2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

Similar documents
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

koji07-01.dvi

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

VI VI.21 W 1,..., W r V W 1,..., W r W W r = {v v r v i W i (1 i r)} V = W W r V W 1,..., W r V W 1,..., W r V = W 1 W


DVIOUT-HYOU

untitled

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

limit&derivative

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

II Time-stamp: <05/09/30 17:14:06 waki> ii

Chap9.dvi

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

newmain.dvi

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

R R 16 ( 3 )

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

第86回日本感染症学会総会学術集会後抄録(I)

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

, = = 7 6 = 42, =

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

Ł\”ƒ-2005

lecture

II

第90回日本感染症学会学術講演会抄録(I)

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

日本内科学会雑誌第102巻第4号

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

all.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.


i

04年度LS民法Ⅰ教材改訂版.PDF

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

31 33

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

( ) x y f(x, y) = ax

ii-03.dvi

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

5 1F2F 21 1F2F

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

) 9 81

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム



II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

<8D4C95F182C682AB322E312E696E6464>

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x


.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

A

1 I

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

70 : 20 : A B (20 ) (30 ) 50 1

( )

sekibun.dvi

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

1009.\1.\4.ai

Part () () Γ Part ,


17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

renshumondai-kaito.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

Dynkin Serre Weyl

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(2000 )

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

プログラム

数学Ⅱ演習(足助・09夏)

°ÌÁê¿ô³ØII

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

48 * *2

−g”U›ß™ö‡Æ…X…y…N…g…‰

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

201711grade1ouyou.pdf


u V u V u u +( 1)u =(1+( 1))u =0 u = o u =( 1)u x = x 1 x 2. x n,y = y 1 y 2. y n K n = x 1 x 2. x n x + y x α αx x i K Kn α K x, y αx 1

ver Web

Transcription:

20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = 11 2.2 α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α, α : A B β, β : B C γ : C D 1. (αβ)γ = α(βγ) 2. id A α = α = αid B 3. 0 XA α = 0 XB α0 BY = 0 AY 4. α α β β αβ α β 5. B AB BC = AC 2.4 A B {α λ : A B λ Λ} λ Λ α λ λ Λ α λ λ Λ α λ λ Λ α λ def = {(a, b) A B λ Λ.((a, b) α λ )} def = {(a, b) A B λ Λ.((a, b) α λ )} 2.5 α, β λ : A B λ Λ 1. α ( λ Λ β λ ) = λ Λ (α β λ ) 2. α ( λ Λ β λ ) = λ Λ (α β λ ) 2.6 α: A B β λ : B C λ Λ γ : C D

3 1. α( λ Λ β λ ) = λ Λ (αβ λ ) ( λ Λ β λ )γ = λ Λ (β λ γ) 2. α( λ Λ β λ ) λ Λ (αβ λ ) ( λ Λ β λ )γ λ Λ (β λ γ) 2.6 2.7 Λ = {1, 2} A = {a, b} α, β 1, β 2 : A A α = {(a, a), (a, b)}, β 1 = {(a, a)}, β 2 = {(b, a)} β 1 β 2 = 0 AA αβ 1 = {(a, a)} = αβ 2 α( λ Λ β λ ) = α(β 1 β 2 ) = α0 AA = 0 AA = {(a, a)} = αβ 1 αβ 2 = λ Λ (αβ λ ). 2.8 α: A B α : B A α def = {(b, a) B A (a, b) α} 2.9 α, α, α λ : A B λ Λ β : B C 1. α = α 2. (αβ) = β α 3. α α α α 4. ( λ Λ α λ ) = λ Λ α λ 5. ( λ Λ α λ ) = λ Λ α λ 6. 0 AB = 0 BA AB = BA id A = id A 2.10 α: A B β : B C γ : A C 1. αβ γ α(β α γ) 2. αβ γ (α γβ )β

4 3 3.1 α: A B A B α: A B A a {b B (a, b) α} B A B Map(A, B) A1 Map(A, 1) = { A1 } (a, b) α (a, b ) α b = b a A. b B.(a, b) α α α id B id A αα 3.2 f, h: A B g : B C 1. f g fg 2. f h f h fg (fg) (fg) = g f fg g id B g = g g id C. id A ff = fid B f fgg f = (fg)(fg). f h f h h = id A h ff h fh h fid B = f. f h f = h 3.2 f h

5 3.3 α: A B β : A B α β α β α = β 3.4 α: A B f : R A g : R B α = f g ff gg = id R R = α ((a, b), a ) f a = a ((a, b), b ) g b = b f g (a, b) f g (a, b ) α.(a, (a, b )) f ((a, b ), b) g (a, b ) α.(a = a b = b) (a, b) α α = f g f, g ((a, b), (a, b )) ff gg ((a, b), (a, b )) ff ((a, b), (a, b )) gg a = a b = b (a, b) = (a, b ) ((a, b), (a, b )) id R ff gg = id R f : A B id B f f ff id A id B f f ff id A 3.5 f : A B f f f f f f (f ) f = ff id A

