2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Similar documents
1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

( ) ( )

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

K E N Z OU


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


v er.1/ c /(21)

2011de.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Note.tex 2008/09/19( )


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

等質空間の幾何学入門

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II 1 II 2012 II Gauss-Bonnet II

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

Gmech08.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Fubini

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


DVIOUT

Morse ( ) 2014

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

数学Ⅱ演習(足助・09夏)

II I Riemann 2003

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

201711grade1ouyou.pdf

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

³ÎΨÏÀ

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II 2006


Part () () Γ Part ,

第10章 アイソパラメトリック要素

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

KENZOU

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Untitled

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

mugensho.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p



x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

i 18 2H 2 + O 2 2H 2 + ( ) 3K

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

D 24 D D D


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Gmech08.dvi

meiji_resume_1.PDF

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

untitled



II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


I II Morse 1998

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

A

量子力学 問題

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

曲面のパラメタ表示と接線ベクトル

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

webkaitou.dvi

December 28, 2018

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))


[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

Transcription:

1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t, t ) 1.2 1.2.1 c : I R 2 κ(t) κ(t) := det(c (t), c (t))/ c (t) 3.

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 0 0 1.2.2 r > 0 (1) c(t) = (r cos t, r sin t) κ(t) = 1/r (2) a 0 c(t) = (r cos(at), r sin(at)) a > 0 κ(t) = 1/r a < 0 κ(t) = 1/r 1.2.3 r > 0 y = r 2 x 2 c(t) = (t, r 2 t 2 ) t ( r, r) κ(t) 1.2.4 x 2 /a 2 + y 2 /b 2 = 1 a > b > 0

1.3 3 1.3 1.3.1 c 1, c 2 : I R 2 (1) c 1 c 2 g SO(2) v R 2 t I c 2 (t) = gc 1 (t) + v (2) c 1 c 2 g O(2) v R 2 t I c 2 (t) = gc 1 (t) + v g SO(2) v R 2 g O(2) 1.3.2 c 1, c 2 : I R 2 c 1 c 2. κ c1 = κ c2 1.3.3 1

4 1 1.4, 1.4.1 f : R m R n C R m (x 1,..., x m ) f = (f 1,..., f n ) f p R m (Jf) p := ( ) fi (p) : R m R n. x j 1.4.2 f : R m R n g : R n R l C p R m (J(g f)) p = (Jg) f(p) (Jf) p 1.5 I I R 1.5.1 t : I I (i) (ii) C (iii) s I t (s) > 0 (iii) s I t (s) < 0 1.5.2 c : I R 2 t : I I (1) c t : I R 2 (2) s I κ c (t(s)) = κ c t (s) 1 κ c κ c t c c t

1.6 5 1.6. 1.6.1 c : I R 2 c t I c (t) = 1 1 1.6.2 c : I R 2 t = t(s) c t 1 1.6.3 c(t) = (x(t), y(t)) n(t) := ( y (t), x (t)) R 2 1.6.4 c (t) = κ c (t)n(t) ( y (t) x (t) ) = ( 0 1 1 0 ) ( x (t) y (t) c : I R 2 t I c = κ c c ).

6 1 1.7 c(t) n(t) = ( y (t), x (t)) n(t) 1.7.1 c : I R 2 e(t) := c (t) {e(t), n(t)} Frenet 1.7.2 n (t) = κ c (t)e(t) c : I R 2 t I 1.6.4 1.7.2 1.7.3 Frenet c : I R 2 Frenet {e(t), n(t)} ( e n ) = ( e n ) ( 0 κ κ 0 Frenet 1.7.4 C - κ : I R κ c : I R 2 ).

