平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

Similar documents
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

04年度LS民法Ⅰ教材改訂版.PDF

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

untitled


,2,4

n ( (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

all.dvi

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

6. Euler x

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

DVIOUT-HYOU

O E ( ) A a A A(a) O ( ) (1) O O () 467

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

) 9 81

mugensho.dvi

untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

newmain.dvi

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Jacobson Prime Avoidance

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like


II 2 II

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

agora04.dvi

行列代数2010A

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c


linearal1.dvi

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

2012 A, N, Z, Q, R, C

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

数学Ⅱ演習(足助・09夏)

all.dvi


I , : ~/math/functional-analysis/functional-analysis-1.tex

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

( ) x y f(x, y) = ax

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

Part () () Γ Part ,

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

untitled

) Binary Cubic Forms / 25


II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k


68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

K E N Z OU

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

ii

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

D 24 D D D

A

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

等質空間の幾何学入門


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

1

「図形の数理」テキストfinal.dvi

2 T ax 2 + 2bxy + cy 2 + dx + ey + f = 0 a + b + c > 0 a, b, c A xy ( ) ( ) ( ) ( ) u = u 0 + a cos θ, v = v 0 + b sin θ 0 θ 2π u = u 0 ± a


熊本県数学問題正解

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

koji07-01.dvi

_TZ_4797-haus-local


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th


5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

Transcription:

[6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1

*1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N P N (N + 1) (a 0 : a 1 : : a N ) 2

m + P m m l (**) 2 1 + 2 *2 l l l l l l l l l 1 (2) *2 R 1 1 3

y l O x l 3 x y 1 ax + by + c = 0 a x + b y + c = 0 (1) a : b : c a : b : c (1) 2 a : b = a : b a : b a : b 1 x, y, z 1 ax + by + cz = 0 a x + b y + c z = 0 (2) x = y = z = 0 (p, q, r) (kp, kq, kr) p : q : r (***) a : b : c a : b : c (2) 1 x : y : z = bc cb : ca ac : ab ba (**) (***) (**) (***) (p, q) 4

(p : q : r) (p, q) (p : q : 1) (p : q : 0) (kp, kq) (p : q : 1/k) k (p : q : 0) 1 ax + by + cz = 0 1 3 A 1 B 2, A 2 B 3, A 3 B 1 x = 0, y = 0, z = 0 m x + y + z = 0 (x : y : z) l ax + by + cz = 0 3 A 2 B 1, A 3 B 2, A 1 B 3 ax + ay + cz = 0, ax + by + bz = 0, cx + by + cz = 0 3 A i B i+1 A i+1 B i 3 xyz = 0, (x + y + c ) ( a ) ( a z b x + y + z x + b ) c y + z = 0 (3) k kxyz + (x + y + c ) ( a ) ( a z b x + y + z x + b ) c y + z ( x = (x + y + z)(ax + by + cz) b + y c a) + z (4) (3) 3 9 A i, B i, P i (i = 1, 2, 3) (4) 3 2 l, m x/b + y/c + z/a = 0 P 1, P 2, P 3 1 (**) 1 (***) (4) 4 xy- F (x, y) = 0 y = f(x) F (x, y) x, y x, y 1 (x p) 2 + (y q) 2 r 2 = 0 (5) 2 ax 2 + bxy + cy 2 + dx + ey + f = 0 (6) x n + y n 1 = 0 (7) 5

3 x, y *3 3 f(x, y, z) f(x, y, z) = 0 d F (x, y) d z f(x, y, z) f(x, y, 1) = F (x, y) f(x, y, z) = 0 F (x, y) = 0 (5), (6), (7) (x pz) 2 + (y qz) 2 r 2 z 2 = 0 (5 ) ax 2 + bxy + cy 2 + dxz + eyz + fz 2 = 0 (6 ) x n + y n z n = 0 (7 ) C 1 : F 1 (x, y) = 0 C 2 : F 2 (x, y) = 0 C = C 1 C 2 F 1 (x, y)f 2 (x, y) 2 x n + a 1 x n 1 + + a n 1 + a n = 0 (8) (****) n (8) n 3 A = (a ij ) 1 i,j 3 φ A (p : q : r) = (p : q : r ) p q = a 11 a 12 a 13 a 21 a 22 a 23 p q (9) r a 31 a 32 a 33 r (genus) *3 Wiles Taylor 6

