105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2

Similar documents
(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

42 1 ( ) 7 ( ) $\mathrm{s}17$ $-\supset$ 2 $(1610?\sim 1624)$ 8 (1622) (3 ), 4 (1627?) 5 (1628) ( ) 6 (1629) ( ) 8 (1631) (2 ) $\text{ }$ ( ) $\text{

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

110 $\ovalbox{\tt\small REJECT}^{\mathrm{i}}1W^{\mathrm{p}}\mathrm{n}$ 2 DDS 2 $(\mathrm{i}\mathrm{y}\mu \mathrm{i})$ $(\mathrm{m}\mathrm{i})$ 2

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

第85 回日本感染症学会総会学術集会後抄録(I)

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

IV.dvi

RIMS98R2.dvi

Title DEA ゲームの凸性 ( 数理最適化から見た 凸性の深み, 非凸性の魅惑 ) Author(s) 中林, 健 ; 刀根, 薫 Citation 数理解析研究所講究録 (2004), 1349: Issue Date URL

$\prime i$ (Tetsuya Sakurai) (Tatsuo Torii) (Hiroshi Sugiura) 1 n f(z)=0, n, Durand-Kerner $1)_{(2}$ ), Aberth $2)_{(3}$ ) f(z)=o l, New

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

第86回日本感染症学会総会学術集会後抄録(II)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

概況


36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

基礎数学I

$2_{\text{ }}$ weight Duke-Imamogle weight Saito-Kurokawa lifting ( ) weight $2k-2$ ( : ) Siegel $k$ $k$ Hecke compatible liftin

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

$\mathrm{d}\mathrm{p}$ (Katsuhisa $\mathrm{o}\mathrm{m}\mathrm{o}$) Aichi Institute of Technology (Takahiro Ito) Nagoya Institute of Te


24.15章.微分方程式

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

L \ L annotation / / / ; / ; / ;.../ ;../ ; / ;dash/ ;hyphen/ ; / ; / ; / ; / ; / ; ;degree/ ;minute/ ;second/ ;cent/ ;pond/ ;ss/ ;paragraph/ ;dagger/

本文/020:デジタルデータ P78‐97

Title Compactification theorems in dimens Topology and Related Problems) Author(s) 木村, 孝 Citation 数理解析研究所講究録 (1996), 953: Issue Date URL

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

$\mathrm{n}$ Interpolation solves open questions in discrete integrable system (Kinji Kimura) Graduate School of Science and Tec

162 $\cdots$ 2, 3, 5, 7, 11, 13, ( deterministic ) $\mathbb{r}$ ( -1 3 ) ( ) $\text{ }$ ( ). straightforward ( ) $p$ version ( ) - 2 $\mathrm{n}$ $\om

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

Wolfram Alpha と数学教育 (数式処理と教育)

( $?^{-\mathrm{b}}$ 17 ( C 152) km ( ) 14 ( ) 5 ( ) $(?^{-}219)$ $\mathrm{m}$ 247 ( ) 6 1 5km

330

複数の $\delta$ 関数を初期データに持つ非線形シュレー Titleディンガー方程式について ( スペクトル 散乱理論とその周辺 ) Author(s) 北, 直泰 Citation 数理解析研究所講究録 (2006), 1479: Issue Date URL

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

日本内科学会雑誌第101巻第12号

REJECT}$ 11^{\cdot}\mathrm{v}\mathrm{e}$ virtual turning point II - - new Stokes curve - (Shunsuke SASAKI) RIMS Kyoto University 1

日本内科学会雑誌第97巻第3号

$\mathrm{v}$ ( )* $*1$ $\ovalbox{\tt\small REJECT}*2$ \searrow $\mathrm{b}$ $*3$ $*4$ ( ) [1] $*5$ $\mathrm{a}\mathrm{c}

A MATLAB Toolbox for Parametric Rob TitleDesign based on symbolic computatio Design of Algorithms, Implementatio Author(s) 坂部, 啓 ; 屋並, 仁史 ; 穴井, 宏和 ; 原

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

dプログラム_1

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

121 $($ 3 exact scienoe \S ( evolution model (\S \infty \infty \infty $\infty$ \S : (\alpha Platon Euclid ( 2 (\beta 3 ( \S $(\beta$ ( 2 ( Era

$\sim 22$ *) 1 $(2R)_{\text{}}$ $(2r)_{\text{}}$ 1 1 $(a)$ $(S)_{\text{}}$ $(L)$ 1 ( ) ( 2:1712 ) 3 ( ) 1) 2 18 ( 13 :