7 2 2.1 D R 2 2.1.1 φ : D R 3 (i) φ C (ii) (u, v) D rank (Jφ) (u,v) = 2 (Jφ) (u,v) := (φ u, φ v ) (u,v) Jacobi φ u φ v rank (Jφ) (u,v) = 2 {φ u, φ v } 2.1.2 (1) xy φ : R 2 R 3 : (u, v) (u, v, 0) (2) c : I R 2 : t (x(t), y(t)) φ : I R R 3 : (u, v) (x(u), y(u), v) 2.1.3 (1) ( ) φ : R 2 R 3 : (u, v) (0, 0, 0) (2) ( ) φ : R 2 R 3 : (u, v) (x(u), y(u), z(u)) (3) φ : R 2 R 3 : (u, v) (u 3, u 2, v) (ii) (Jφ) (u,v)

8 2 2.2 2.2.1 c : I R 2 : t c(t) = (x(t), z(t)) t I x(t) > 0 φ : R I R 3 : (u, v) cos u sin u 0 sin u cos u 0 0 0 1 x(v) 0 z(v) φ c c xz z 2.2.2 (1) ( ) φ : R 2 R 3 : (u, v) (cos u, sin u, v). (2) ( ) φ : R ( π/2, π/2) R 3 : (u, v) (cos u cos v, sin u cos v, sin v). (3) ( ) φ : R 2 R 3 : (u, v) (cos u(2 + cos v), sin u(2 + cos v), sin v). R 2.

2.3 9 2.3 2.3.1 a = t (a 1, a 2, a 3 ) b = t (b 1, b 2, b 3 ) R 3 ( ) ( ) ( )) a b := (det t a2 b 2 a3 b, det 3 a1 b, det 1. a 3 b 3 a 1 b 1 a 2 b 2 a b a b a b = 0 a b 2.3.2 φ : D R 3 φ n(u, v) := φ u (u, v) φ v (u, v)/ φ u (u, v) φ v (u, v). φ u φ v 0 2.3.3 φ : D R 3 (1) E := φ u, φ u F := φ u, φ v G := φ v, φ v (2) L := φ uu, n M := φ uv, n N := φ vv, n (3) ( E F Î := F G (4) A := Î 1 ÎI ) ( L M, ÎI p := M N (5) K := det(a) H := (1/2)tr(A) A Î ).

10 2 2.4 2.4.1 K H (1) K = H = 0 (2) r > 0 φ(u, v) = (r cos u, r sin u, v) A = ( r 2 0 0 1 ) 1 ( r 0 0 0 ), K = 0, H = 1/(2r). (3) r > 0 φ(u, v) = (r cos u cos v, r sin u cos v, r sin v) K = 2.4.2 1/r 2 H = 1/r r > 0 2.1.2 c z φ c φ 2.4.3 c : I R 2 : t (x(t), y(t)) κ φ : I R R 3 : (u, v) (x(u), y(u), v) φ K = 0 H = κ/2 Frenet ( ) ( ) x y = κ. y x

2.5 11 2.5 E F G φ : D R 3, R 3 2.5.1 p D I p : R 2 R 2 R I p (X, Y ) := (Jφ) p X, (Jφ) p Y. I p (Jφ) p 2 2.5.2 p D I p R 2. R 3 X, Y = t XY 2.5.3 p D X, Y R 2 I p (X, Y ) = t X Î 1 p Y. Îp I p 2.5.4 p D Îp. I p A 2.5.5 p D (1) A p I p X, Y R 2 I p (AX, Y ) = I p (X, AY ) (2) A p A φ λ 1 λ 2

12 2 2.6 2.6.1 φ 1, φ 2 : D R 3 (1) φ 1 φ 2 g SO(3) w R 3 p D φ 2 (p) = gφ 1 (p) + w. (2) φ 1 φ 2 g O(3) w R 3 p D φ 2 (p) = gφ 1 (p) + w. 2.6.2 φ 1, φ 2 : D R 3 E i F i φ 1 φ 2 φ 2 = gφ + w g O(3) w R 3 (1) E 2 = E 1 F 2 = F 1 G 2 = G 1 (2) n 2 = (det g)gn 1 (3) L 2 = (det g)l 1 M 2 = (det g)m 1 N 2 = (det g)n 1 (4) A 2 = (det g)a 1 (5) K 2 = K 1 H 2 = (det g)h 1

