untitled

Similar documents
現代物理化学 2-1(9)16.ppt

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

現代物理化学 1-1(4)16.ppt

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

Microsoft Word - ●ipho-text3目次

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

0201

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

A solution to Problems(物理化学II)Problem5

0 (Preliminary) T S pv

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

i 18 2H 2 + O 2 2H 2 + ( ) 3K


3章 問題・略解

1

1.5.1 SI kg, m, s ,,

(A2) , 0,

H21環境地球化学6_雲と雨_ ppt

flMŠÍ−w−î‚b

30

理想気体ideal gasの熱力学的基本関係式

0 (Preliminary) F G T S pv (1)

H22環境地球化学4_化学平衡III_ ppt

Microsoft Word - 11問題表紙(選択).docx

all.dvi

( ) ,

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

2009 June 8 toki/thermodynamics.pdf ) 1

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

物理化学I-第12回(13).ppt

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

日本内科学会雑誌第102巻第4号

( ) Loewner SLE 13 February


第90回日本感染症学会学術講演会抄録(I)

Ł\”ƒ-2005

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

Part () () Γ Part ,

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

meiji_resume_1.PDF

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

001_046_物理化学_解答_責_2刷_Z06.indd

Laves A-B AB 2 MgCu 2 (C14) MgZn 2 (C15) MgNi 2 (C36) Laves VASP ZrCr 2 Laves VASP(Vienna Ab-initio Simulation Package) Laves Energy-Volume Quasi-Harm

2 p T, Q

MM1_02_ThermodynamicsAndPhaseDiagram

untitled

ρ(= kg m 3 ), g h P 0 C () [1] 1.3 SI Pa hpa h 100 ( : 100 ) 1m 2 1N 1Pa 1N 1kg 1m s 2 Pa hpa mb hpa 1mm 1mmHg hpa 1mmHg =


1

I II III IV V

gr09.dvi

入試の軌跡

( ) ( )

December 28, 2018

genron-3

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I ( ) 2019

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Maxwell

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation)

tnbp59-21_Web:P2/ky132379509610002944

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

(a) (b) X Ag + + X AgX F < Cl < Br < I Li + + X LiX F > Cl > Br > I (a) (b) (c)

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

KENZOU

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

「産業上利用することができる発明」の審査の運用指針(案)

Note.tex 2008/09/19( )

C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)] T A [K] A m B [g], c B [J/(g K)] T B [K] B T E [K] T

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1

パーキンソン病治療ガイドライン2002

研修コーナー

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

(1) (2) (3) (4) 1

1

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

i

Transcription:

1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential Heat of Chemical Reaction Entropy (The Second Law of Thermodynamics) Spontaneous Change Reversible Change and Irreversible Change Entropy 1) Randomness 2) Exact(=Perfect) Differential ds Calculation of Entropy Change 1) Adsorbed Heat by Reversible Change 2) Entropy Change accompany with Volume Change 3) S= f (T,P) Entropy of Mixing ΔS mix The Third Law Free Energy and Chemical Potential Helmholtz Free Energy and Gibbs Free Energy Exact(=Perfect) Differential da and dg Gibbs-Helmholtz Equation Properties of Mixtures; Partial Molar Quantities Partial Molar Free Energy; Chemical Potential a) Chemical Equilibrium b) Phase Equilibrium Thermodynamic Formulas Fundamental Relationship

2 A) 1 1mol A (A) B) 10 B (B) (A) (B) Isothermal compression, (B) (A) Isothermal expansion 0 (A) (B) (B) (A) 0

3 4 Heat of Solution ( ) 1 C 2 H 5 OH(l) +9H 2 O C 2 H 5 OH 9H 2 O 1mol 9mol 10%mol ΔH 1 = 7.021 kj/mol 2 C 2 H 5 OH(l) +4H 2 O C 2 H 5 OH 4H 2 O 1mol 9mol 20%mol ΔH 2 = 3.757 kj/mol ΔH 3) C 2 H 5 OH(4H 2 O) +5H 2 O C 2 H 5 OH 9H 2 O 20%mol 10%mol ΔH = ΔH 1 ΔH 2 = ( 7.021) ( 3.757) = 3.264 kj/mol 10%mol 20%mol 20%mol 10%mol EtOH ( ΔH) n w /n a = n H2O /n alc=etoh ΔH ΔH= ΔH (Integral Heat of Solution) (Diffrential Heat of Solution) H 2 O n w = n H2O >>0, EtOH 1mol EtOH

4 5218 J (A) 0 1atm, 22.4l (B) 0 10atm, 2.24l (A) (B) (A) 10atm 1atm W W =10 (22.4 2.24)=201.6(l atm) =201.6 1.013 10 2 = 20.422 (kj) =1 (2.24 22.4)= 20.16(l atm) =20.16 1.013 10 2 = 2.0422 (kj) 20.422 (kj) { 2.0422 (kj)}= 18.37 (kj) 334.72J(=80Cal 4.184) 1g A B (A) 10atm 1atm 18.37 (kj) 334.72J 54.9g AB (A)

