main.dvi

Similar documents
25 3 4

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

Mott散乱によるParity対称性の破れを検証

FPWS2018講義千代

Muon Muon Muon lif

untitled

Drift Chamber

Undulator.dvi


1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智


LLG-R8.Nisus.pdf

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

untitled

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

LEPS

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

main.dvi

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

untitled

thesis.dvi

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

IA

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

π + e + ν e


untitled

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

201711grade1ouyou.pdf

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

soturon.dvi

PDF

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

QMI_10.dvi


加速器の基本概念 V : 高周波加速の基礎

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

rcnp01may-2

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Electron Ion Collider と ILC-N 宮地義之 山形大学

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

[ ] [ ] [ ] [ ] [ ] [ ] ADC


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 2 2 (Dielecrics) Maxwell ( ) D H

TOP URL 1

0.1 I I : 0.2 I

306 [7] GeV TeV PAMELA 100 GeV PAMELA AMS GeV [8] TeV [9] PAMELA[10] AMS BESS-Polar 95 [11]AMS 1.3 AMS AMS rigidity TOFTime Of Flight TRDE

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

i

ohpr.dvi

main.dvi

Donald Carl J. Choi, β ( )

Canvas-tr01(title).cv3

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

From Evans Application Notes

JPS2016_Aut_Takahashi_ver4

OHO.dvi

総研大恒星進化概要.dvi

untitled

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)


Z: Q: R: C: sin 6 5 ζ a, b


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

gr09.dvi

放射線化学, 92, 39 (2011)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

untitled

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

keisoku01.dvi

1).1-5) - 9 -

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

meiji_resume_1.PDF

Part () () Γ Part ,

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

untitled


Transcription:

MICE Sci-Fi 2 15 3 7 1

1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10 1.2 MICE........................... 13 1.2.1......................... 13 1.2.2 Sci-Fi........................ 13 1.2.3...................... 14 1.3............................ 16 2 Sci-Fi 17 2.1............................... 17 2.1.1................... 17 2.1.2.................... 19 2.1.3.......................... 20 2.1.4............................. 23 2.1.5.............. 24 2.2................................. 28 2.2.1 MAPMT.......... 28 2.2.2...................... 30 2.3 Sci-Fi.................... 31 2.3.1..................... 33 2.3.2 MAPMT........ 34 3 39 3.1.............................. 39 3.1.1.......................... 39 3.1.2.......................... 39 3.1.3........................ 40 3.2................................... 40 3.2.1........................ 43 3.2.2.......................... 44 3.2.3.......................... 47 3.3............................... 48 2

4 50 3

(MICE) 6 150μm nsec MICE Sci- Fi Sci-Fi 1.0GeV/c π 0.3mm 0.54±0.03 0.5mm 1.22±0.02 2.8nsec MICE 4

1 MICE 1.1 MICE(Muon Ionization Cooling Experiment) 1.1.1 MICE MICE [1] MICE [2] π μ ν [3] [4, 5] CERN 1 MICE MICE 5-10 5

1: CERN 2GeV π μ 50GeV ν ν 6

0.1 10 20 1.1.2 ( 2 ) MICE z x y x, dx dy y, dz dz 2: ( ) RF ( ) de dx = 4πN 0Zz 2 e 4 mv 2 A ln( 2mv 2 I(1 β 2 ) β2 )) (1) 7

N 0 : Z : z : e : m : v : A : β : v/c I : Gaussian dθ = 2θ 0 = 2 0.014(GeV ) L (2) βcp L R L L R p 6 ɛ = D D x,y,t, dx, dy, cdt dz dz dz ɛ p =βγ mc x, dx dz ɛ x, = γβɛ x = γβσ x σ x (3) ɛ x, dz = ɛ d(γβ) x + γβ d(ɛ x) dz dz (4) ɛ ɛ x, dz = 1 β 2 ɛ x, E de dz +β (0.014GeV ) 2 (5) 2β 3 Em μ L R 8

10 8 de/dx (MeV g 1 cm 2 ) 6 5 4 3 2 H 2 liquid He gas Fe Sn Pb Al C 1 0.1 1.0 10 100 1000 10 000 βγ = p/mc 0.1 0.1 1.0 10 100 1000 Muon momentum (GeV/c) 1.0 10 100 1000 Pion momentum (GeV/c) 0.1 1.0 10 100 1000 10 000 Proton momentum (GeV/c) 3: 9

[6] (5) β L R de/ds=30mev/m X 0 =8.7m 10cm 1 2 ɛ x, dz = 1 β 2 ɛ x, E de dz +β (0.014GeV ) 2 = 0 (6) 2β 3 Em μ L R ɛ x, 180-300MeV/c 20 [7] MICE 1.1.3 MICE RF TOF 10