2.7 13 2.7 D D R 2 2.7.1 ξ : D D (i) ξ (ii) ξ C (iii) q D det(jξ) q > 0 (iii) 2.7.2 φ : D R 3 ξ : D D φ ξ : D R 3 2.7.3 φ : D R 3 (1) Î = t (Jφ)(Jφ) (2) L = φ u, n u M = φ u, n v = φ v, n u N = φ v, n v (3) ÎI = t (Jφ)(Jn) 2.7.4 φ : D R 3 φ := φ ξ : D R 3 A A (1) Î = t (Jξ) Î (Jξ) (2) n = n ξ (3) ÎI = t (Jξ) ÎI (Jξ) (4) A = (Jξ) 1 A (Jξ) (5) K = K H = H

14 2 2.8 φ : D R 3 A n = n(u, v) 2.8.1 D R m F : D R n C F p D (df ) p : R m R n 1 : X lim (F (p + tx) F (p)). t 0 t (df ) p (JF ) p φ : D R 3 n : D R 3 (dn) (u,v) n, n = 1 2.8.2 X R 2 (dn) (u,v) (X), n (u,v) = 0 (dn) (u,v) : R 2 span{φ u (u, v), φ v (u, v)} 2.7.3 A 2.8.3 (dn) (u,v) (e 1, e 2 ) = (n u, n v ) = (φ u, φ v )A A n

2.9 15 2.9 φ : D R 3 2.9.1 p D II p : R 2 R 2 R II p (X, Y ) := I p (A p X, Y ). II p A p I p A p I p II p 2.9.2 p D X, Y R 2 II p (X, Y ) = t XÎI py. ÎI p L M N A

16 2 2.10 2.10.1 (V 1,, 1 ) (V 2,, 2 ) f : (V 1,, 1 ) (V 2,, 2 ) X, Y V 1 X, Y 1 = f(x), f(y ) 2 φ : D R 3 p D I p 2.10.2 φ 1 : D 1 R 3 φ 2 : D 2 R 3 (1) ξ : D 1 D 2 ξ C ξ 1 C (2) ξ : D 1 D 2 ξ p D 1 (dξ) p : (R 2, (I 1 ) p ) (R 2, (I 2 ) ξ(p) 2.10.3 φ 1 (u, v) := (u, v, 0) φ 2 (u, v) := (r cos u, r sin u, v) r > 0 ξ φ 1 φ 2 ξ : R 2 R 2 : (x 1, x 2 ) ((1/r)x 1, x 2 ).

2.11 17 2.11 D R 2 p = (u, v) D u v X : D R 3 C u X : D R 3 : p (X u )(p), v X : D R 3 : p (X v )(p). φ : D R 3 u φ v φ 2.11.1 φ : D R 3 X : D R 3 X φ (i) X : D R 3 C (ii) p D X(p) Span{φ u (p), φ v (p)} φ uu φ uv φ vv 2.11.2 φ : D R 3 X : D R 3 C X : D R 3 X X := X X, n n n φ p D Span{φ u (p), φ v (p)} n(p) 2.11.3 φ : D R 3 X : D R 3 C X : D R 3 φ φ uu 2.11.4 φ : D R 3 φ uu φ uv φ vv E F G φ uu = Γ 1 11φ u + Γ 2 11φ v φ u φ v

18 2 2.12 u v u v 2.12.1 φ : D R 3 X : D R 3 φ u X v X : D R 3 φ u X := ( u X), v X := ( v X). 2.12.2 φ : D R 3 X Y : D R 3 φ α β : D R C (1) u (X + Y ) = u X + u Y v (X + Y ) = v X + v Y (2) u (αx) = α u X + α u X v (αx) = α v X + α v X 2.12.3 φ : D R 3 X : D R 3 φ u v E F G 2.13 K LN M 2 2.13.1 φ : D R 3 X Y : D R 3 φ u v X, Y = X vu, Y X v, n n u, Y. 2.13.2 φ : D R 3 K E F G LM N 2 = v u φ u u v φ u, φ v.

