0. Intro ( K CohFT etc CohFT 5.IKKT 6.

Similar documents
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K



第10章 アイソパラメトリック要素

SO(2)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

数学Ⅱ演習(足助・09夏)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

arxiv: v1(astro-ph.co)

meiji_resume_1.PDF

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

TOP URL 1

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

Part () () Γ Part ,

Note.tex 2008/09/19( )

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

all.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)


TOP URL 1

ohpr.dvi

keisoku01.dvi

201711grade1ouyou.pdf


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

DVIOUT-HYOU

: , 2.0, 3.0, 2.0, (%) ( 2.

( )

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =


x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)


0406_total.pdf

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

koji07-01.dvi

2000年度『数学展望 I』講義録

,,..,. 1


susy.dvi

Introduction 2 / 43

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

OHP.dvi

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

n ( (


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

YITP50.dvi

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

Microsoft Word - 信号処理3.doc

newmain.dvi

linearal1.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

量子力学A

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

Report98.dvi


1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

chap10.dvi

untitled

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Dynkin Serre Weyl

SUSY DWs

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

January 27, 2015

December 28, 2018

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i


ADM-Hamiltonian Cheeger-Gromov 3. Penrose

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

6.1 (P (P (P (P (P (P (, P (, P.

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

dynamics-solution2.dvi

Transcription:

E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6.

1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν

vector x µ,y µ g µν x µ y ν g µν = x µ y µ (2) µ,ν x 2 = x x = x µ x µ (3) ( AB = BA) AB = BA ψ, χ, η φ :[A, B] AB BA {A, B} AB + BA δ ij : i = j i j δ(x y) :Dirac dxf(x)δ(x y) =f(y) ɛ µ ν :

1. 1-1. τ l : l τ M: g µν : F: Map(l, M) x µ (τ) :F τ L : Map(F, C (M)) S l L(x µ(τ)) : S S x µ ( (Euler-Lagrange d dτ ( L (dx µ /dτ) δs ) = 0 L x µ = 0 (4)

0-2. : P µ L ( τ X µ ) H = P µ τ X µ L = P 2 2m + V (x) (5) E [X µ,p ν ]=X µ P ν P ν X µ = iδ µν P ν = i ν P ν X ν X µ P ν X µ P ν V (x) = kx 2 H = 1 2m p2 + kx 2 (6)

a kx + i p, a kx i p (7) 2m 2m [x, p] =i [a, a ]=1, [a, a] =[a,a ] = 0 (8) N = a a H = a a + 1 2 = N + 1 2 (9) N n N n = n n [a, a ]=1 a n = n +1 n +1, a n = n n 1 (10) N 0 a 0 =0 n = 1 a n 0 (11) n! n n E n = n + 1 2 ; n =0, 1, 2, (12)

1-2. n x A ( dx 1 dx n exp( x T π Ax) = n ) deta φ i (x) A ( Dφ exp( φ i (x)a ij 1 ) (x, y)φ j (y)) = C deta (13) Fermion dψψ =1, dψ =0 ψ i = A i j ψ j J = det A dψ 1 dψ n = (det A)dψ 1 dψ n

Fermion ψ i M ij dψ 1 dψ n exp( ψ i M ij ψ j )=2 n 2 det M (14)

1: 2: ( O Dφ i O exp ( S(φ i )) O (15) Z O =1 Z Dφ i exp ( S(φ i )) (16)

2. Cohomological F.T. etc. 2-1. Mathai-Quillen M : x M s a (x): TFT BRS ˆδ ˆδx µ = ψ µ dx µ, ˆδχa = H a, ˆδψµ = ˆδχ a = 0 (17) Cohomological Field Theory { } S = ˆδ 1 2 χ a(2s a (x)+a ab µ ψ µ χ b + b a ). (18) = 1 2 sa (x) 2 1 2 χ aω ab µνψ µ ψ ν χ b i µ s a (ψ) µ χ a. s a (x) =0 : s a 2 =( µ s a δx µ ) 2 + (19) x 1/ det µ s a 2 ψ, χ det( µ s a ) (M 0 = {x s a =0} DxDψ 0 Dχ 0 e 1 2 χ a0ωab µν ψµ 0 ψν 0 χ b0 = Paff(Ω ab ) (20) M 0 M 0 Z = k ɛ k χ k (M 0 ) (21) k ɛ k = ± ( CohFT

Cohomological field theory iθ µν =[x µ,x ν ] θ θ = θ + δθ. (22) Topological Field Theory BRS ˆδδ = ±δ ˆδ, δ Z θ = DφDψDχDH δ ( ( = DφDψDχDH ˆδ dx DˆδV ) exp ( S θ ) ) δ V exp ( S θ )=0. θ-shift δ θ BRS θ-shift M θ δ θ θ µν = θ µν + δθ µν. (23) θ S θ det θdx D L( θ, 1 θ x ν ). (24) θ = exp2 i µ θ µν ν (25)