4: MICE 3 ( ) RF 11

5: RAL MICE 12

4 MICE MICE Rutherford appleton (RAL) 2005 5 1.2 MICE 1.2.1 MICE 6 6 6: 10% 0.4% 100ns RF 1.2.2 Sci-Fi Sci-Fi 13

Sci-Fi 1 2 1 2 1 3 3 120 30cm 3 2 3m ( 7 8 ) 7: Sci-Fi 5 1.2.3 Sci-Fi 1 866cm MICE 35cm 3 L = 35(cm) 3 L R 866(cm) 14 =0.12 (7)

8: Sci-Fi (a)1 2 (b) 2 3 120 (2) θ 0 θ 0 = 2 0.0136(GeV ) L (1 + 0.038ln( L )) (8) βcp L R L R 180MeV/c θ 0 = 0.0136(GeV ) 0.12(1 + 0.038ln(0.12)) = 45(mrad) (9) 0.86 0.18(GeV ) 6 (9) 10% 47.9cm 300μm 6 4.2mrad 150μm 150μm 12=520μm 300μm 150μm nsec 0.4%X 0 1: Sci-Fi (X 0 ) 15

1.3 2 Visible Light Photon Counter(VLPC) [8] (MAPMT) VLPC (85%) (50,000) [9] S/N 7K (MAPMT) MAPMT MAPMT MAPMT 4 16

2 Sci-Fi Sci-Fi MAPMT Sci-Fi 2.1 2.1.1 Sci-Fi Sci-Fi 2 Sci-Fi ( 90 ) n 1 n 2 θ c n 2 1 n 2 2 θ c = arcsin (10) n 1 10 17

9: NA 1.3 10: 18

(NA) NA n 1 n 2 NA = n 2 1 n 2 2 (11) S Non-S Non-S S Non-S MICE (RF) 10m 2.1.2 1 RF 10% 300μm 520μm Sci-Fi 300μm 19

11: Sci-Fi Kuraray SCSF-78M 11 SCSF-78M 4.0m 450nm MAPMT 12 Sci-Fi MAPMT Sci-Fi 0.3mm 0.5mm Numerical apature S Non-S 2.1.3 1/e Sci-Fi L x (12) f(x) =exp( x L ) (12) Sci-Fi 5m Sci-Fi 0.3 0.5mm Sci-Fi PMT LED 20

12: ( )Sci-Fi ( )MAPMT 21

PMT LED LED cm 5m 25cm LED Sci-Fi 10 4 13 13: 0.3mm 0.5mm Sci-Fi PMT PMT N L (13) f(x) =Nexp( x L ) (13) 0.3mm 186±3cm 0.5mm 279±4cm MICE Sci-Fi 30cm 0.3mm 85% 0.5mm 90% PMT 50cm 22

2.1.4 Sci-Fi Sci-Fi Sci-Fi [10] separation offset tilt 14 a s a d š Separation Offset Tilt 14: 23

s L s L s =1 s(na) 4an 0 (14) NA (11) n 0 d L d L d =1 2 arcsin( d π 2a ) d 1 ( d 2a 2a )2 (15) a ψ L ψ L ψ =1 n 0ψ π(na) (16) 2.1.5 Sci-Fi offset Sci-Fi 15 (14) (15) (16) 0.3mm 0.5mm 90% 24

15 0.3mm 85μm 0.5mm 125μm 90% 0.5mm 40μm 0.3mm 25μm 10 15: (14) (15) (16) 0.3mm 0.5mm Sci-FI 2 3cm 1mm 25

2 10 (16) 90% 25-40μm 1.3m PMT LED 1m 30cm Z X Z 100 X 10 Z 50 LED 16 17 0.3mm 0.5mm (15) N (17) f(x) =N 1 2 arcsin( d π 2a ) d 1 ( d 2a 2a )2 (17) ADC 0.3mm Z Z 50μm Z 50μm 90% 0.3mm ±15μm 0.5mm ±40μm ( 0.3mm 1.095 0.5mm 1.025) 26

