Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Similar documents
/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

1 X X T T X (topology) T X (open set) (X, T ) (topological space) ( ) T1 T, X T T2 T T T3 T T ( ) ( ) T1 X T2 T3 1 X T = {, X} X (X, T ) indiscrete sp

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

°ÌÁê¿ô³ØII


IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

1 I

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

I , : ~/math/functional-analysis/functional-analysis-1.tex

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

main.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

³ÎΨÏÀ

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

A

日本内科学会雑誌第102巻第4号

December 28, 2018

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

II

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

mugensho.dvi

Untitled

A 21 A.1 L p A A.3 H k,p () A

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Chap9.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Morse ( ) 2014

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

n ( (

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

all.dvi

i

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

untitled

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

inkiso.dvi

2000年度『数学展望 I』講義録

85 4


,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %


all.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

I (Analysis I) Lebesgue (Lebesgue Integral Theory) 1 (Seiji HIRABA) 1 ( ),,, ( )

プログラム



tnbp59-21_Web:P2/ky132379509610002944

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

2011de.dvi

all.dvi

201711grade1ouyou.pdf

lecture

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct



Part () () Γ Part ,

量子力学 問題

Lebesgue Fubini L p Banach, Hilbert Höld

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

D 24 D D D

DVIOUT

i

Tricorn

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

III ϵ-n ϵ-n lim n a n = α n a n α 1 lim a n = 0 1 n a k n n k= ϵ-n 1.1

本文/目次(裏白)

π, R { 2, 0, 3} , ( R),. R, [ 1, 1] = {x R 1 x 1} 1 0 1, [ 1, 1],, 1 0 1,, ( 1, 1) = {x R 1 < x < 1} [ 1, 1] 1 1, ( 1, 1), 1, 1, R A 1

Lecture 12. Properties of Expanders

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

pdf

Transcription:

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness) 6 3 Separating Axioms) 9 4 (Metric Spaces) 10 0.3,,., (S, O): top. sp., A S. A:, ;,,, A: (cpt);,, : T 0, T 1, T 2, T 3, T 4 -sps.,,,,,,,,,,,,

n-dim. Euclid sp. metric, nbd=neighborhood, ball, open, closed, interior pt=point, exterior, boundary, open kernel, closure, adherent pt, accumulation pt, isolated pt, continuous map.=mapping (ft=function) Topological sp. topology, indiscrete (trivial) top., discrete top., nbd=neighborhood system, sub-basis & basis, fundamental system of nbds, 1st axiom of countability, 2nd axiom of countability, separable, dense (1st-countable sp., 2nd-countable sp.,.) open map., closed map., homeomorphism, induced top., subsp., relative top., product top., Connectivity path-connected, connected component, totally disconnected, intermediate value theorem, Compactness compact, finite intersection property, Tychonoff s theorem, Separation axioms Hausdorff sp., regular, normal, Urysohn s lemma, Metric spaces Cauchy sequence, complete, totally bounded, sequentially compact, distance-preserving map, completion, metrization theorem.

,, (S, O): top. sp.;,, S: a set, O P(S) = 2 S :. (S, O ), (A, O A ), (B, O B ), (S i, O i ) (i = 1, 2,...), (S λ, O λ ) (λ Λ): top. sps. R n,,,, Euclid (=Euclid ).,,,.,,,.,,. f : (S, O) (S, O ) f 1 (O ) O, i.e., V S : open, f 1 (V ) S: open. 1 (Connectivity) 1.1., (.), (A, O A ): (connected) def [ B A: of (A, O A ) B = or B = A], O A = O A A S (S, O)., B A: of (A, Q A ) U, V O; B = U A = V c A., =, A S: U, V O; A U V, A U V =, A U, A V., R [a, b], (a, b], (a, b), [a, b) (a < b), B = (a, b) [c, d) (a < b < c < d)., (a, b), [c, d) O B,. 1.2.. f : S S : conti. S: connected f(s) S : connected. f(s), U, V O ; f(s) U V, f(s) U V =, f(s) U, f(s) V. S f 1 (f(s)) f 1, f S, A B A, A, B. A. B: A:.,, U O, A U = A U =., A U x A U,, U A, A U =. A, B, U, V A B, U, V,.,. 1 x A B, x U, A V B V, A V A..

x S, C(x) = C:,x C,. S def x S, x C(x) = {x}. Q Cantor.,. 1.3. C: x. x, 1.1 ( ) (S, O):, f : S R:, x 0, x 1 S; α = f(x 0 ) < β = f(x 1 ) α < γ < β, x S; f(x) = γ. [ ]. γ (α, β); x S, f(x) γ, f 1 ((, γ)) = f 1 ((, γ]) x 0 S, S., f(s) R, α, β f(s), [α, β] f(s). (, S R:, α, β S,, α < γ < β; γ / S S (, γ), (γ, ) S.) 1.4. = 2 ( )., =, x, y S, f f : [0, 1] S;, f(0) = x, f(1) = y., x, y S f, S x,y := f([0, 1]), x,y S S x,y = S.,., R n,.,,. R 2, (0, 1] {0} {1/n} (0, 1] (n 1) A, {0} (0, 1] B, A B B {(0, 0)} = A, A,, B,. 1.5,.