Contents

73,, $Jensen[1968]$, CAPM, Ippolito[19891,,, $Carhart[1997]$, ,, 12 10, 4,,,, 10%, 4,,,, ( ) $Carhart[1997]$ 4,,,,, Kosowski,$Timmennan\iota_

14 6. $P179$ 1984 r ( 2 $arrow$ $arrow$ F 7. $P181$ 2011 f ( 1 418[? [ 8. $P243$ ( $\cdot P260$ 2824 F ( 1 151? 10. $P292

4

a) \mathrm{e}.\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}$ -u.ac $\mathrm{f}$ 0$ (Yoshinobu Tamura) D

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )


$\text{ ^{ } }\dot{\text{ }}$ KATSUNORI ANO, NANZAN UNIVERSITY, DERA MDERA, MDERA 1, (, ERA(Earned Run Average) ),, ERA 1,,


プログラム 3日目:11月16日(日曜日)

0428_HP用.pdf

数論的量子カオスと量子エルゴード性

Wolfram Alpha と CDF の教育活用 (数学ソフトウェアと教育 : 数学ソフトウェアの効果的利用に関する研究)

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W


Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

MediaWiki for Kisorigaku

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

確率論と統計学の資料

106 (2 ( (1 - ( (1 (2 (1 ( (1(2 (3 ( - 10 (2 - (4 ( 30 (? (5 ( 48 (3 (6 (

(PML) Perfectly Matched Layer for Numerical Method in Unbounded Region ( ( M2) ) 1,.., $\mathrm{d}\mathrm{t}\mathrm{n}$,.,, Diri

Part. 4. () 4.. () Part ,

(1) (2) (3) (4) 1

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

TitleRiemann 3 角級数論文について ( 数学史の研究 ) Author(s) 小柴, 洋一 Citation 数理解析研究所講究録 (2000), 1130: Issue Date URL

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

P_SyugojutakuKenzai_H14.pdf

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

一般演題(ポスター)

untitled

日本内科学会雑誌第98巻第3号

On N-Fractional Calculus of the Function $((z-b)^2-c)^{\frac{1}{3}}$

【知事入れ版】270804_鳥取県人口ビジョン素案

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

ドキュメント1

文庫●注文一覧表2016c(7月)/岩波文庫


PowerPoint プレゼンテーション

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

Transcription:

1155 2000 104-119 104 (Masatake Mori) 1 $=\mathrm{l}$ 1970 [2, 4, 7], $=-$, $=-$,,,, $\mathrm{a}^{\mathrm{a}}$,,, $a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (11), $z=\alpha$ $c_{0}+c_{1}(z-\alpha)+c2(z-\alpha)^{2}+\cdots$ (12),, (11),,, (12),, $w=z-\alpha$ (13) $c_{0}+c_{1}w+c_{2}w^{2}+\cdots$ $=$ $a_{0}+a_{1}(w+\alpha)+a2(w+\alpha)^{2}+\cdots$ (14), $c_{0}=a_{0}+\alpha a_{1}+\alpha^{2}a_{2}+\cdots$ $\{$ $c_{1}=a_{1}+2\alpha a2+3\alpha^{2}a_{3}+\cdots$ $c_{2}=a_{2}+3\alpha a3+6\alpha^{2}a_{4}+\cdots$ (15)

105 $\cdot$, $c_{0},$ $c_{1},$ $c_{2}$, $a_{0},$ $a_{1}$, $\cdot$ $a_{2}$,,,,,, $f(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots$ (16) $z=\emptyset(w)=b_{1}w+b_{2}w+2\ldots$ (17), $b_{0}=0$, $\phi(0)=0$ (18) (12) (11) (13), (18), (17) (16) $f(\phi(w))=c_{0}+c_{1}w+c_{2}w^{2}+\cdots$ (19), $c_{0}$ $=a_{0}$ $\{$ $c_{k}$ $= \sum_{j=1}^{k}a_{jj}wk$ (110), $W_{jk}$ $\{$ $W_{1k}=b_{k},$ $k=1,2,$ $\cdots$ $W_{jk}= \sum_{\ell_{=}1}^{1}b\ell W_{jk_{-}\ell}k-j+-1,,$ $j=2,3,$ $\cdots,$ $k$ ; $k=2,3,$ $\cdots$ (111) (110), $W_{jk}$ $(b_{1}w+$ $b_{2}w^{2}+b_{3}w^{3}+\cdots)^{j}$ $w^{k}$, $(b_{1}w+b_{2}w^{2}+b_{3}w^{3}+ \cdots)^{j}=\sum_{k=1}^{\infty}w_{j}kw^{k}$ $=$ $(b_{1}w+b_{2}w^{2}+b3w^{3}+\cdots)(b1w+b_{2}w+b3w+\cdots)^{j-}231$ (112), (17) $w=\phi^{-1}(z)$ (113) (19), $z$ $f(z)=c_{0}+c_{1}\emptyset^{-}1(z)+c_{2}(\emptyset^{-}1(_{z}))^{2}+\cdots$ (114)

