基礎数学I

Similar documents
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

: , 2.0, 3.0, 2.0, (%) ( 2.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

確率論と統計学の資料

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =


I

b3e2003.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

数学の基礎訓練I

( ) ± = 2018


Note.tex 2008/09/19( )

24.15章.微分方程式

第86回日本感染症学会総会学術集会後抄録(II)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 I

meiji_resume_1.PDF

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2000年度『数学展望 I』講義録


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

/02/18

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

all.dvi

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

201711grade1ouyou.pdf

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

量子力学 問題

2011de.dvi

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[

第85 回日本感染症学会総会学術集会後抄録(I)

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

DVIOUT

TOP URL 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y



i

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

TOP URL 1

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

Morse ( ) 2014

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

30

ii th-note

構造と連続体の力学基礎

newmain.dvi

本文/目次(裏白)

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

応用数学特論.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

プログラム

v er.1/ c /(21)

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a


(1) (2) (3) (4) 1

all.dvi

Transcription:

I & II

ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............ 1........ 3.................. 5.................... 10...................... 11 10................ 13....................... 13................... 14................. 15.................. 16 11................. 20................. 20 iii 4 35 13..................... 35................... 36................... 37................. 38 14...................... 39...................... 39............ 42............. 44 15........... 45........... 45................... 47.................... 48 16................ 51................. 51................... 53................. 55

iii alpha A α beta B β gamma Γ γ delta δ epsilon E ϵ, ε zeta Z ζ eta H η theta Θ θ, ϑ iota I ι kappa K κ lambda Λ λ mu M µ nu N ν omicron O o xi Ξ ξ pi Π π, ϖ rho P ρ, ϱ sigma Σ σ, ς tau T τ upsilon Υ υ phi Φ ϕ, φ chi X χ psi Ψ ψ omega Ω ω

1 3 Ÿ 9. a, b, a < b a b [a, b] = {x a x b : (a, b) = {x a < x < b : [a, b) = {x a x < b : (a, b] = {x a < x b : [a, + ) = {x a x : (a, + ) = {x a < x : (, b) = {x x < b : (, b] = {x x b : = (, ) D domain x D D xindependent variable explanator variable dependent variable explained variable f x = f(x) D domain { = f(x), x D f range D x a 0, a 1, a 2,, a n n f(x) = a 0 + a 1 x + a 2 x 2 + + a n x n n n P (x) Q(x) Q(x) x f(x) = P (x) Q(x)

Ÿ 9 2 a > 0 f(x) = a x exponential function R (0, + ) a e f(x) = e x e = ( 1 + 1 n 2.71828 n + n) Napier's constant π a n = (1 + 1 n )n n a n 1 2 2 2.25 4 2.44140625 8 2.565784514 16 2.637928497 32 2.676990129 64 2.697344953 128 2.70773902 256 2.712991624 512 2.715632 1) a = 1 f(x) = a x 1 2) a > 1 3) a < 1 75 14 0 x 0 x 0 x a = 1 a > 1 a < 1 f(x) = a x log f(x) = e kx, k = log a a > 0 f(x) = log a x logarithmic function = a x x = log a I & II 2

Ÿ 9 3 (0, + ) R = (, + ) a e f(x) = log e x = ln x = log x log 10 ln = log e = log common logarithm natural logarithm 1) 0 < a < 1 2) a > 1 f(x) = log a x log a x = log x log a f(x) = k log x, k = 1 log e a θ 0 30 60 90 180 360 0 π 6 π 3 π 2 π 2π sin θ 1 1 1 θ 0 cos θ 1 x tan θ = sin θ cos θ 1 x = f(x) x x = g() g f f 1 f(x) = 3x + 2 = 3x + 2 x x g() x = 2 3 g() = 2 3 I & II 3

Ÿ 9 4 f 1 (x) = x 2 3 // f(x) = e x = e x x = a x x = log a x = log e f 1 (x) = log x = ln x // Sin 1 (x) sin x sin 1 x [ 1, 1] sin x [ π/2, π/2] Sin 1 (x) cos x tan x Cos 1 (x) Tan 1 (x) = f(x) = f 1 (x) = x sin x cos x tan x Sin 1 (x) Cos 1 (x) Tan 1 (x) x = f(x) z z = g() f(x) g() z = g(f(x)) (g f)(x) z = g(f(x)) = (g f)(x) = f(x) z = g() x z z = (g f)(x) I & II 4