5 ( 1) 2 2 2 ( ) 2 6 3 A 2 A 1 A 3 P 3 P2 P 1 B 1 B 2 B 3 1 2 Q 6 A 1, B 2, A 3, B 1, A 2, B 3 A i B i+1 A i+1 B i P i 1 3 A 1 B 2, A 2 B 3, A 3 B 1 x = 0, y = 0, z = 0 (x : y : z) 2 C 3 (6) C : ax 2 + by 2 + cz 2 + dyz + ezx + fxy = 0 a, b, c a = b = c = 1 A 1 (0 : 1 : a 1 ), A 2 (a 2 : 0 : 1), A 3 (1 : a 3 : 0), B 2 (0 : 1 : b 2 ), B 3 (b 3 : 0 : 1), B 1 (1 : b 1 : 0) a 1 b 2 = a 2 b 3 = a 3 b 1 = 1 a 1 + b 2 + d = a 2 + b 3 + e = a 3 + b 1 + f = 0 7

3 A 2 B 1, A 3 B 2, A 1 B 3 x y b 1 = a 2 z, y z b 2 = a 3 x, z x b 3 = a 1 y k kxyz + (x a 3 y a 2 z)(y a 1 z a 3 x)(z a 2 x a 1 y) = (x 2 + y 2 + z 2 + dyz + ezx + fxy)(a 2 a 3 x + a 3 a 1 y + a 1 a 2 z) x/a 1 + y/a 2 + z/a 3 = 0 P 1, P 2, P 3 (10) 6 3 (3) x, y, z 2 l : ax + by + cz = 0, m : bx + cy + az = 0 (x : y : z) 3 ( x xyz = 0, a + y c + z ) ( x b b + y a + z ) ( x c c + y b a) + z = 0 (11) 3 3 (ax + by + cz)(bx + cy + az)(cx + ay + bz) = 0 (12) P 1, P 2, P 3 n : cx + ay + bz = 0 9 A i, B i, P i 9 A i B i±1, l, m, n, (i = 1, 2, 3) 3 x y z x a = c = 1 3 A 2, P 2, B 2 x + y + z = 0 (x + y + z){x 2 + y 2 + z 2 + (b + b 1 )(yz + xz + xy)} 2 2 6 A i, B i, P i (i = 1, 3) x + y + z = 0 6 8

A 1 A 2 A 3 P 3 P 2 P 1 B 1 B 2 B 3 b 1 ω 2 2 4 3 (x + y + z)(x + ωy + ωz)(x + ωy + ωz) = 0 (Hesse pencil) x 3 + y 3 + z 3 3λxyz = 0 (13) 1. 4 3 λ =, ω, ω, 1 3 2. ( 1 : ω i : 0), ( 1 : 0 : ω i ), (0 : 1 : ω i ) i = 0, 1, 2 (14) 3 3. 3 C : f(x, y, z) = 0 9 H(x, y, z) = det( i j f) 1 i,j 3 = 0 1, 2, 3 x, y, z f H 3 af + bh = 0, a, b k (13) 3 3 (extremal elliptic surface) 13 *4 E 8 1 1 3 2 A 2 + A 2 + A 2 + A 2 E 8 *4 E 8 T 2,3,6 9 Mordell-Weil 4 D 4 +D 4, D 6 + A 1 + A 1, A 3 + A 3 + A 1 + A 1 A 2 + A 2 + A 2 + A 2 9

7 3 (Bézout) m n mn m = n = 1 (**), (***) m = 1 (****) m, n > 1 3 y = 4x 3 3x x = 4y 3 3y (15) 9 4(4x 3 3x) 3 3(4x 3 3x) x = 0 x 9 9 P 1 (1, 1), P 2 (cos π 5, cos 3π 5 ), P 3( 1 2, 1 2 ), P 4 (cos 2π 5, cos 4π 5 ), P 5(0, 0), P 6 (cos 3π 5, cos π 5 ), P 7( 1 1, ), P 8 (cos 4π 2 2 5, cos 2π 5 ), P 9( 1, 1) mn 2 (5 ) (1 : ± 1 : 0) m, n 2 (resulatant) mn 2 C 8 m n mn + 1 4 n n 2 mn m n(n m) n m 10

n λ 1 F 1 + λ 2 F 2 = 0 n 2 mn P 1,..., P mn m G = 0 G = 0 P 1,..., P mn P λ 1 F 1 +λ 2 F 2 = 0 P λ 1, λ 2 λ 1 F 1 +λ 2 F 2 = 0 G = 0 mn + 1 λ 1 F 1 + λ 2 F 2 G λ 1 F 1 + λ 2 F 2 = GH n m H H = 0 ( 5) 2 2 Q 3 C 1 = A 1 B 2 + A 2 B 3 + A 3 B 1, C 2 = A 2 B 1 + A 3 B 2 + A 1 B 3 9 6 A i, B i, (i = 1, 2, 3) m = 3, n = 2 3 P 1, P 2, P 3 1 (10) 4 5 ( ) ABC 3 P, Q, R ARQ BP R CQP 1 7 ARQ, BP R C 1, C 2 R M 3 C 1 + BC, C 2 + AC 9 AB 3 6 C, P, Q, M 4 2 CQP A R Q M B P C 11

