [ ] U =L [ ] U=L LU 3 (constancy of circulation)

3 (r)u r u (boundary layer ow) TS (Tollmien-Schlichting wave) (hairpin vortex) (head) (leg) (bursting vortex) (ejection) (sweep) (horseshoe vorex) (kinetic theory) (eddy) (mixing length) (turbulence structure) Rosenhead(1931) Townsend(1949) 4 5 (DNS, direct numerical simulation) DNS (turbulent ow database) (helicity) 6 Stanford Illiac IV 646464 Navier-Stokes 198 NASA Ames Moin-Kim Illiac IV (turbulent shear ow) 4 interferogram( ), Schlieren method( ), shadowgraph( ) 5 1 1 6 H = ju j=jujjj H =0 H 6= 0

4 (coherent) DNS (1984{ ) DNS DNS Re =10 4 10 5 1 Re =410 5 Gortler (free turbulent shear layer) (turbulent mixing layer) (roller) (rib) (shock waves) Benard (sophisticated model)

5 10. (DNS) NS NS NS (Reynolds stress) NS 7 (turbulence model) (modeling) NS u i t + u j u i = ; p + F i + n u i j +u o j i ; x j x i x j 3 iju k k (10.4) u i j = u i =x j Boussinesq F i u i u i +u 0 i (10.5) (10.4) (Reynolds equation) t u i + u j u i = ; p + F i + x j x i x j ; ui j +u j i ;u 0 i u 0 j (10.6) ;u 0u0 i j (Reynolds stress) u 0 i = u ju 0 i =0 u k k =0 (ensemble average) 8 (10.5) (Reynolds decomposition) (Reynolds average) (10.6) NS NS NS 7 close second-moment closure 8

6 ( ) (eddy viscosity model) (rate of strain tensor) S 9 (isotropic) (anisotropic) 3 u 1 1 u 1 +u 1 u 3 1 +u 1 3 S = 6 4u 1 +u 1 u u 3 +u 3 7 5 u 1 3 +u 3 1 u 3 +u 3 u 3 3 3 3 = 1 0 0 u 1 1 ;(=3)u k k u 1 +u 1 u 3 1 +u 1 3 3 u 6 k k4 0 1 0 7 5 + 6 4 u 1 +u 1 u ;(=3)u k k u 3 +u 3 7 5 0 0 1 u 1 3 +u 3 1 u 3 +u 3 u 3 3 ;(=3)u k k (10.4) r r u =0 r u R ;u 0 1 ;u 0 u0 1 ;u 0 u0 3 1 3 R = 6 4;u 0 u0 1 ;u 0 ;u 0 u0 7 35 ;u 0 3 u0 1 ;u 0 3 u0 ;u 0 3 = 1 0 0 ;u 0 ; 3 k 6 4 0 1 0 7 5 + 6 4 0 0 1 3 1 +(=3)k ;u0 1 u0 ;u 0 1 u0 3 ;u 0 u0 1 ;u 0 +(=3)k ;u0 u0 3 ;u 0 3 u0 1 ;u 0 3 u0 ;u 0 3 +(=3)k k =(1=)u 0 u0 k k (turbulent kinetic energy) Boussinesq ;u i u j = t (u j i +u i j ); 3 ijk (10.7) 3 7 5 t (eddy viscosity) u k k =0 (10.6) r =(+ t ) ; (=3)kI I identity ij =(+ t ) u j i +u i j ; 3 ijk (i j =1 3) (10.8) ( ) t 9 U S 3 3 3 4 u 1 1 u 1 u 1 3 u 1 u u 35 1 = 4 u 1 1 u 1 +u 1 u 1 3+u 3 1 0 u u 1+u 1 u u 3+u 3 5 1 1 ;u 1 u 1 3 ;u 3 1 + 4u 1 ;u 1 0 u 3 ;u 3 5 u 3 1 u 3 u 3 3 u 3 1+u 1 3 u 3 +u 3 u 3 3 u 3 1 ;u 1 3 u 3 ;u 3 0