106, (114) $z$- (16), (16), (16) $z$, $(16)\text{ }\text{ }(114)$, (17) $z=\zeta$, (113) $w_{\zeta}=\phi^{-}1(\zeta)$, $w_{\zeta}$ (19) $w$, (113), $\phi(w)$ 1 1,, $f(z)=\log(1+z)$ (115) $f(z)= \log(1+z)=z-\frac{1}{2}z+\frac{1}{3}\mathcal{z}^{3}-2\cdots,$ $ z <1$ (116) 1 $\log(1+z)$ $z=-1$, 1 $z= \phi(w)=\frac{2w}{1-w}=2w+2w^{2}+2w^{3}+\cdots$ (117), $w=\emptyset^{-1}(_{z)\frac{z}{z+2}}=$ $z$- ${\rm Re} z>-1$ $w$- $ w <1$ ( 1) (116) (117) (110) $w$ (19), $f(z)$ $=$ $\log(1+z)$ (119) 1: ${\rm Re} z>-1$ $\Leftrightarrow$ $ w <1$

107 $=$ $\log(1+\emptyset(w))=\log(\frac{1+w}{1-w})$ (120) $=$ $2w+ \frac{2}{3}w^{3}+\frac{2}{5}w+5\ldots$ (121) (118), $z$ $f(z)=2( \frac{z}{z+2})+\frac{2}{3}(\frac{z}{z+2})^{3}+\frac{2}{5}(\frac{z}{z+2})^{5}+\cdots$ (122) (122) ${\rm Re} z>-1$ $z$, $z$ (118) $w$ $ w <1$, $w$ (121) ${\rm Re} z>-1$ (116) $ z <1$, (116) (117), $ z <1$ $ z+2 >1$ $z$, $ z > \frac{z}{z+2} = w $ (123), (122) (116), $ z <1$ (118), 2,, $E_{1}(z)$, $F(z)=e^{z}E_{1}(Z)= \int_{0}^{\infty}\frac{e^{-t}}{z+t}dt$, $-\pi<\arg z<\pi$ (21), $F(z)$, (21), $z= \phi_{1}(w_{1})=\frac{1+w_{1}}{1-w_{1}}$ $w_{1}= \phi^{-1}(\mathcal{z})=\frac{z-1}{z+1}$ (22) (22) ${\rm Re} z>0$ $ w_{1} <1$ ( 2) (21) $z$ (22), (22), $F(z)$ $F(z)$ $=$ $F( \phi_{1}(w_{1}))=\int_{0}^{\infty}\frac{e^{-l}}{\frac{1+w_{1}}{1-w_{1}}+t}dt$

108 2: ${\rm Re} z>0$ $\Leftrightarrow$ $ w_{1} <1$ $=$ $(1-w_{1}) \int_{0}^{\infty}\{\sum_{k=0}^{\infty}(\frac{t-1}{t+1})wk1k\}\frac{e^{-t}}{t+1}dt$ $=$ $\sum_{k=0}^{\infty}j_{k}wk1$ (23) $=$ $\sum_{k=0}^{\infty}j_{k(}\frac{z-1}{z+1}\mathrm{i}^{k}$ (24) $J_{0}$ $=$ $\int_{0}^{\infty}\frac{1}{t+1}e^{-t}dt$ $J_{k}$ $=$ $-2 \int_{0}^{\infty}\frac{(t-1)^{k-1}}{(t+1)^{k+1}}e^{-t}dt,$ $k=1,2,$ $\cdots$ (25) (21)? \mbox{\boldmath $\pi$}<arg $z<\pi$, (22) ${\rm Re} z>0$ w\leftarrow $ w <1$, (23) $ w <1$, (24) $z$- ${\rm Re} z>0$ 3 (24),, $z= \phi_{m}(w_{m})=(\frac{1+w_{m}}{1-w_{m}})^{m}$, $w_{m}= \phi_{m}^{-1}(z)=\frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1}$, $m>1$ (31) $z$- $ \arg_{z} <m\pi/2$ ( 3) $F(z)$ $w_{m}$- $ w_{m} <1$