Ÿ 9 5 f(x) = e x, g() = sin (g f)(x) = g(f(x)) = g(e x ) = sin(e x ) (f g)(x) = f(g(x)) = f(sin x) = e sin x e sin x exp(sin x) x = f(x) explicit function F (x, ) = 0 implicit function = f(x) f(x) = F (x, ) = 0 9.1 9.1 = f(x) x a f(x) A x a f(x) A A f(x) A x a f(x) = A x = a + h x a h 0 f(a + h) = A h 0 = x 2 x 2 4 x = 2 x 2 x a f(x) x = a f(x) x = a A f(a) ε δ ε > 0 δ > 0 0 < x a < δ x f(x) R < ε f(x) x a R f(x) = f(x) = R + x a I & II 5

Ÿ 9 6 ε > 0 δ > 0 0 < a x < δ x f(x) L < ε f(x) x a L f(x) = f(x) = L x a ε > 0 δ > 0 0 < x a < δ x f(x) M < ε f(x) x a M f(x) = M (i) x = a ( ) ( ) ( ) n xn = x x = x = a n (ii) n f(x) = c 0 + c 1 x + c 2 x 2 + + c n x n f(x) = {c 0 + c 1 x + c 2 x 2 + + c n x n (iii) (iv) = c 0 + c 1 x + c 2 x 2 + + c n x n = c 0 + c 1 a + c 2 a 2 + + c n a n = f(a) x 2 + 4x 5 (x 2 + 4x 5) x 2 x 2 + 2x 3 = x 2 x 2 (x2 + 2x 3) = 22 + 4 2 5 2 2 + 2 2 3 = 7 5 x 2 + 4x 5 x 1 x 2 + 2x 3 = (x 1)(x + 5) x 1 (x 1)(x + 3) x + 5 = x 1 x + 3 = 1 + 5 1 + 3 = 3 2 9.1 x 1 (1) f(x) = x3 1 x 1 (2) g(x) = { x 2 + x + 1 x 1 1 x = 1 (1) f(x) x = 1 x 1 (x 1) f(x) = x 2 + x + 1 I & II 6

Ÿ 9 7 x 3 1 f(x) = x 1 x 1 x 1 = (x 2 + x + 1) = 3 x 1 f(x) g(x) x = 1 f(x) = 1 3 x = 1 f(x) 3 0 1 x 0 1 x (2) f(x) = x3 1 x 1 g(x) = { x 2 + x + 1 x 1 1 x = 1 x = 1 g(x) x 1 g(x) 3 // g(x) = 3, g(1) = 1 x 1 9.2 9.2 = f(x) x f(x) A x f(x) A f(x) A x + f(x) = A x + x + x ε > 0 N x > N x f(x) L < ε ε δ x + f(x) f(x) = L x + ε > 0, N such that x N = f(x) L < ε ε > 0, N such that x N = f(x) L < ε I & II 7

Ÿ 9 8 f(x) = L x (i) (ii) 1 x + x = 0 3x 2 + 2x + 1 3 + 2 1 x + 2x 2 + x 5 = x + 1 x 2 x + 2 + 1 x 5 1 x 2 x 2 3 + 0 + 0 = x + 2 + 0 0 1 x + x = 0 (iii) = 3 2 ( x 2 ( x + x x) = 2 + x x)( x 2 + x + x) x + x + x2 + x + x x 2 + x x 2 = x + x2 + x + x = x + = x + x x2 + x + x 1 1 + 1x x + 1 = 1 1 + 1 = 1 2 ( 1 + 1 x ( = 1 + x + x) 1 x = e x x) e 84 2 Napier ( e = 1 + 1 ) n n + n 9.3 x a f(x) f(x) f(x) + x a f(x) = + I & II 8

