pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

Similar documents
閨 [

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

修士論文

δδ 1 2 δ δ δ δ μ H 2.1 C 2.5 N 3.0 O 3.5 Cl 3.0 S μ

X線分析の進歩36 別刷

Hz

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1

xia2.dvi

1 2 2 (Dielecrics) Maxwell ( ) D H

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

AUTOMATIC MEASUREMENTS OF STREAM FLOW USING FLUVIAL ACOUSTIC TOMOGRAPHY SYSTEM Kiyosi KAWANISI, Arata, KANEKO Noriaki GOHDA and Shinya

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

2

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

ver.1 / c /(13)

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

teionkogaku43_527

DVIOUT-ajhe

i

放射線化学, 92, 39 (2011)

„´™Ÿ/’£flö

™·›ªPDF.pmd

陽電子科学 第4号 (2015) 3-8

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

第5章 偏微分方程式の境界値問題

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

sakigake1.dvi

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

Undulator.dvi

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

日本赤十字看護学会誌 第7巻第1号 「病院勤務の女性看護職の年令,経験年数,職業アイデンティティ,看護専門職的自律性,バーンアウトの関連」

日本赤十字看護学会誌 第7巻第1号 若年妊婦の妊娠・分娩・育児期におけるケアニーズの分析-ドゥーラの役割の検討に向けて-

寄稿論文 規則性無機ナノ空間が創り出す新しい触媒能 | 東京化成工業

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

The Physics of Atmospheres CAPTER :

NewsLetter-No2

日歯雑誌(H22・7月号)HP用/p06‐16 クリニカル① 田崎

スライド 1

PDF

薄膜結晶成長の基礎3.dvi

untitled

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

特集_03-07.Q3C

Methods for estimation and determination of grain size Yoshimasa TAKAYAMA*


176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP


d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

X線分析の進歩45

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

H22環境地球化学4_化学平衡III_ ppt


1 Q A 82% 89% 88% 82% 88% 82%

Vol.7 No.2 ( ) in mm m/s 40 m/s 20 m/s m/s 20m/s 1999 US ,

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,

J. Mass Spectrom. Soc. Jpn.: 58(5), (2010)

放射線化学, 97, 29 (2014)

untitled

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

m 3 /s

空気の屈折率変調を光学的に検出する超指向性マイクロホン

Journal of the Combustion Society of Japan Vol.58 No.185 (2016) ORIGINAL PAPER 火災旋風近傍の流れに関する研究 Flow Around a Fire Whirl *

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

untitled

untitled

Microsoft Word - 11問題表紙(選択).docx

09_organal2

(1) 1.1

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

学会誌カラー(目次)/目次13‐1月


untitled

èCémò_ï (1Å`4èÕ).pdf

Microsoft Word - 15.宮崎貴紀子


早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

From Evans Application Notes

2章.doc

Twist knot orbifold Chern-Simons

気相反応解析のためのレーザ分光

微粒子合成化学・講義

[15] 1970 Chiu [16, 17] [18-22] [20] Chiu [23] [24] [25] Chiu [16, 17] Chiu G 2

Transcription:

73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571) e-mail: pkchoi@meiji. ac.jp OH 2. 12πγR 0 P 0 3 M =4πR0ρ 3 R 0 γ P 0 1 ρ f 0 f 0 = 1 3γP 0 (1) 2πR 0 ρ [2] f 0 khz R 0 mm f 0 R 0 3 (2) 0.1 mm f 0 =30kHz

448 73 7 2017 90 (1) 1 (1) T max P max ( ) 3(γ 1) R0 T max = T 0 (3) R min ( ) 3γ R0 P max = P g0 (4) R min T 0 P g0 R 0, R min γ 5/3 7/5 T max 20,000 30,000 K P max 1,000 1 µm 3 [3] M 1 2 MṘ2 Ṙ P V Rayleigh Plesset [ ( R R+ 2Ṙ2 3 = 1 P 0 + 2σ )( ) 3γ R0 ρ R 0 R ] 2σ R 4µṘ R P 0+p(t) (5) σ µ p(t) (5) Keller Miksis [4] 1 24 khz 5 µm 0.8 1.0 1.2 1.4 4 T 1 1.4 50 µm 0.6 µm (1) (2) (3) 1.4 90 90 Kozuka [5]

449 1 24 khz 4 0.8 1.4 1 (5) (3), (4) H 2 O OH + H (6) OH H H 2 O 2 H 2 1% 40 K 10,000 K SBSL 1930 [6] 100 SBSL [7] (6) OH OH 3. MBSL MBSL SBSL 1990 [8] 1962 Yoshioka SBSL Gaitan [8] [9] SBSL MBSL 2 MBSL 500 ml

450 73 7 2017 2 151 khz 20 W 151 khz 20 W MBSL 2 2 1/2 2 50 µm 1m/s 3 84 khz 9W 64,000 3 [10] 3 84 khz 9W 64,000 fps 1 2 Bjerknes 3 15 W 2 1 SL SBSL MBSL 4 MBSL 135 khz 2W