109 3: $ \arg z <m\pi/2$ $\Leftrightarrow$ $ w_{m} <1$ $F(z)$ $=$ $F(\phi_{m}(w_{m}))$ $=$ $J_{0}+ \sum_{k=1}^{\infty}k(m)kw_{m}^{k}$ $=$ $J_{0}+ \sum_{k=1}^{\infty}k_{k}(m)(\frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1})^{k}$ (32), $K_{k}^{(m)}$, (22) (31) (22), $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{m}}{1-w_{m}})^{m}$ (33), $w_{1}$ $w_{m}$ $w_{1}$ $=$ $(1+w_{m})^{m}-(1-w_{m})^{m}$ $(1+w_{m})^{m}+(1-w_{m})^{m}$ $=$ $\sum_{k=1}^{\infty}b_{k}^{(m)}w_{m}^{k}$ (34), (17) $b_{k}$ $b_{k}^{(m)}$ $z,$ $w,$ $w_{1},$ $w_{m},$, (23) (34) $w_{1}$ (111) $F(z)$ $=$ $F(\phi_{m}(w_{m}))$ $=$ $J_{0}+ \sum_{k=1}k_{k}(m)\infty w_{m}^{k}$ (35) $K_{k}^{(m)}= \sum_{j=1}jjw^{(}jkm)$, $k=1,2,$ $\cdots$ (36)

110, $\{$ $W_{1}^{(m)}\text{ }=b_{\text{ }^{}(m)},$ $k=1,2,$ $\cdots$ $W_{jk}^{(m)}= \sum_{\ell=1}^{kj+1}-b^{(}\ell j-wm1m)(),\text{ }-\ell j=2,3,$ $\cdots,$ $k$ ; $k=2,3,$ $\cdots$ (37), $m=2,3,4$ [$m=2$ ( 4)] $z= \phi_{2}(w_{2})=(\frac{1+w_{2}}{1-w_{2}})^{2}$ (38), 4: $ \arg z <\pi$ $\Leftrightarrow$ $ \arg w1 <\frac{\pi}{2}$ $\Leftrightarrow$ $ w_{2} <1$ $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{2}}{1-w_{2}})^{2}$ (39) $w_{1}$ $=$ $\frac{2w_{2}}{1+w_{2}^{2}}$ $=$ $2w_{2}-2w_{2}+232w^{5}2^{-}w_{2}+7\ldots$ $=$ $\sum_{k=1}^{\infty}b^{(})w^{k}\text{ }22$ (310), (36) $F(z)$ $=$ $F( \phi_{1}(w_{1}))=j_{0}+\sum_{k=1}^{\infty}j\text{ ^{}w_{1}}\text{ }$ $=$ $F( \phi_{2}(w_{2}))=j_{0}+\sum_{k=1}^{\infty}k^{(}k22)w^{k}$, $w_{2}= \frac{\sqrt{z}-1}{\sqrt{z}+1}$ (311)

111 $K_{k}^{(2)}= \sum_{j=1}^{\text{ }}J_{jjk}W^{(2)}$, $k=1,2,$ $\cdots$ (312), $\{$ $W^{(2)}=1kkb(2),$ $k=1,2,$ $\cdots$ $W_{jk}^{(2)}=kj+ \ell=\sum_{1}^{-}b_{\ell}^{(}w_{j-}12)(2)1,k-\ell j=2,3,$ $\cdots,$ $k$ ; $k=2,3,$ $\cdots$ (313) $W_{j}^{(2)}\text{ }$ (37) $m=2$ (311) $z=0$ ( 4) $-\infty$ [$m=3$ ( 5)] $/1+w-?\backslash 3$ $\backslash$ / $z= \phi_{3}(w_{3})=(\frac{1+w_{3}}{1-w_{3}})^{c}$ (314), 5: $ \arg_{z} <\frac{3\pi}{2}$ $\Leftrightarrow$ $ \arg w_{1} <\frac{\pi}{2}$ $\Leftrightarrow$ $ w_{3} <1$ $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{3}}{1-w_{3}})^{3}$ (315) $w_{1}$ $=$ $\frac{3w_{3}+w_{3}^{3}}{1+3w_{3}^{2}}$ $=$ $3w_{3}-8w^{35}3+24w3-54w_{3}^{7}+\cdots$ (316), (36) $F(z)$ $=$ $F( \phi_{1}(w1))=j0+\sum_{k=1}^{\infty}j\text{ ^{}w^{k}}1$ $=$ $F( \phi_{3}(w_{3}))=j0+\sum_{1k=}^{\infty}k_{\text{ }^{}(3})w^{k}3$ $w_{3}= \frac{\sqrt[3]{z}-1}{\sqrt[3]{z}+1}$ (317)