16: Z 100 X 10 17: 0.3mm 0.5mm ADC ADC 0.3mm 0.5mm 17 27

2.2 (MAPMT) MAPMT 2.2.1 MAPMT MAPMT PMT MAPMT R5900U-00-L16 MAPMT 16 1 15.8mm 0.8mm 0.2mm 19 18: R5900U-00-L16 28

19: R5900U-00-L16 20: R5900U-00-L16 29

2.2.2 MAPMT l(mm) n 2 n 1 θ 1 a s ( s = a + l tan arcsin( n ) 1 sinθ 1 ) (18) n 2 ( 21 ) l=1mm n 1 =1.59 n 2 =1.474 θ 1 =26.7 s 0.3mm 0.7mm 0.5mm 0.8mm MAPMT 21 l 0.2mm 0.8mm š 1 s š S a n 1 n 2 š 21: ( ) ( ) MAPMT MAPMT 0.8mm 0.2mm 30

s S real ( S real = πs 2 2 πs 2 ( 2ψ ) 2π ) 0.4s sinψ (19) S cross S cross = πs 2 ( 2φ ) 0.6s sinφ (20) 2π ψ φ 21 S cross S real 0.3mm 0.049 0.5mm 0.12 0.3mm 4.9% 0.5mm 12% MAPMT 22 1m Y MAPMT X MAPMT Y 2 LED X 100 m Y MAPMT 23 X ( mm) ADC (19) (20) 3 5% 90% MAPMT 100μm 2.3 Sci-Fi Sci-Fi 24 Sci-Fi 350mm Sci-Fi 16 2 1m 31

22: LED MAPMT X 100 m 23: ( ) 0.3mm ( ) 0.5mm ADC * 32

350mm «š 16«mm Sci-Fi (2 layer) Clear Fiber (2 layer) to another MAPMT MAPMT cathode (16 layer) 30.0mm 15.8mm acryl plate 30.0mm 1.0mm cathode width : 0.8mm strip : 0.2mm 24: Sci-Fi 1mm Sci-Fi 1mm MAPMT 2.3.1 Sci-Fi 0.3mm 0.5mm 40cm 50g 25 Sci-Fi ±10μm Sci-Fi MAPMT MAPMT 33

ˆ ˆ ˆ «50g «25: Sci-Fi 3 2 1 1 MAPMT MAPMT MAPMT 2.3.2 MAPMT MAPMT 100μm Sci-Fi 10 100μm 28 LED 34

26: Sci-Fi ( ) 2 ( ) 35

Á ˆÔÖÒÐw ÓÑ Á ÔÖÒÐ }Á Á 27: Sci-Fi Sci-Fi Sci-Fi MAPMT MAPMT 1 MAPMT 28 MAPMT 1 500μm MAPMT 90 90 MAPMT 130μm 4 MAPMT 100μm 1 1 3 3 ( ) 1 2 ( 1 ) MAPMT 29 MAPMT ADC 36

28: 1 37

29: MAPMT ADC * 1 2 MAPMT ADC MAPMT 38

3 KEK 3.1 3.1.1 KEK π2 12GeV (PS) π μ 2 μ K2 P1 IT T1 K0 2 30: KEK 12GeV PS 2 3.1.2 31 S1 S2 Sci-Fi S3 TOF1 TOF2 S4 S1 S4 TOF1 TOF2 TOF1 Sci-Fi Sci-Fi MAPMT 39

TOF2 TOF1 Fiber Tracker S4 S3 S2 S1 beam Dark Box 2000mm 3000mm 3000mm 31: 32 2 0.3mm 0.5mm 1 Sci-Fi 2 MAPMT MICE Edward McKigney 1.0mm Sci-Fi 1.0mm 240mm 3.1.3 34 TOF1L TOF1L Sci-Fi CAMAC Sci-Fi TKO 3.2 MICE 40

16mm Sci-Fi Tracker š0.5mm š1.0mm 240mm Clear Fiber š0.3mm š0.3mm MAPMT 32: 0.3mm 0.5mm 0.3mm 1.0mm 240mm 41

33: Sci-Fi Each digital signal CAMAC TDC common start Scintillation Counter Each analog signal CAMAC ADC all TOF, define spill coincidence TOF2 timing TKO GONG indicator Sci-Fi Tracker «««««««MAPMT PM AMP 16ch TKO TDC ««««common stop 32ch TKO ADC ««««34: 42

3.2.1 1.0GeV/c π ( de dx 2.8MeVcm2 /g π 1.8MeVcm 2 /g π μ 1.0GeV/c de dx ) 35 S1 TDC S1 TOF2L( ) TDC π 2 6m π 7.8nsec 2 S1 CAMAC TDC Common Start S1 π 35: S1 36 35 TDC π Gauss σ π 5σ 4σ 36 1 1 1 MAPMT π 43

3.2.2 36: MAPMT h n e F (x) =N μ μ i exp( (x X i) 2 ) (21) i=1 2πσi i! 2σi 2 μ n 1 ADC i X i σ i π 37 π 0.3mm 0.54±0.03 0.5mm 1.22±0.02 38 0.3mm 0.79±0.05 0.5mm 1.62±0.07 de/dx (0.3mm/0.5mm) π 44