3.N.C.Cohomological Scalar model 3-1.Finite Matrix model with a connection M : N N Hermitian matrix V : N N φ ab : canonical coordinate of M : connection Γ(V ) Γ(T M V )=V Aji;mn(φ) : V kl e ij : local N 2 dim1 ij e kl = A ˆδ{ χ ij ([φ(1 φ)] ji + iχ mn A kl ji,mn(φ)ψ kl ih ij )} iχ ba { (ψ(φ 1) + φψ) ab ij;kl mn e mn Tr(φ(1 φ)) 2 (26) ijklmn ψ ij ψ kl F (ij, kl; ab, mn)χ mn } F (ij, kl; ab, mn) δ Akl;ab mn δ Aij;ab mn + i [A δφ ij δφ ij;aba cd kl;cd mn Akl;abA cd ij;cd mn ] kl (c,d)

(φ(1 φ)) = 0 Projection P : N k G k (N) Poincare P t (G k (N)) = (1 t 2 ) (1 t 2N ) (1 t 2 ) (1 t 2(N k) )(1 t 2 ) (1 t 2k ) N Z = P 1 (G k (N))( 1) k (27) Z = k=0 P ±1 (G k (N)) = N! k!(n k)! (28) N P 1 (G k (N))( 1) k =(1 1) N (29) k=0

3-2.N.C.Coh.F.T. [ ] S = dx D gl + S top (30) ( L = ˆδ 1 ( 2 χ 2(φ (1 φ) µ B µ ) + i d n zd n yψ(z)a(z; x, y)χ(y) ih) ). ( ) 1 +ˆδ 2 χµ ( µ φ + B µ ih µ ) Topological action (g (31) S top = gτ 2n (F,, F) (32) Connes s Chern character homomorphism ; ch 2n : K 0 (A) HC 2n (A) ch 2n (p) = τ 2n (f,,f) (33) n=0 where f ij =[p i p, p j p]. F ij =[φ i φ, φ j φ] (34) Cyclic cohomology

3-3. θ θ large θ, model S 0 = Trˆδ{ ˆχ( ˆφ(1 ˆφ) iĥ)} + Trˆδ{ ˆχ µ ( ˆB µ iĥµ)} (35) Tr{( ˆφ(1 ˆφ)) 2 +(ˆB µ ) 2 } (36) N ( ˆφ(1 ˆφ)) = 0 ˆB µ =0 Projection P GMS soliton P Finite θ θ

3-4. Moyal plane Fock space ( ˆφ( ˆφ a)) = 0 ˆB µ =0 GMS ap G k (N)(Moyal plane ) ( k P Moyal plane topological S top = gk θ Poincare P t (G k (N)) = (1 t 2 ) (1 t 2N ) (1 t 2 ) (1 t 2(N k) )(1 t 2 ) (1 t 2k ) N Z = P 1 (G k (N))e gk ( 1) k lim N g =0 k=0 = lim N (1 eg ) N (37) Z = 0 (38)

4.K CohFT 4-1.Topological Gauge Theory G G M A/G. ˆδ ˆδ 2 = δ g Yang-Mills ˆδA µ = iψ µ, ˆδψ µ = D µ θ = δ g A µ, (1) M A/G Poincare dual O(φ, dφ) = O(φ, dφ) e ˆδΨproj. (2) e ˆδΨproj A/G A A ˆδΨ proj S = (ˆδΨ+ˆδΨ proj ). (3) C C. θ η θ M δ g φ = Cθ. (4)

ˆδ θ = η, ˆδη = δg θ. (5) Ψ proj Ψ proj = C ψ, θ. (6) ˆδΨ p = (ˆδC )ψ + C Cθ, θ C ψ, η. (7) θ θ = 1 C C (ˆδC )ψ (8) Pf

M : n dim Riemannian Manifold v rank N φ : End(v) N N Hermitian matrix φ ab (x) and H ab (x) ψ ab (x) and χ ab (x), S 0 = S = S 0 + S pro (9) trˆδ{χ(φ(1 φ) H)} (10) M (φ(φ a)) 2 (11) (φ(φ 1)) = 0 P dimension k G k (N) = U(N) U(k) U(N k)

U(N k) U(k) G k,n θ = 1 [ψ, ψ] (12) C C M k,n = {φ M G k (N)}/G k,n Note: BRS ˆδφ = ψ G k,n V ect k (M) =[M,BU(k)] : BU(k) m=k+n+1 G k(m) Z = k V ect k (M) χ(m k,n ) (13) K (M) group : virtuarl dim K K(M) =Z K, M connected K = K K (M) = [M,BU( )] k > 1 2 dim M K (M) =[M,BU(k)] N K

4-4. K-theory Moyal plane τ 0 (P k )=k, τ 2 (P k )=k k K 0 N.C.torus SL(2,Z) θ K N.C.torus Morita K-group

5.N.C. Cohomological Yang-Mills Theory θ δ g,θ : θ δ 2 = δ g,θ (14) δ θ δ δδ θ δ θ δ = δ δ θ (15) δ 2 = δ g,θ+δθ (16) θ shift δ exact δ Z θ δ g,θ+δθ

N.C. Cohom. Yang-Mills Theory on 10-dim Moyal space IKKT ( 2,4,6,8 dimensional reduction N=4 Vafa-Witten theory U(1) Vafa-Witten theory Vanishing Theorem Moore-Nekrasov-Shatashvili Vanishing Theorem N.C. Cohomological Yang-Mills Theory on 4-dim Moyal space ADHM Matrix model D 1 D 3

1. K 2. ( 3. θ 4. N.C.