,, x S, U(x): x, U U(x);., R 2, A = {( x, sin 1 ) } ; x > 0 x., A = A {(0, y); 1 y 1} =: S.. (1/π, 0) S f,. t 0,, f(t) y, ±1, 2 2 f(α), f(β),, α, β t 0, f, f(t 0 ) = (0, 0), 1 ( ).. 1.6. f : [0, 1] S; f(0) = (0, 0), f(1) = (1/π, 0), p : S R; (x, y) x. p(f(0)) = 0, p(f(1)) = 1/π > 0, t 0 = max{0 t 1; p(f(t)) = 0} ( ),, 0 t 0 < 1. 0 < δ < 1 t 0 ; t 0 < t < t 0 + δ, f(t) f(t 0 ) < 1/2. t 0 p(f(t 0 + δ) > 0 n 1, p(f(t 0)) = 0 < {( ) 1 {( ) 1 3 1 π} 2 + 2n < π} 2 + 2n < p(f(t 0 + δ)), {( ) 1 {( ) 1 3 1 α, β (t 0, t 0 + δ); p(f(α)) = π} 2 + 2n, p(f(β)) = π} 2 + 2n. f(α) = (p(f(α)), 1), f(β) = (p(f(β)), 1), 2 < f(α) f(β) f(α) f(t 0 ) + f(t 0 ) f(β) 1 2 + 1 2 = 1,. S = A = A {(0, y); 1 y 1}., 1/2 B, S S B, {(0, y); 1/2 < y < 1/2}, S.,. 1.7 S B, C = {(0, y); 1/2 < y < 1/2}, S. C S, O, 0 < δ < 1/2; U = U δ (O) R 2, S U C., S U C S.

2 (Compactness) 2.1.,.,,., def A S: cpt {U λ }: O.C.(= open covering) of A, {U λi } n i=1 ; O.C. of A. U λ O; U λ A, λ i, i = 1, 2,..., n; n i=1 U λ i A.,, A S (A, O A ). 2.2.,,, [ ]...,..,. 2.3,..,.. Hausdorff = T 2 - sp. (= 2, ),,.,,, ( ).,.,,,,.,.., f 1 = f,,. S: cpt, S : T 2, f : S S :. C S: closed cpt (by S cpt), f(c) cpt (by f: conti.) closed (by S : T 2 ). f: closed map. = open map., f 1 : conti..,,. (.) T 4 (= ).,.

- R n n i=1 [a i, b i ]., 2n,, 1, 2n,.,.,. Euclid R n, =, B δ (O) R n,,, 1,. R n,.,,,,,,.. S: cpt, f: conti., f(s) R cpt,, max, min. 2.4 Tychonoff,...,,,. Zorn, Tychonoff,. [Tychonoff ],. S λ S = λ Λ S λ, S C 2 S, C = {C C}. C 1, X = {X 2 S ; X C},,., X Y X, Y = Y = {X ; X Y} = {A S; A X Y},, Y X., Y. Zorn X 0 X. C X 0,, X 0 = {X; X X 0 }. λ Λ, π λ : S S λ, C λ = {π λ (X); X X 0 }, S λ 1, S λ, C λ., x = (x λ ); x λ C λ 1, x X 0., x X 0 X X 0, x X, x U, U X, U, n i=1 π 1 λ i (V λi ); V λ S λ x λ,., x λ π λ (X) V λ π λ (X) π 1 (V λ ) X (V λ x λ ). [Tychonoff ] 1,,.,. Tychonoff,., A λ (λ Λ), A λ. ω, S λ = A λ {ω}, O λ := {, S λ, {ω}, B c ; B < },, (S λ, O λ ) ( )., S := S λ. π λ : S S λ, F λ = π 1 λ (A λ) S ( )., {F λ } λ Λ., S, A λ = F λ. 2.5 (S λ, O λ ),. F λ = π 1 λ (A λ). (, A λ = {ω} c : closed in S λ.) {F λ } λ Λ. ( λ 1,..., λ n Λ, x λi A λi (i = 1,..., n) 1, x λ = ω (λ λ i, i = 1,..., n), x = (x λ ) F λi.)