112, $K_{k}^{(3)}= \sum_{j=1}^{\text{ }}J_{j}W_{j\text{ }^{}(3})$, $k=1,2,$ $\cdots$ (318) $W_{j}^{(3)}\text{ }$ (37) [$m=4$ ( 6)] $m=3$ (317) 5, $\backslash$ $f1+w4\backslash ^{4}$ $z= \phi_{4}(w_{4})=(\frac{1+w_{4}}{1-w_{4}})^{\mathrm{e}}$ (319), 6: $ \arg z <2\pi$ $\Leftrightarrow$ $ \arg w_{2} <\pi$ $\Leftrightarrow$ $ w_{4} <1$ $\frac{1+w_{1}}{1-w_{1}}=(\frac{1+w_{4}}{1-w_{4}})^{4}=(\frac{1+w_{2}}{1-w_{2}})^{2}$ (320) $\frac{1+w_{2}}{1-w_{2}}=(\frac{1+w_{4}}{1-w_{4}})^{2}$ (321), (39) (311) $w_{1}$ $w_{2}$ $w_{2}$ $w_{4}$ $F(z)$ $=$ $F(\phi_{2}(w_{2}))=J_{0+\sum_{k=1}^{\infty}K_{\text{ }^{}(}w}2)\text{ }2$ $=$ $F( \phi_{4}(w_{4}))=j_{0}+\text{ }\sum_{=1}^{\infty}k_{k}(4)w_{4}^{k}$, $w_{4}= \frac{\sqrt[4]{z}-1}{\sqrt[4]{z}+1}$ (322), $K_{\text{ }^{}(4)}=j \sum_{=1}^{\text{ }}K\text{ }jk(2)w^{(2}\rangle$, $k=1,2,$ (323) $\cdots$ $W_{j}^{(2)}\text{ }$ (313), $K_{\text{ }^{}(2)}$ (312) (322) 6