7 Franke-Rodi-Schonung(1989) t ( ) q ij =(+ t ) u j i +u i j ; 3 iju k k ; 3 ijk (i j =1 3) (10.9) q i = 1 ; ;1 Pr + t c (i =1 3) (10.10) Pr t x i c Prandtl Pr =0:7 Prandtl Pr t =0:9 (eddy kinematic viscosity) t (= =) [ ][ ] Prandtl (Prandtl's mixing length theory) ( ) t = l u (10.11) y u y l van Driest(1956) n o l = y 1;exp ; y+ A (10.1) =0:41 Karman y + = yu = (wall coordinate) u = p w = w A =6 Prandtle-van Driest f g (viscous sublayer) ( buer layer) van Driest ( inertial sublayer, logarithmic region) l y t q = p k l t = C pkl (10.13) k ; " l (dissipation rate) " = u 0 i k u0 i k t = C k =" (10.14) k " k " t (two-equation turbulence model) 1 (one-equation turbulence model) (algebraic model) k ; " (law of the wall) ( 10.) u + = 1 ln y+ +5:15 (10.15)

8 u + = u=u k ; " k ; " (low Reynolds number k ; " model) k " (by-pass transition) 1 (10.14) Karman (10.1) (10.15) 10.:

9 10.3 NS (10.4) (10.4) i u 0 j u 0 j (10.4) i u 0 j t u i + u 0 j x k u k u i = ;u 0 j p i + u 0 j F i + u 0 j (ui k +u k i ) x k u 0 j =0 u k k = u 0 k k =0 u 0 j t u0 i + u 0 j u0 k u i k + u k u 0 j u0 i k + u0 j u0 k u0 i k = ; x i p0 u 0 j + p0 u 0 j i + u 0 j f0 i + x k u 0 j u0 i k ; u0 i k u0 j k (10.4) j u 0 i u0 i (10.4) j (transport equation for Reynolds stress) u0u0 i j t + u k u 0u0 i j x = ;u0 u0 j k u i k ;u 0u0 i k u j k + u 0 f0+u0f0 j i i j + p 0 (u 0 j i +u 0 i j ) k [ ] c ij [ ] P ij F ij [ - ] ij ; u 0u0 u0 i j k x +p 0 (kj u 0 i + kiu 0 j ); u 0u0 i j k x k [ ] d ij ; u 0 i k u0 j k (10.16) [ ] ;" ij (10.16) (production, ) - (pressure-strain correlation) (diusion) (viscous dissipation) P ij (10.3) R n [ ]= nr = Rn ( r)u nr (nrr)u n u 0u0 i j u0 u0 j k u i k u 0u0 i k u j k - ij p 0 Poisson r p = ;r(uru) Green p = Z dv ;^um^u l m 4 x l r

10 r p dv \^" dv ij = p0 (u 0 j i +u 0 i j )= ij1 + ij 4 Z ^u 0 l^u0 m x l x m (u 0 j i+u 0 i j) dv r + Z ^ul m^u 0 (u0 +u0 m l j i i j 4 ) dv r (10.17) - (mathematical model) (energy cascade) Rotta(1951) ij1 (return-to-isotropy) ij1 = ;c 1 " k u 0u0 i j ; 3 ijk (10.18) c 1 "=k u 0u0 i j ;(=3) ijk (u 0u0 i i i =1 3) (=3)k = u 0 u0 k k =3 (u0u0 i j i 6= j) 0 (contraction) (10.18) U 3 L ij Naot (1970) (isotropizaton of production, IP) ij = ;c P ij ; 3 ijp (10.19) P = P kk = (10.18) ij P ij 1 - ij (redistribution term) Launder ij1 ij 0:3c 1 +c =1 ij1 return ij rapid distortion theory rapid term ij1 slow trem DNS LES d ij r a