6 f f id B f f = f (f ) f f ff = (f ) f id A f f id B f (f ) = f f. f f f f : A B f A f(a) = {b B f(a) = b} A f(a) f ˆf def ˆf(a) = f(a) ˆf f(a) B i f = ˆfi 3.6 f : A B m m = f f m: X B 3.4 f A1 m: X B g : X 1 f A1 = m g mm gg = id X X 1 X1 g = X1 mm = mm XX = mm X1 X1 = mm gg = id X m f A1 = m X1 f A1 1A = m X1 1A f A1 1X = m X1 1X, f AA = m XA f AX = m XX f AA f = m XA f = m XA f = m (f AX ) = m (m XX ) = m XX m

7 2.10 f f = f f f AA f = f f m XX m id B m XX m m (m XX m) = m m m m f f 3.6 m: X B i X f(a) ˆf 3.7 f : A B m: X B m m = f f f = gm g : A X fm : A X id A = id A id A ff ff = fm mf = (fm )(fm ) (fm ) (fm ) = mf fm = mm mm = id X id X = id X (fm )m = ff f f f = id A f ff f ff f fid A = f ff f = f f = (fm )m g = fm g f = gm g h: A X f = hm m h = hid X = hmm = fm = g 3.7 ˆf fm 3.8 f : A B f = gm g : A X m: X B 4 A B A (B) 4.1 A A : (A) A A def = {(S, a) (A) A a S}

8 4.2 f, g : A (B) f B = g B f = g a A f(a) = g(a) b f(a) S B.((a, S) f b S) S B.((a, S) f (S, b) B ) (a, b) f B (a, b) g B S B.((a, S) g (S, b) B ) S B.((a, S) g b S) b g(a). 4.3 α: A B f : A (B) α = f B f : A (B) (a, S) f S = {b B (a, b) α} a A S B α = f B (a, b) f B S (B).((a, S) f (S, b) B ) S (B).((a, S) f b S) S = {b B (a, b ) α} b S (a, b) α. f 4.2 f : A (B) f B A B 4.4 Rel(A, B) = Map(A, (B)) 5 5.1 ρ: A A 3 A a A.((a, a) ρ)

9 (a, b) ρ (b, c) ρ (a, c) ρ (a, b) ρ (b, a) ρ a = b A ρ a, b A.((a, b) ρ (b, a) ρ) 5.2 ρ: A A (a, b) ρ (b, a) ρ A ρ: A A id A ρ ρρ ρ ρ ρ id A ρ ρ = AA ρ ρ A A ρ A id A ρ ρρ ρ ρ ρ id A ρ A id A ρ ρρ ρ ρ ρ id A ρ ρ = AA ρ A id A ρ ρρ ρ ρ ρ 6 f : A B {(x, y) A A f(x) = f(y)} f(x) = f(y) z B.((x, z) f (y, z) f) z B.((x, z) f (z, y) f ) (x, y) ff ff f

10 f id A ff f (ff )(ff ) = f(f f)f fid B f = ff (ff ) = f f = ff 6.1 A ρ: A A ff = ρ f : A Y 4.3 ρ ρ = f A f : A (A) ρ f ff ff ρ = ff f A f A = ρ 3.4 ρ = u v u v uf A = uρ (f A = ρ ) vv uρ (v ) = vρ ρ (u v = ρ ) vρρ (ρ ) vρ (ρ ) = vf A (f A = ρ ) vf A = vρ (f A = ρ ) uu vρ (u ) = vρρ (u v = ρ ) vρ (ρ ) = vf A (f A = ρ ) uf A = vf A 4.2 uf = vf ρ = u v ff u vff (f ) = ff u uff (vf = uf ) ff ff (u ) ff (f ) ρ = ff 6.1 f : A (A) a A a

11 6.2 ρ: A A ρ = ff f : A (A) 1. a f(a) 2. (a, b) ρ f(a) = f(b) 3. f(a) f(b) f(a) f(b) = ρ (a, a) ρ (a, a) f A S A.((a, S) f (S, a) A ) S A.((a, S) f a S) a f(a) f(a) f(b) (a, b) ρ f(a) f(b) c A.((a, c) f A (b, c) f A ) (a, b) (f A )(f A ) (f A )(f A ) = ρρ ρρ ρ (a, b) ρ f(a) f(b) ρ: A A A A ρ 6.3 A ρ: A A pp = ρ p: A Q 6.1 ff = ρ f : A (A) 3.8 f : A (A) f = pm p: A Q m: Q B m ff = (pm)(pm) = pmm p = pp 6.3 Q A ρ p: A Q

12 7 [3] [1] [2] Allegory 1 [1] P.J. Freyd and A. Scedrov, Categories, Allegories (North-Holland, 1990). [2] P.T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Vol.1 (Oxford University Press, 2002). [3] G. Schmidt and T. Ströhlein, Relations and Graphs (Springer-Verlag, 1993).