$\mathrm{n}$ $\mathit{9}$ 4 $\mathrm{n}$ 113 4 $E_{1}(z)=e^{-z}F(_{Z)}, F(z)= \int_{0}^{\infty}\frac{e^{-t}}{z+t}dt$ (41) (35) $m$,,, $m=3$ [7],, $m=3$ $E_{1}(z) \approx e^{-z}(j_{0}+\sum_{k=1}^{n}k^{(3})w_{3}k\mathrm{i}k$, $z=\phi_{3}(w_{3})$ (42) 1 $x=2$ $n$ $\mathrm{x}=20$ $\mathrm{e}_{1}(\mathrm{x})$ 14 $3008842?\tau 0\mathit{9}$ 9734 $\mathrm{x}10^{-}2$ 10 4 $\mathrm{e}_{1}(\chi)$ $8900510\gamma 0*(4\iota \mathit{6}8\mathrm{x}10-\mathrm{z}$ $2$ 4 92182(439 $526530\mathrm{X}\mathrm{l}\mathrm{o}^{-}z$ 11 4 $8?00510707\mathit{6}4\mathit{6}13\mathrm{X}\mathrm{l}\mathrm{o}-2$ $3$ ( $8\mathit{9}1664670568607\mathrm{x}_{1}0^{-}\mathrm{z}$ $\mathrm{x}10-\mathrm{z}$ 12 $ 890051070811766 $\mathrm{t}$ $4$ $89013\not\in 154781676\mathrm{x}\mathrm{l}\mathrm{Q}-2$ 13 $6\cross 10^{-}z$ 4 89005107080659 $5$ 4 0^{-}$a $890000\gamma 5\iota 051210\mathrm{X}\iota 14 4 89 $005107080\mathit{6}150\mathrm{X}10^{-2}$ $6$ 4 89 $00\mathrm{s}14\mathit{9}1\tau 65\uparrow 41\mathrm{X}10^{-}2$ 15 4 89 $\mathrm{o}05107080\mathit{6}103\mathrm{x}10^{-}2$ $7$ 4 890051 $276860**3\mathrm{x}10^{-}$ a 16 4 89 $005107080611\iota \mathrm{x}10^{-2}$ $8$ 4 89005111 $8892569\mathrm{x}10^{-}2$ 17 4 89 $0051070\epsilon 06112^{\chi 10^{-}}\mathrm{g}$ 890051067 $752936\cross 10-z$ $\mathrm{x}10^{-2}$ 18 4 890051070806112 1: $x=2$ $E_{1}(x)$ $\mathrm{z}$ $=$ $(-1,0)$ $\mathrm{n}$ $\mathrm{r}\mathrm{e}\mathrm{e}_{1}(\mathrm{z})$ $\mathrm{r}\mathrm{e}\mathrm{e}_{1}(\mathrm{z})$ $\mathrm{n}$ $\mathrm{m}\mathrm{e}_{1}(\mathrm{z})$ I $\mathrm{m}\mathrm{e}_{1}$ I $(\mathrm{z})$ $1$ 2 1 $-1521751$ $-3$ 800957 15 $-1895303$ $-3$ $l$ $6210\iota 0$ $-3$ 800957 14 $-18\mathit{9}5303$ $-3$ 142026 A1723 3 $-1521751$ $-3$ 034681 16 $-1895050$ $-3$ 141723 4 $-17\iota 6\mathit{9}54$ $-3$ 034681 17 $-1895050$ $-3$ 141624 5 $-1$ 716954 $-3$ 120089 18 $-1895095$ $-314$ 1624 6 $-188001\mathit{9}$ $-3$ 120089 19 $-1895095$ $-3$ 141580 7 $-1880019$ $-3$ 116622 20 $-18\mathit{9}5113$ $-3$ li1580 8 $-18\mathit{9}2813$ $-3$ 116622 21 $-1895113$ $-3$ 141589 9 $-1$ 892813 $-3137412$ 22 $-189\mathrm{s}120$ $-3$ 141589 10 $-18\mathit{9}8305$ $-3137412$ 23 $-18\mathit{9}5\iota 20$ $-3$ 141592 11 $-1898305$ $-3$ 140692 24 $-18\mathit{9}5118$ $-3$ 141592 12 $-1895880$ $-31$ 40692 25 $-1895118$ $-31$ 41593 13 $-18\mathit{9}5880$ $-31$ 42026 26 $-18\mathit{9}5118$ $-3$ lt1593 2: $x=-1$ $E_{1}(x)$

$\mathrm{n}$ 114, 2 $z=-1$ $n$ $E_{1}(-1)$ $E_{1}(ix)=- \mathrm{c}\mathrm{i}(x)+i(\mathrm{s}\mathrm{i}(x)-\frac{\pi}{2})$ (43) Ci $(x)=- \int_{x}^{\infty}\frac{\cos t}{t}dt$, Si $(x)= \int_{0}^{x}\frac{\sin t}{t}dt$ (44) $x=2$ (317), 3 $\aleph$ $=$ $20$ $\mathrm{c}\mathrm{i}\langle \mathrm{x}) \mathrm{s}_{\dot{\mathfrak{l}}}(_{\mathrm{x}}\rangle$ 1705775266 1 5659 $5\mathrm{x}_{10}-1$ $87442\cross 100$ $2$ 4 217472949x10 1 $644310548\mathrm{x}100$ $3$ 4 2 $t(82009\mathit{6}\cross 10^{-}1$ $\langle\iota 6\mathrm{x}_{1}0^{0}$ 1 608552 $4$ 4 239422614x10 16 $05\mathit{9}06037\mathrm{x}_{10}0$ $5$ 4 230541299x10 $60642\uparrow\tau 0\iota\cross\iota \mathrm{o}\mathrm{o}$ 1 $6$ 4 229601356x10 $\mathrm{x}10^{0}$ 1605439434 $7$ 4 229 $l01759$ X10 16054 $43002\mathrm{X}10^{0}$ $8$ 4 229841017X10 $\iota 288\mathit{6}0\mathrm{x}10^{\mathrm{o}}$ 1605 $9$ 4 22978 $\mathrm{t}141\cross 10-1$ 1 605 $(13603\mathrm{X}\mathrm{l}\mathrm{o}^{0}$ $10$ { $229805788\mathrm{x}_{1}0^{-1}$ $\mathrm{x}10^{\mathrm{o}}$ 1 605413775 $11$ 4 229809016x10 $-1$ $\iota 1320\mathit{6}\mathrm{x}\mathrm{l}\mathrm{o}^{0}$ 1 605 $\mathrm{x}10^{\mathrm{o}}$ $\mathrm{x}_{1}0^{-1}$ $12$ 4 229807599 1 605413007 $13$ 4 229 1 6054129 $808266\mathrm{x}\mathrm{l}0^{-}1$ $95\mathrm{x}10^{\mathrm{O}}$ $14$ 4 229808304X10 1 $605412980\cross 10^{0}$ $15$ 4 229 $808273\mathrm{X}10-1$ 1 6 $05412978\mathrm{X}10^{0}$ $16$ $17$ 4 $229808288\mathrm{X}10-1$ 4 $229808288\mathrm{X}10-1$ 1 6054129 $77\mathrm{x}10^{0}$ $77\mathrm{X}\mathrm{l}\mathrm{o}^{0}$ 1 6054129 3: $x=2$ Ci $(x)$ Si $(x)$, $z$, $n$ $n=20$ $ E_{1}(z)-e-z(J_{0}+ \sum_{1k=}k_{k)}^{()}20mwmk,$ $w_{m}= \frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1}$ (45) $z$-, z-, $ E_{1}(Z)-e-z(J_{0}+ \sum_{\text{ }=}^{20()}1kw^{\text{ }}Km)m,$,, $m=3$, w3\rightarrow $z=1$