19 3 M C 3.1 M p M T p M 3.1.1 3.1.1 X F (X) := {ξ : X R} F (X) ξ, η F (X) a R x X (ξ + η)(x) := ξ(x) + η(x), (aξ)(x) := aξ(x), (ξη)(x) := ξ(x)η(x). (3.1.1) 3.1.2 F (X)

20 3 M C C 3.1.3 F (M) C (M) := {ξ : M R : C }. (3.1.2) C (M) 3.1.4 p M v : C (M) R M p (i) v : C (M) R (ii) ξ, η C (M) v(ξη) = v(ξ)η(p) + ξ(p)v(η) 3.1.5 p M M p T p M := {v : C (M) R : p }. (3.1.3) 3.1.6 T p M F (C (M)) T p M 3.1.2 C (M) 3.1.7 ε > 0 c : ( ε, ε) M C c (0) c 0 c (0) : C (M) R : ξ d dt (ξ c)(0). (3.1.4) C c : ( ε, ε) M M c (0) 3.1.8 c (0) T p M c : ( ε, ε) M C p := c(0) 3.1.3 (U, φ) M p U M m φ = (x 1,..., x m ) x i : U R

3.1 21 3.1.9 ( ) p ( ) p : C (M) R : ξ (ξ φ 1 )(φ(p)). (3.1.5) i ( ) p F (C (M)) ( ) p 3.1.10 (1) a 1,..., a m R a i ( ) p (2) {( x 1 ) p,..., ( x m ) p } (1) ( ) p p 3.1.11 span{( x 1 ) p,..., ( x m ) p } T p M T p M M

22 3 3.2 X : D R 3 p D X p M 3.2.1 C (M) 3.2.1 X : C (M) C (M) (i) (ii) X ξ, η C (M) X(ξη) = (Xξ)η + ξ(xη) M X(M) X(M) C (M) 3.2.2 X, Y X(M) f C (M) X + Y, fx X(M) ξ C (M) (X + Y )ξ := Xξ + Y ξ, (fx)ξ := f(xξ). (3.2.1) 3.2.2 3.2.3 X X(M) p M X p p M X p : C (M) R : ξ (Xξ)(p). (3.2.2) X X : M T M(:= T p M) : p X p. (3.2.3) p M p M X p T p M

3.2 23 3.2.3 (U, φ) M φ = (x 1,..., x m ) 3.2.4 f 1,..., f m C (U) f i fi : U T U : q f i (q)( ) q. (3.2.4) 3.2.5 X X(M) X : M T M X U : U T U f 1,..., f m C (U) X U = f i. (3.2.5) X f i

24 3 3.3 3.3.1 V n 3.3.1 3.3.2 V V := {f : V R : } V F (V ) V F (V ) V 3.3.3 {e 1,..., e n } V {ω 1,..., ω n } V ω i V, ω i (e j ) = δ ij. 3.3.4 S 2 (V ) := {Ω : V V R :, }. 3.3.5 S 2 (V ) F (V V ) 3.3.6 ω 1, ω 2 V ω 1 ω 2 S 2 (V ) ω 1, ω 2 ω 1 ω 2 : V V R : (X, Y ) (1/2)(ω 1 (X)ω 2 (Y ) + ω 2 (X)ω 1 (Y )). 3.3.7 {ω 1,..., ω n } V {ω i ω j 1 i j n} S 2 (V ), V, S 2 (V )

3.3 25 3.3.2 T p M Tp M Tp M 3.3.8 F : M N C p M (df ) p : T p M T F (p) N : v (df ) p v F p (df ) p v : C (N) R : ξ v(ξ F ). T p M 3.3.9 c (0) T p M 3.3.10 F : M N C p M c (0) T p M (df ) p (c (0)) = (F c) (0). (df ) p (c (0)) c 3.3.11 F : M N C - p M p M (U, φ = (x 1,..., x m )) F (p) N (V, ψ = (y 1,..., y n )) (df ) p ( a i ( ) p ) = ( b j ( y j ) F (p) ). t (b 1,..., b n ) = J(ψ F φ 1 ) φ(p) t(a 1,..., a m ) p M (U, φ = (x 1,..., x m )) i x i C (U) x i (dx i ) p T p M 3.3.12 p M (U, φ = (x 1,..., x m )) x i {((dx 1 ) p,..., (dx m ) p } {( x 1 ) p,..., ( x m ) p }