11 du=dt = r a V Z Z Z d du udv = dt V V dt ZV dv = a r adv = S n ds S V n ds V a u r a a = ru >0 d ij 3 Daly-Harlow(1970) (10.0) d ij = c s x k k " u0 k u0 l (u0 i u0 j ) l c s ; r (k=")r rr k=" R " ij 0 " ij = u 0 i k u0 j k = (=3) u 0 i k u 0 i k (i = j) 0 (i 6= j) = 3 ij" (10.1) " = u 0 u0 i k i k k = u0 i " ; c P ij ; 3 ijp u0u0 i j t + u k u 0u0 i j x = P ij + F ij ; c 1 " k k u 0 i u0 j ; 3 ijk + c s x k k " u0 k u0 l (u0 i u0 j ) l " NS u 0 i l (10.4) i l t " + u j " = ;(u 0 u0 i l j l x + u0 u0 l i l j )u i j ; p 0 u0 l i l j x + i ; 3 ij" (10.) " t " + u i " = " x i k (c "1P + c "3 F )+c " k u0 u0 i l x i " " l ; c " " k (10.3)

1 k DNS " " LRR(Launder, Reece and Rodi) 10 (10.) " (10.3) (coecient) c 1 c c "1 c " c " c s c "1 c " c 1 =:0 c =0:6 c s =0: c "1 =1:44 c " =0:18 c " =1:9 k ; " k " k (10.16) k t k + x i u i k = P ; x i 1 u0 i u0 j + p 0 u 0 i ;k i ; " (10.4) [ ] c k [ ] [ ] d k [ ] P = ; u 0 i u0 j u i j - (10.4) t k + x i u i k = P + x i t k k i ; " (10.5) " k t " + " u i " = C "1 x i k P + t " i ; C " " x i " k (10.6) k ; " Launder-Spalding(1974) C =0:09 C "1 =1:44 C " = 1:9 k =1:0 " =1:3 Navier-Stokes LLR k ; " NS 1 3 10 Launder, B.E., Reece, G.J. and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mdch., Vol.68(1975), 537{66.

13 10.4 6 4 6 4 " LES 6 4 (LES) (DNS) LES DNS Reynolds (algebraic model) Cebeci-Smith 11 Baldwin-Lomax 1 t = min ; ( t ) in ( t ) out = (t ) in (y y cross ) ( t ) out (y>y cross ) (10.7) y y cross ( t ) in =( t ) out y Prandtl-van Driest (10.11) (10.1) Z ( t ) out = C Cl (u e ;u)dyf Kleb (y) (10.8) 0 C Cl =0:0168 Clauser u e u u(y) 0 u e =(1=u e ) R 0 (u e ;u)dy F Kleb (y) Klebano F Kleb (y) =[1+5:5(y=) 6 ] ;1 (10.9) u =0:995u e y F Kleb 1;F Kleb 11 Cebeci, T. and Smith, A.M.O., "Analysis of Turbulent Boundary Layers.\ 1974, Academic Press. 1 Baldwin,B.S. and Lomax, H., Thin layer approximation and algebraic model for separated trubulent ows. AIAA Paper, 78{75(1978).

14 CS Michel R > 1:174 (1+ 400=R x )R 0:46 x (10.30) R = u e = =(1=ue ) R 0 u(u e;u)dy R x = u e x= x (local equilibrium) CS van Driest A =6 (adverse pressure gradient) l (favourable pressure gradient) l t F tr (x) Clauser C Cl =0:0168 [ CS ] Baldwin-Lomax Prandtl-van Driest ( t ) in = l jj (10.31) l = yf1;exp(;y + =A + )g = ru =0:4 Karman y + A + =6 Clauser ( t ) out =1:6C Cl F wake F Kleb (y) (10.3) C Cl =0:0168 Clauser F wake = min ; y max F max 0:5y max u dif =F max F Kleb (y) =[1+5:5(0:3y=y max ) 6 ] ;1 (10.33a) (10.33b) y max F (y) =yjjf1;exp(;y + =A + )g F max y exp(;y + =A + )=0 u dif = juj max ;juj min juj min =0 F Kleb Klebano t ( t ) max < 14 1 (10.34) t =0 BL u=y jj Clauser u e y max F max u dif 0:5y max u dif =F max Johnson-King(1985) 13 13 Johnson, D.A. and King, L.S., A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA J., Vol.3(1985), 1684{9.