451 4 Ar 5 µs/div SL 135 khz 2W 1 SBSL 60 350 ps [9] MBSL SBSL [11] 4. MBSL 5 138 khz 8.9 W Continuum 310 nm 2 SBSL MBSL SBSL 310 nm (6) OH 5 2M MBSL 138 khz 8.9 W OH 2M OH Na D 560 nm D 1 2 D 1 =589.6 nm, D 2 =590.0 nm Na [12] graphical abstract Na K [13] 1 Na Na + Na 10 Na Na 2 D 1

452 73 7 2017 D 2 K 766.5 nm 2 P 3/2 2 S 1/2 769.9 nm 2 P 1/2 2 S 1/2 6 135 khz KCl [14] (a) Xe (b) Ar (c) He KCl K Xe, Ar K He 6 K K He 3,480±280 K 585 ± 120 atm Xe Ar 6 Ar 6(a), (b) 2 4 SDS Na + / 6 148 khz KCl K (a)xe (b)ar (c)he KCl Reprinted with permission from ref. [14]. Copyright 2012 by the American Chemical Society. Na + SDS Na + 1/1,000 SDS Na 7 a Ar 10 mm SDS Na 148 khz 30 7 3 (a) 3 6 (b) 6 9 (c) 27 30 (d) e D 7 I II 2

453 II Xe 1MHz I I II [15] I I 7 Ar SDS SL 148 khz 9.1 W 3 a d 0 3 3 6 6 9 27 30 e NaCl b I II Reprinted with permission from ref. [12]. Copyright 2015 by Elsevier Publishing. I Na Na + SDS Na Na Ar Na-Ar van der Waals Exiplex II van der Waals 5 Na van der Waals II B X I CO CH 4 I 5. MBSL 250 nm [16] [17] [18, 19] [ 1 ] P. S. Wilson and R. A. Roy, An audible demonstration of the speed of sound in bubbly liquids, Am. J. Phys., 76, 975 981 (2008). [ 2 ] W. Lauterborn and T. Kurz, Physics of bubble oscillations, Rep. Prog. Phys., 73, 106501 (88 pp.) (2010). [3] R. E. Apfel, Methods of Experimental Physics, Vol. 19, Ultrasonics (Academic Press, New York, 1981), p. 373. [ 4 ] J. B. Keller and M. Miksis, Bubble oscillations of large amplitude, J. Acoust. Soc. Am., 68, 628 633 (1980). [ 5 ] T. Kozuka, S. Hatanaka, K. Yasui, T. Tuziuti

454 73 7 2017 and H. Mitome, Simultaneous observation of motion and size of a sonoluminescing bubble, Jpn. J. Appl. Phys., 41, 3248 3249 (2002). [ 6 ] F. R. Young, Sonoluminescence (CRC Press, Boca Raton, 2005). [ 7 ] D. L. Flannigan and K. S. Suslick, Plasma formation and temperature measurement during singlebubble cavitation, Nature, 434, 52 55 (2005). [ 8 ] D. F. Gaitan, L. A. Crum, C. C. Church and R. A. Roy, Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble, J. Acoust. Soc. Am., 91, 3166 3183 (1992). [ 9 ] M. P. Brenner, S. Hilgenfeldt and D. Lohse, Single-bubble sonoluminescence, Rev. Mod. Phys., 74, 425 484 (2002). [10] H.-B. Lee and P.-K. Choi, Acoustic power dependences of sonoluminescence and bubble dynamics, Ultrason. Sonochem., 21, 203 2043 (2014). [11],,, IEICE Tech. Rep., US2016-117, pp. 223 226 (2017). [12] Y. Hayashi and P.-K. Choi, Two components of Na emission in sonoluminescence spectrum from surfactant aqueous solutions, Ultrason. Sonochem., 23, 333 338 (2015). [13] P.-K. Choi, Sonoluminescence of inorganic ions in aqueous solutions, in Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Pankaj and M. Ashokkumar, Eds. (Springer, Heidelberg, 2010), p. 337. [14] Y. Hayashi and P.-K. Choi, Effects of rare-gases on sonoluminescence spectrum of K atom, J. Phys. Chem. B, 116, 7891 7897 (2012). [15] R. Nakajima, Y. Hayashi and P.-K. Choi, Mechanism of two types of Na emission observed in sonoluminescence, Jpn. J. Appl. Phys., 54, 07HE02 (2015). [16] Y. Toriyabe, E. Yoshida, J. Kasagi and M. Fukuhara, Acceleration of the d + d reaction in metal lithium acoustic cavitation with deuteron bombardment from 30 to 70 kev, Phys. Rev. C, 85, 054620 (2012). [17] F. Cardone, G. Cherubini and A. Petrucci, Piezonuclear neutrons, Phys. Lett. A, 373, 862 866 (2009). [18],,,,,, 2012. [19] P.-K. Choi, Sonoluminescence and the acoustic cavitation, Jpn. J. Appl. Phys. (2017) in printing.