115 7: $ E_{1}(Z)-e^{-}z(J0+ \sum_{k^{0}}^{2}=1k_{k}^{(3)}w^{\text{ }}3) $, $w_{3}= \frac{\sqrt[3]{z}-1}{\sqrt[3]{z}+1}$ 5 $F(z)= \int_{a}^{b}f(z;t)\mu(t)dt$ (51) $E_{1}(z)=e^{-z} \int_{0}^{\infty}\frac{1}{z+t}e^{-}d\iota t$ (52) $a=0,$ $b=\infty$, $f(z;t)=z+ \overline{t}$ $\mu(t)=e^{-t}$ (53), (51) $f(z;t)$ $z=\phi(w_{1})$ (54) $f(z;t)=f( \emptyset(w_{1});t)=\text{ }\sum_{=0}^{\infty}a_{k}(t)w_{1}^{k}$ (55)

116 (51) $F(z)= \sum_{k=0}^{\infty}$ J w l $= \sum_{\text{ }=0}^{\infty}Jk$ ( $\phi-1$ (z)), $J_{k}= \int_{a}^{b}a_{\text{ }}(t)\mu(t)dl$ (56) (56), 3 (exponential integral) $E_{1}(z)=e^{-z} \int_{0}^{\infty}\frac{1}{z+t}e^{-t}dt$ (57) (sine and cosine integrals) $\{$ Si $(z)= \int_{0}^{z}\frac{\sin t}{t}dt=\frac{\pi}{2}-g_{1}(z)\cos z-g\mathit{2}(z)\sin z$ Ci $(z)= \gamma+\log z+\int_{0}^{z}\frac{\cos t-1}{t}dt=g_{1}(z)\sin z-g2(z)\cos Z$ (58) $\{$ $g_{1}(z)= \int_{0}^{\infty}\frac{z}{z^{2}+t^{2}}e^{-t}dt$ $g_{2}(z)= \int_{0}^{\infty}\frac{t}{z^{2}+t^{2}}e^{-t}dt$ (59) (error function) $\mathrm{e}\mathrm{r}\mathrm{f}z=1-\frac{2ze^{-z^{2}}}{\pi}\int_{0}^{\infty}\frac{1}{z^{2}+t^{2}}e^{-}dt^{2}t$ (510) $\mathrm{p}\mathrm{s}\mathrm{i}$ ( function) $\psi(z)=\frac{d[\log\gamma(z)]}{dz}=\frac{\gamma (_{Z)}}{\Gamma(z)}=\log z-\frac{1}{2z}-2\int_{0}^{\infty}\frac{1}{z^{2}+t^{2}}\frac{t}{e^{2\pi t}-1}dt$ (511) ( gamma function) $\log$ $\log\gamma(z)=(z-\frac{1}{2})\log z-z+\frac{1}{2}\log 2\pi+2\int_{0}^{\infty}(\arctan\frac{t}{z})\frac{1}{e^{2\pi t}-1}dt$ (512) (1) (incomplete gamma function (1)) $\Gamma(a, z)=e^{-z}\int_{0}^{\infty}(z+t)^{a-1}e^{-}dtt$ (513) (2) (incomplete Gamma function (2)) $\Gamma(a, z)=\frac{z^{a}e^{-z}}{\gamma(1-a)}\int_{0}^{\infty}\frac{1}{z+t}t^{-a}e-tdt$ (514)