Ÿ 9 9 + x a f(x) f(x) x a + ε δ f(x) = + M > 0, δ such that 0 < x a < δ = f(x) > M f(x) = +, f(x) = + + x a f(x) f(x) x a ε δ f(x) = M > 0, δ such that 0 < x a < δ = f(x) < M f(x) =, f(x) = + (i) f(x) = 1 x 0+ + x 0 x (ii) f(x) = 1 x 0 + x2 (iii) f(x) = log x x 0+ log x (0, + ) (iv) f(x) = sin( 1 ) x 0 + 1 f(x) 1 x x a 9.1 f(x) g(x) ( ) (1) f(x) ± g(x) ( ) (2) k f(x) = k f(x) ( ) (3) f(x) g(x) f(x) = A, = f(x) ± g(x) k = f(x) g(x) f(x) f(x) (4) g(x) = B 0 g(x) g(x) = B 86 25 I & II 9

Ÿ 9 10 θ sin θ = 1 θ 0 θ 9.4 f(x) D x = a f(x) = f(a) f(x) x = a f(x) D f(x) D f(x) (a, b) a < c < b c f(x) f(x) = x c x c f(c) f(x) x = c ε δ ε > 0, δ such that x c < δ = f(x) f(c) < ε f(x) (a, b) f(x) f(x) [a, b] (a, b) f(x) = f(a) f(x) = f(b) x a x b f(x) [a, b] f(x) = f(a) f(x) = f(b) 5 x a x b x n n e x sin x (, + ) (i) f(x) = x x = 0 x (ii) f(x) = 1 x = 2 x 2 9.2 f(x) = x 2 = f(x) D a x a D a + x D = f(a + x) f(a) a x = f(x) x 0 f(a + x) f(a) = x (a + x) a f(a + x) f(a) = x I & II 10

Ÿ 9 11 a x 9.5 x 0 x = f(a + x) f(a) x 0 x f(x) x = a f f(a + x) f(a) (a) = x 0 x f (a) x = a f(x) 9.3 = f(x) x = a (1) x (2) x 2 (3) x 3 (4) k (5) 1 x 9.6 D f(x) D x f (x) x f(x) f (x),, d, df(x) ε > 0, f(a + x) f(a) δ such that x < δ = f (a) < ε x 9.2 f(x) x = a f(x) D D x = a x h f(a + h) f(a) (9.1) = f (a) + ε h h 0 f (a) ε 0 h 0 (9.1) h 0 f(a + h) f(a) = h (f (a) + ε) 0 I & II 11

Ÿ 9 12 f(x) x = a // { h 0 f(a + h) f(a) = 0 f(a + h) = f(a) h 0 9.3 f(x) g(x) D (1) d { f(x) ± g(x) = d { f(x) ± d { g(x) (2) d { k f(x) = k d { f(x) k (3) d { f(x) g(x) = d { f(x) g(x) + f(x) d { g(x) (4) d { f(x) = f (x)g(x) f(x)g (x) g(x) g 2 g(x) 0 (x) 9.4 9.3 (1) f(x) = x 3 2x 2 + 3 (2) f(x) = (x + 1)(x 2 3) (3) f(x) = x2 + 1 x 2 9.4 n (x n ) = nx n 1 n 0 n n = 0 x 0 = 1 f(x) = 1 f(a + h) f(a) (9.2) h d {x 0 n = k = 1 1 h = d { 1 = 0 d {x k = k x k 1 = 0 d {x k+1 = d { x k x 9.3 (3) = d {x k x + x k d { x n 0 = k x k 1 x + x k 1 = (k + 1)x k d {x n = nx n 1 I & II 12

Ÿ 10 13 n < 0 n n = m m d {x n = d {x m = d { 1 x m = (1) x m 1 (x m ) (x m ) 2 9.3 (4) // = mxm 1 (x m ) 2 = mx m 1 2m = mx m 1 = nx n 1 n = m d {x n = nx n 1 n 74 20 n x n n x n, d {x n = nx n 1 84 24 11.3 n Ÿ 10. 9 = f(x) f (a) 2 P(a, f(a)) P(b, f(b)) f(b) f(a) = x b a PQ b a Q P f (a) PQ P f (a) PT PT P = f(x) P Q P 0 a b x 0 a b x I & II 13