15 l k t uv Spalart-Allmaras(199) 14 FEM k ; " k ; " k =(1=)u 0 i u0 i " = u0 i k u0 i k k ; " Launder-Spalding(1974) 15 k " k " k " q = p k l k q " q 3 l ;1 k " 3 k " q m l n T l=q! q=l (specic dissipation rate) Wilcox(1988) k ;! 16 Hutton-Smith-Hickmott(1987) q ; f Mohammadi(1990) ; f q=l! l=q 1=l q k ; " k " (10.4) (10.6) k ; " k ; " t = C f k =" t k + t " + " = ";( x i u i k = P + " u i " = C "1 f 1 x i k P + p k=y) (10.35) n + o t k i ; " ; D (10.36) x i k n + o t " i ; C " f " + E (10.37) x i " k (10.38) t t =0 f " 14 Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic ows. AIAA Paper, 9-0439(199). 15 Launder, B.E. and Spalding, D.B., The numerical computation of turbulent ow. Comp. Meth. Appl. Mech. Engng., Vol.3(1974), 69{89. 16 Wilcox, D.C., Multiscale model for turbulent ows. AIAA J., Vol.6(1988), 1311{0.

16 f 1 f C C "1 C " k " D E " (non-slip) f = f 1 = f =1 D = E =0 " = " k ; " k ; " Jones-Launder(197) 17 f = exp :5 ; f 1 =1:0 f = ;0:3 exp(;rt ) 1+R t =50 C =0:09 C "1 =1:45 C " =:0 k =1:0 " =1:3 D =( p k=y) E = t ( u=y ) R t (= ql=) =k =" (turbulent Reynolds number) k =" =0 Myong-Kasagi(1990) 18 " D = E =0 f = ; 1;exp(;y + =70) 1+ 3:45 p Rt f 1 =1:0 f = ; 1;exp(;y + =5) n 1; 9 exp ; R o t 6 C =0:09 C "1 =1:4 C " =1:8 k =1:4 " =1:3 " = k=y Chien ^q t t + ^Fti i + ^Dt +^g t =0 (10.39)!! 0 1 ^q t = J k k ^Fti = Ju i ^Dt = ; Jg ij (+ t)k= j " " i + A t "= j 0 1 P ;";D ^g t = ;J " A (10.40) k (C 1P ;C f";f 3 D) i J x g ij = i k j k P = ;u 0 i u0 j u i=x j D =k=d d C =0:09 C 1 =1:35 C =1:8 =1:3 f =1;e ;C3y+ f 0:4 =1; 1:8 e;(ret=6) f3 = e ;C4y+ C 3 =0:0115 C 4 =0:5 y + =1 4 k " ( k = " =0 ) k " k =" =0 k " Navier-Stokes k " 17 Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, Vol.15(197), 301{14. 18 Myoung, H.K. and Kasagi, N., A new approach to the improvement ofk ; " turbulence model for wall bounded shear ow, JSME Int. J. Fluids Eng., Vol.109(1990), 156{60.

17 k ; " t 1 ;u0 v 0 6 u 0 i u0 j " (algebraic stress model) 19 k ; " k ; " u 0 i u0 j k c ij = P ij + ij + d ij ; " ij (10.41) c k = P + d k ; " (10.4) (10.41) u 0 i u0 j =k r ij 0 [r ij ] c ij = D Dt u0 i u0 j = r ij D Dt k = r ijc k d ij = c s x k k " u0 k u0 l (u0 i u0 j ) l = r ij c s x k k " u0 k u0 l k l = r ij d k D=Dt =t+u i =x i c ij ;d ij = r ij (c k ;d k )=r ij (P ;") (10.41) u 0 i u0 j ; 3 ijk =(1;c ) k P ij ;(=3) ij P P ;"(1;c 1 ) (10.43) k " k ; " Navier-Stokes (ensemble average) (turbulent heat ux) 3 q ti = h0 u 0 i h 0 (= c p 0 ) ( ) 1 (thermal eddy diusivity model) 0 u 0 i = ;a t =x i (10.44) 19 ASM algebraic second-moment approach 0 Rodi, W., A new algebraic relation for calculating the Reynolds stresses. ZAMM, Bd.56(1976), T19{T1. 1 ( ) (Favre mean)