117 6, [1] (21), $F(z)=ezE1(Z)= \int_{0}^{\infty}\frac{1}{t+z}e^{-}d\iota t$ (61), $F(z)=e^{z}E1(z)$ $=$ $\int_{0}^{\infty}\frac{1}{t+z}e^{-t}dt$ $=$ $\frac{1}{z}\int_{0}^{\infty}\frac{1}{1+\frac{t}{z}}e^{-t}dt$ (62) $=$ $\frac{1}{z}\int_{0}^{\infty}(1-\frac{t}{z}+\frac{t^{2}}{z^{2}}-\frac{t^{3}}{z^{3}}+\cdots)e-tdt$ (63) $=$ $\frac{1}{z}[1-\frac{1!}{z}+\frac{2!}{z^{2}}-\frac{3!}{z^{3}}+\cdots]$ (64) (64), $z$, (62) $1/(1+t/z)$ (63) $ t < z $ $(0, \infty)$ ( 8), (62), 8: $F(z)= \frac{1}{z}\int_{0}^{\infty}\frac{1}{1+\frac{t}{z}}e^{-t}dt$ (65) $t= \emptyset(u)=\frac{1+u}{1-u}$ $u= \phi^{-1}(t)=\frac{t-1}{t+1}$ (66)

$\mathrm{r}$ 118 $t$- ${\rm Re} t>0$ $u$- $ u <1$ ( 9), (62) ${\rm Re} t>0$ $\Leftrightarrow$ $ u <1$ 9: $t=(1+u)/(1-u)$ $F(z)$ $=$ $\frac{1}{z}\int_{-1}^{1}\frac{1}{(1+u)}e^{-\emptyset}(u)\phi (u)du$ $1+\overline{z(1-u)}$ $=$ $\frac{1}{z+1}\int_{-1}^{1}\frac{1-u}{1-\frac{z-1}{z+1}u}e^{-\emptyset}(u)\phi (u)du$ $=$ $\frac{1}{2}(1-w)\int_{-1}^{1}\frac{1-u}{1-wu}e^{-\emptyset}(u)\phi (u)du$ (67), $w= \frac{z-1}{z+1}$ (68) $-1<u<1$, ${\rm Re} z>0$ $ w <1$, ${\rm Re} z>0$ $ wu <1$, (67) $1/(1-wu)$ $(-1,1)$, $F(z)$ $=$ $\frac{1}{2}(1-w)\int_{-1}^{1}(1-u)(1+wu+w^{2}u^{2}+\cdots)e^{-\phi(u)}\phi (u)du$ $=$ $\frac{1}{2}(1-w)\sum_{=k0}\int_{0}^{\infty}(\infty-1\frac{t-1}{t+1})wk(\frac{t-1}{t+1})^{\text{ }}e^{-t}dt$ $=$ $\frac{1}{2}\{(i_{0}-i1)+\sum_{k=1}^{\infty}(ik-1-2ik+ik+1)(\frac{z-1}{z+1})^{k}\}$ (69), t $f^{\infty}(t-1\backslash ^{k}$ $I_{k}= \int_{0}^{\infty}(\frac{t-1}{t+1})^{n}e^{-t}dt$ (610)

119, (610) (25) $J_{0}= \frac{1}{2}(i_{0^{-}}i_{1}),$ $J_{k}= \frac{1}{2}(i_{k-1}-2i_{k}+i_{k+1})$ (611) $F(z)= \sum_{k=0}^{\infty}j_{k}(\frac{z-1}{z+1})\text{ }$ (612),, 2 (24) 7 3 (31), $z= \phi_{m}(w_{m})=(\frac{1+w_{m}}{1-w_{m}})^{m}$, $w_{m}= \frac{\sqrt[m]{z}-1}{\sqrt[m]{z}+1}$ $m>1$ (71), $m$, [5], [3], [1],, No 373 (1979) 91-113 [2] M Mori, Analytic representations suitable for numerical computation of some special functions, Numer Math 35 (1980) 163-174 [3],, modular, No 717 (1990) 76-89 [4],, Taylor, No172 (1973) 78-87 [5],, No 253 (1975) $=-$ 24-37 [6],,, No 382 (1980) 39-53 [7] H Takahasi and M Mori, Analytic continuation of some special functions by variable transformation, Japan J Appl Math 1 (1984) 337-346