(Locally Compactness) 2.6,. 1..,. x,, x, x. (x ). 2.7.,.,,. x K: cpt, U: open; x U K o, C: cpt; x C U., T 3, i.e., x U c, U 1, U 2: open; x U 1, U c U 2, U 1 U 2 =, i.e., x U 1 U2 c U., C = U2 c C K cpt. T 3,,. x / C: closed, U: open; x U U C c.,, K: cpt; x K o K C c, U = K o. 2.8. : S: top. sp., S: cpt, ϕ : S ϕ(s) S: isom.; ϕ(s) = S., ( S, ϕ) S. S \ ϕ(s) 1, 1. 1,, (S, O): top. sp., 1 x / S, S = S {x } O ; O S = O,. (, (S, O).) O = O O = {U; U O or U O };, V = S \ F O ; F S., O, S, O, 1 x. O, N (x ) = O, N (x ) S, S = S., S, {U λ } O :, x, S, U λ \ {x } O,., S U λ,. S 1 S,, S S, S, S O.

3 Separating Axioms). 3.1. T 0 -sp., T 1 -sp., T 2 -sp., T 3 -sp., T 4 -sp., Hausdorff sp.,,. T 0 : 2,,. T 1 : 2,,. T 2 : 2,,. T 3 : 1,. T 4 : 2,. Hausdorff= T 2, = T 1 + T 3 -sp., = T 1 + T 4 -sp. T 3, T 4., Wikipedia. 3.2 T 1 1. x S, y x, T 1, U y y: open; x / U y, {x}., {x} c = y x Uy.., [ T 1 + T 4 T 1 + T 3 ]. 3.3 Hausdorff sp.,. 1. (T 2 T 1.), T 2 + T 4 T 3 ( 1 ).,. T 4,, T 3,. (,.) S S 2 {(x, x); x S}. x S, {x}. ( = ). x y (x, y) / U V c U V =., O O(S 2 ), U, V O; U V O,. x y U, V O; x U, y V, U V =, V c x., x U V c, y / V c., T 2. 3.4 T 3,., x S U, V U: x, i.e., x V o V = V U. U c : closed. 3.5 T 4 T 4; F : closed, G: open; F G, U: open; F U U G.. 3.6 (Urysohn),. S T 4. A, B S, [0, 1] f on S, 0 1, i.e., f(a) = {0}, f(b) = {1}.. Λ: [0, 1] 2 m/2 n, n 1, m = 0, 1,..., 2 n., T 4,. r Λ, O(r) O; A O(0) O(1) = B o, r < r O(r) O(r )., f : S R, f = 1 on B = O(1) c, x O(1), f(x) = inf{r Λ; x O(r)},.

4 (Metric Spaces) 4.1 (S, d).,,, d, d = d/(1 + d), X B(X) = B(X, R), f = sup x X f(x) ( ), d(f, g) = f g, (B(X, R), d). 4.2. C I :. C II :. x S, B r (x); r Q +.,, C II,,,, 1 x n,., : {x n} = S U O, x n U, U n : ; U n U., {x n }, B r (x n ), r Q +, n 1., U: open, x U, δ > 0; B δ (x) U, n; d(x, x n) < δ/2., 0 < r < δ/2 r Q 1, B r(x n) U.,, ; T 2 + T 4 T 1 + T 3. 4.3. 4.4,. 4.5,. X, B(X) d(f, g) = f g,. (X, O), C b (X) = C b (X, R) X, C b (X) B(X). 4.6.,. def ε > 0, ε. def..,, 4.7,. f : (S, d) (S, d ) def x, y S, d(x, y) = d (f(x), f(y)), f(x) = f(y) 0 = d (f(x), f(y)) = d(x, y), x = y,. 4.8,.

( S, d) (S, d) completion, i : S S ; ( S, d), i(s) S.,, (( S, d), i).,,,,. (( S, d), i), ((Ŝ, ˆd), î) (S, d), f : S Ŝ ; î = f i. 4.9,. C II + T 2 + T 4. 4.10 C II + T 3 = T 4. 4.11,,. f : S S def c < 1; x, y S, d(f(x), f(y)) c d(x, y).,. 1,,,.,. x, x 2, d(x, y) = 0, i.e., x = y. d(x, y) = d(f n (x), f n (y)) c n d(x, y) 4.12,.,,.