37: ADC ADC ( ) 0.3mm 1p.e. ( ) (21) ( ) 0.5mm 0.3mm 1p.e. ( ) 1.0mm 45

38: ADC 37 46

0.44 0.49 0.6 Sci-Fi Sci-Fi de/dx (π/ ) 0.3mm 0.68 0.5mm 0.75 3 de/dx π1.8mev ( cm2 cm2 ) 2.65MeV ( ) g g 0.7 3.2.3 2 39 0.3mm 7 0.5mm 4 1 1 39: 0.3mm 0.5mm 47

23 R 1 R 2 μ 1 1 P P =(1 exp( μr 1 )) (1 exp( μr 2 )) (22) ±100μm 0.3mm 1:0.15 0.5mm 1:0.2 π 0.54 0.79 P 0.3mm 2.0% 0.5mm 4.6% 39 0.3mm 8.0% 0.5mm 12.7% 3 4 Sci-Fi 3.3 40 40: 48

Kuraray N T f(x) =Nexp( x T ) (23) 0.3mm 2.8±0.4nsec 0.5mm 2.8±0.2nsec 1p.e. Sci-Fi 2.8nsec Sci-Fi 2.8nsec 49

4 1.0GeV/c π 2.8nsec 0.3mm 0.54±0.03 0.5mm 1.22±0.02 0.3mm 0.77±0.05 0.5mm 1.62±0.07 MICE 180 300MeV/c μ μ Sci-Fi de/dx π de/dx MICE 1p.e. 90% 2 (MeV cm 2 /g) :2.56 π:1.8 (mm) 0.3mm:0.2355 0.5mm:0.3925 (g/cm 3 ) 1.05 1eV [Sci-Fi] 0.01 0.3mm:0.263 0.5mm:0.657 ( ) 0.0533 Sci-Fi ( ) 0.3mm:0.94 0.5mm:0.95 ( ) 0.9 MAPMT dead space( ) 0.3mm:0.749 0.5mm:0.754 MAPMT 0.2 2: 3.2.2 Sci-Fi Sci-Fi 350μm[11] 350μm 50

MAPMT dead space 21 4 0.3mm 0.5mm π 0.54±0.03 1.22±0.02 0.79±0.05 1.62±0.07 3: ( ) 0.3mm 0.5mm π 0.79 3.35 1.12 4.76 4: ( ) 0.5mm 0.5mm Sci-Fi 0.5mmSci-Fi 0.3mm 26% 4 π 0.3mm 2.1 μ 1 t τ exp( t τ ) τ N N TDC t 1 t 1 (N-1) t 1 P(N,t 1 ) P (N,t 1 ) = N exp( t 1 τ ) τ t mean σ t mean = (24) [ exp( t ) N 1 τ dt] (25) t 1 τ = N τ exp( Nt 1 τ ) (26) 0 tp (N,t)dt (27) 51

= N τ (28) σ = = N τ ( 1/2 (t t mean ) 2 P (N,t)dt) (29) 0 N 41 2.8nsec (30) 41: 2.8nsec 1p.e. π 0.3mm 1.4nsec 52

KEK MICE Edward McKigney ( ) 53

[1] Proposal to the Rutherford Appleton Laboratory, An International Muon Ionization Cooling Experiment [2] G.I. Budker, in Proc. of the 7th Int. Conf. on High Energy Accelerators, Yerevan, 1969. [3] S. Geer, PRD 57, 6989 (1998) [4] Feasibility Study on a Neutrino Source Based on a Muon Storage Ring, D.Finley, N.Holtkamp, eds. (2000) [5] Feasibility Study-II of a Muon-Based Neutrino Source, S. Ozaki, R. Palmer, M. Zisman, and J. Gallardo, eds. BNL-52623, June 2001 [6] D.Neufer, in Advanced Accelerator Concepts, F.E.Mills, ed., AIP Conf. Proc. 156 (American Institute of Physics, New York, 1987),p.201; R. C. Fernow, J. C. Gallardo, Phys. Rev. E 52, 1039(1995) [7] A.N.Skrinsky and V.V. Parkhomchuk, Sov. J. of Nuclear Physics, 12, 3(1981) [8] B.Baumbaugh et.al., IEEE Trans. Nucl. Sci. 43(1996 1146) [9] S. Abachi et al. The D0 Upgrade, Nucl. Instrum. and Meth., A408, pg. 103-109,1998; A. Bross et. al., Characterization and Performance of Visible Light Photon Counters (VLPCS) For The Upgraded D0 Detectgor at The FERMILAB Tevatron, Nucl. Instrum. and Meth., A477, pg. 172-178,2002. [10] Tsuchiya, H.,Nakagome, H.,Shimizu, N.,and Ohara, S., Appl. Opt., 16 1323 (1977) [11] Ph. Rebourgeard et al., Nucl. Instrum. and Meth., A 427(1999) 543 54