26 3 3.3.3 M (U, φ = (x 1,..., x m )) T M T M := Tp M. p M 3.3.13 f i C (U) ω U 1 ω := m i=1 f idx i : U T U : p m i=1 f i(p)(dx i ) p. X p M X p T p M 1 ω p M ω p T p M 3.3.14 ω : M T M M 1 (i) (ii) p M ω p T p M (U, φ) ω U U 1 1 ω 1 ω 2 ω 1 ω 2 ω 1 ω 2 : M S 2 (T M) := S 2 (Tp M). p M

3.3 27 3.3.4 3.3.15 M, g p M g p : T p M T p M R g : M S 2 (T M) 3.3.16 M g U C g ij C (U) s.t. g U = g ij dx i dx j. C C C 3.3.17 M := R n g = dx 2 1 + + dx 2 n g 3.3.18 g p ( a i ( ) p, b i ( ) p ) := a i b i. M := {(x, y) R 2 y > 0} g = (1/y 2 )(dx 2 + dy 2 ) M (M, g).

28 3 3.4 (M, g) (M, g) 3.4.1 M X : C (M) C (M) X(M) 3.4.1 X, Y X(M) [X, Y ] X Y [X, Y ] : C (M) C (M) : f X(Y f) Y (Xf). 3.4.2 (1) [, ] : X(M) X(M) X(M) (2) [X, Y ] = [Y, X] (3) [X, [Y, Z] + [Y, [Z, X]] + [Z, [X, Y ]] = 0 (4) [X, fy ] = (Xf)Y + f[x, Y ] f C (M) (U, φ = (x 1,..., x m )) X = ξ i 3.4.3 X = ξ i Y = η j [X, Y ] = i,j x j ( ξ i η j [, x j ] = 0 X(U) x j ) ξ η i j x j.

3.4 29 3.4.2 Levi-Civita 3.4.4 (M, g) : X(M) X(M) X(M) : (X, Y ) X Y Levi-Civita 2g( X Y, Z) = Xg(Y, Z) + Y g(z, X) Zg(X, Y ) + g([x, Y ], Z) + g([z, X], Y ) + g(x, [Z, Y ]). Koszul Xg(Y, Z) X g(y, Z) C (M) g(y, Z) : M R : p g p (Y p, Z p ) 3.4.5 : X(M) X(M) X(M) Levi-Civita (i) X Y Y X = [X, Y ] (ii) Xg(Y, Z) = g( X Y, Z) + g(y, X Z) 3.4.5 (i) (ii) Levi-Civita 3.4.6 Levi-Civita : X(M) X(M) X(M) (1) (2) fx Y = f X Y (3) X (fy ) = (Xf)Y + f X Y (U, φ = (x 1,..., x m )) x j 3.4.7 Levi-Civita φ : D R 3 D g u X v X X X (D, g) u v Levi-Civita

30 3 3.4.3 (M, g) 3.4.8 R (M, g) R(X, Y )Z := [X,Y ] Z X Y Z + Y X Z. R : X(M) X(M) X(M) X(M) : (X, Y, Z) R(X, Y )Z [ X, Y ] := X Y Y X R(X, Y ) := [X,Y ] [ X, Y ]. 3.4.9 X, Y, Z, W X(M) (1) R (2) R(X, Y ) = R(Y, X) (3) g(r(x, Y )Z, W ) = g(r(x, Y )W, Z) (4) fr(x, Y )Z = R(fX, Y )Z = R(X, fy )Z = R(X, Y )(fz) f C (M) (1) (2). (3), 3.4.5 (ii). (4), 3.4.6. 3.4.10 R (R(X, Y )Z) p X p Y p Z p X p = X p Y p = Y p Z p = Z p (R(X, Y )Z) p = (R(X, Y )Z ) p g [, ] Levi-Civita 3.4.11 R n R 0

3.4 31 3.4.4 2 3.4.12 σ T p M 2 X, Y X(M) {X p, Y p } σ σ K σ = g(r(x, Y )X, Y ) p σ X, Y X(M) R 3.4.13 K σ σ {X p, Y p } {X p, Y p} σ T p M g(r(x, Y )X, Y ) p = g(r(x, Y )X, Y ) p 3.4.14 RH 2 1 X := y x Y := y y [X, Y ] = X X X = Y Y X = Y Y = 0