18 a t ( ) (thermal eddy diusivity) (algebraic heat transfer model) a t = t =P r t Pr t Pr t (two-equation heat transfer model) a t = C f k (k=") n (0 =" ) m (10.45) n+m =1 0 " n =1 m =0 Nagano-Kim(1988) n = m =1= (turbulent heat ux transport equation model) 3 q ti = h0 u 0 i ;" i 0 " 1 Baldwin-Lomax ANUT(J),J=1,JE FORTRAN (y =0) u = v=y =0 k y " y t y 3 k ; "

19 10.5 LES LES(large eddy simulation) LES DNS( ) DNS (unresolvable) Fourier (energy spectrum)e() Kolmogorov(1941) Kolmogorov (Kolmogorov local equilibrium) " E() =" m n F (= d ) m n Kolmogorov 1 E() =" =3 ;5=3 F (= d ) (10.46) d =("= 3 ) 1=4 Kolmogorov l d == d Kolmogorov (Kolmogorov microscale) (10.46) [ p.14, 199, ] 10.3: Kolmogorov

0 10.3 (10.46) (10.46) E " Kolmogorov ;5=3 (Kolmogorov ) E() =" =3 ;5=3 (10.47) =1:6 Kolmogorov ;5=3 ( ) Kolmogorov (inertial subrange) (Kolmogorov 10 10 3 ) 1 Fourier Z f i (r i )= 1 u i (x i )u i (x i +r i )= 1 F i ( i ) cos( i r i )d i ui ui 0 f (x t) Z 1 f(x t) = G(r)f (x+r t) dr (10.48) 0 Fourier f( t) =G()f( t) (10.49) G(r) G() (spatial lter function) (Gaussian lter), (spectrum cuto lter, sharp cuto lter), (top hat lter ) r 6 Gaussian lter: G(r i )= ; 6r i G( i ) = exp ; ( i i ) 1 i exp i spectrum cuto lter: G(r i )= sin(r i= i ) r i G( i )= top hat lter: G(r i )= ( 1= i (jr i j i =) 0 (jr i j > i =) ( 4 1 (j i j= i ) 0 (j i j >= i ) (10.50) (10.51) G( i )= sin( i i =) i i (10.5) i f (x t) = f (x t)+f 0 (r t) f (x t) f (x t) f 0 =0 f = f fg 0 6=0 f=x = f=x Navier-Stokes (10.1) u i x i =0 (10.53) u i t +u u i j = ; 1 p x j x i + u i x j ; x j (u i u j ; u i u j ) (10.54)

1 10.4: SGS(subgrid-scale) ( ) u i u j ; u i u j =(u i u j ; u i u j )+(u i u 0 j +u0 i u j)+(u 0 i u0 j )=L ij + C ij + R ij L ij C ij R ij Leonard cross Reynolds Leonard L ij =0 Cross L ij +C ij Reynolds SGS Reynolds SGS SGS (10.7) u 0 i u0 j = ; t D ij + 1 3 iju 0 k u0 k D ij = u i j +u j i (10.55) t SGS t > 0 LES SGS Smagorinsky L ij +C ij Smagorinsky, J., General circulation experiments with the primeitive equations. I. The basic experiment. Mon. Weather Rev., Vol.91(1963), 99{164.

t t =(C S ) p D D =( D ij D ij ) 1= (10.56) C S Smagorinsky 0:1 0: =( 1 3 ) 1=3 t van Driest Smagorinsky Germano(1991) Dynamic SGS SGS GS(grid-scale) Smagorinsky Bardina(1983) ( )SGS GS SGS Kolmogorov LES 1 (10.46) (10.47) Kolmogorov Smagorinsky SGS (REY(I,J),I=1,3),J=1,3 FORTRAN