9 5 3 P, Q, R ABC 3 Silverman[9, Chap. IV] ADE 3 ADE 1. 2Ã2 + Ã1 2 2. 3Ã2 < xyz, (ax + by + cz)(bx + cy + az)(cx + ay + bz) > ( 3) 3. 3Ã2 + Ã1 < xyz, (x + by + z)(bx + y + z)(x + y + bz) > ( 6) 4. 4Ã2 < xyz, x 3 + y 3 + z 3 >(13) 5. 3Ã1 ( 5) 6. 4Ã1 A 1 3 ABC, A B C 3 a, b, c, a b, c 6 2 1) 3 AA, BB, CC 2) 3 a a, b b, c c (perspective) 3 27 Jordan 8 3 E 8, E 7, E 6 27 3 12

B C A A A C C B B P B ([4]) 9 9 9 3 9 3 (9 3 ) (9 3-9 3 ) *5 (9 3 ) 3 Hilbert-Cohn-Vossen[5, Chap. 3] *6 9 (14) 3 12 (12 3-9 4 ) (12 3-9 4 ) 3 F 3 = {0, 1, 2} 3 2 S 4 192 [1] 3 2 1 S 4 4 3 6 10 10 (10 3 ) 5 S 5 [3] 10 10 p ij, l ij, (1 i < j 5) i, j, k, l l kl p ij *5 *6 3 27 Reye 13

C m C 1 : F 1 (x, y) = 0 n C 2 : F 2 (x, y) = 0 N P 1,..., P N (a 1, b 1 ),..., (a N, b N ) (9) ( 7) 7 m C 1 : F 1 (x, y) = 0 n C 2 : F 2 (x, y) = 0 C[x, y] I := (F 1, F 2 ) C[x, y]/i (a 1, b 1 ),..., (a N, b N ) C R i, 1 i N, N dim C C[x, y]/i = dim C R i = mn (16) i=1 8 C 1, C 2 mn R i (a i, b i ) m i = (x a i, y b i ) (a i, b i ) C 1 C 2 dim C R i 1 C 1 C 2 (transversal) C 1, C 2 (a i, b i ) r, s dim C R i rs C[x, y]/i N i=1 R i Artin [2, Theorem 8.7] (16) dim C C[x, y]/i = mn C[x, y] (Koszul) ( ) F1 0 C[x, y] (F 2, F 1 ) C[x, y] C[x, y] F 2 I 0 (17) 1 (F 2, F 1 ) (A, B) AF 1 + BF 2 F 1 F 2 C[x, y] C[x, y]/i C[x, y] I = C[x, y]/i ( )/( ) (x : y) P 1 m C 1 m m F 1 m C 2 F 1 m f 1 F 2 n f 2 P 1 A 2 x,y (0, 0) Hilbert l *7 (f 1, f 2 )C[x, y] (x, y) (x, y) l *7 l m + n 1 14

l C C[x, y] l C (x, y) l C[x, y] l C[x, y] I C[x, y] l C[x, y] C[x, y]/i C[x, y] l /(C[x, y] l I) (17) 0 C[x, y] l m n C[x, y] l m C[x, y] l n C[x, y] l I 0 (18) dim C[x, y] l /(C[x, y] l I) = dim C[x, y] l dim(c[x, y] l I) = dim C[x, y] l dim C[x, y] l m dim C[x, y] l n + dim C[x, y] l m n = mn [1] Artebani, M. and Dolgachev, I.: The Hesse pencil of plane cubic curves, Enseign. Math., 55(2009), 235 273. [2] Atiyah, M.F. and Macdonald, I.: Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969 2006 [3] Coxeter, H.S.M.: Desargues configurations and their collineation groups, Math. Camb. Phil. Soc. 76(1975), 227 246. [4] Dolgachev, I.: Abstract configurations in algebraic geometry, Proc. Fano Conference (Torino, 2004), Torino Univ., 2005. [5] Hilbert, D. and Cohn-Vossen, S.: Anschaulich Geometrie, Verlag von Julius Springer, Berlin, 1932 [6] Kempf, G.: Algebraic Varieties, Cambridge University Press, 1993. [7] Mumford, D.: Algebraic geometry I, Complex projective varieties, Springer-Verlag, 1976. [8] Reid, R.: Undergraduate Algebraic Geometry, Cambridge Univ. Press, 1988 1991 [9] Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves, Springer Verlag, 1994 2003 15