5 Δs 10atm (A) (B) entropy Ideal gas R=0.08206(dm 3 atm K -1 mol -1 ) = 8.3145(J K -1 mol -1 ) A 0 1atm, 22.4 dm 3 (B) 0 10atm, 2.24 dm 3 ( ) Δs = nc V In( T 2 T 1 ) + nrin( V 2 V 1 ) (III-32) 1-a: Δs gas = nrin( V 2 V 1 )=1 8.3145 2.303log(2.24/22.4) =19.15 (-1)=-19.15(J K -1 ) (A) (B) entropy V B 1-b: W = PdV = nrt ( 1 V )dv = nrtin V B V A = -1 8.3145 2.303log(2.24/22.4) = 5218 ( 1)= +5218(kJ) ( ) V B V A V A

6 1-c: V B W = PdV = nrt ( 1 V )dv = nrtin V B V A V B V A V A U 1 =Q 1 + W 1 U 2 =Q 2 + W 2 ΔU=ΔQ ΔW ΔU =0 Q= W= PdV Δs gas = Q nrtin T = T V B V A = nrin V B V A = - 19.15(J K -1 ) Δs gas =( W)/T= ( 5238)/(273.2)= 19.15(J K -1 ) () 204.3 10 2 J 10atm W= PdV= 10 (2.24 22.4)=201.6 1.0132 10 2 =+204.3 10 2 (J) =+20.43(kJ) ΔU=0 20430J Δs ice =Δs surr =( W)/T= (+20430)/(273.2)= 74.8(J K -1 ) entropy 20430J 0 20430J Δ s total = Δs gas + Δs surr = 19.15+74.8=+55.6(J K -1 )

7 U = Q+W du = TdS-PdV H = U+PV dh = TdS+VdP A = U-TS da = -SdT-PdV (IV-8) G = H-TS dg = -SdT + VdP (IV-12) Euler s relationship T V T P S V S P S S T T = P S = V S = P T P V = V T V P Maxwell s relationship (IV-16) (IV-17) (III-30) (III-39) Maxwell equation du = TdS-PdV U V U V T T = T S V = T P T V V P = T P T P V P (III-29) H P H P T T dh = TdS+VdP = T S P T = T V T + V = T V T P P + V + V (III-30) da = -SdT-PdV dg = -SdT + VdP (IV-8) (IV-12) A V A T G P G T T V T P = P = S = V = S da = -SdT-PdV (IV-8) dg = -SdT + VdP (IV-12) (IV-18) (IV-19) (IV-20) (IV-21)

8 U S U V H S H T V S T S = T = P = T = V du = TdS-PdV dh = TdS+VdP 1) x =f (y, z) 2) 3) dx = x y 1 y x x y z z Z = x y y z dy + x z x z z x y y = 1 dz (S-1) (II-32) (S-2) 4) dx = Kdy + Ldz K z y = L y z Eulers reciprocity relation (II-24) U T H T 1 V V P V T C V C P P 1 V V P α T β α : thermal expansion coefficient β : compressibility (II-14) (II-15) (S-3) (S-4) Gibbs-Helmholtz Equation ΔA =ΔU TΔS ΔG =ΔH TΔS P ΔG/T T ( ) ΔA =ΔU + T ΔA T ( ) ΔG =ΔH + T ΔG T (IV-24) (IV-25)

9 ΔG T T ( ) ΔG = 1 T ΔG + 1 T ( ΔG) 2 T T = T ΔG T 2 = ΔH T 2 Properties of Mixtures; Partial Molar Quantities X (V, U, H, S, A, G) X = f (T,P, n 1, n 2, - - - - - - - n i - - - -) (IV-26) dx = X dt + X dp + X T P, n 1, n 2, P dn T, n 1, n 2, n 1 +... + X 1 n i T, P, n 2, T, P, n j, dn i +... (IV-27) where n j ; n i n X X n i (IV-28) i T, P, n j T, P dx = X 1 dn 1 + X 2 dn 2 +... +X i dn i +... (IV-29) X = X 1 n 1 + X 2 n 2 +... +X i n i +... (IV-30) X = V; V i = V (IV-31) n i T, P, n j X = S; S i = S n i T, P, n j (IV-32) X = H; H i = H n i T, P, n j (IV-33) X = G; G i = G n i T, P, n j (IV-34) Partial Molar Enthalpy Change

10 ( ) ΔH i = ΔH n i T, P, n j Partial Molar Free Energy ; Chemical Potential G i = G μ n i i dg = -SdT+VdP+μ 1 dn 1 + μ 2 dn 2 + + μ i dn i (IV-35) (IV-36) G = μ 1 n 1 + μ 2 n 2 + + μ i n i (IV-37) a) (Chemical Equilibrium) ( μ 1,n i ) react ( ) = μ 1,n i aa + bb+.. react Ideal Gas Mixture productt ll + mm+.. Product eq. (III-42) ΔS MIX = R n i InX i 2 (n 1, n 2 ) S 0 1,S 0 2 ; ΔS MIX = ( n 1 S 1 + n 2 S 2 ) n 1 S 0 0 0 0 ( 1 + n 2 S 2 )= n 1 ( S 1 S 1 )+ n 2 ( S 2 S 2 ) ( ) S 1 S 0 1 =ΔS 1 = ΔS MIX n 1 ( ) S 2 S 0 2 =ΔS 2 = ΔS MIX n 2 T, P, n 2 T, P, n 1 ΔH MIX = 0 ΔG MIX =ΔH MIX TΔS MIX (IV-38) (IV-39) ΔG MIX = - TΔS MIX ΔG MIX = TΔS MIX = T( R n i InX i )= RT n i InX i (IV-40)

11 ΔG 1 = G 1 G 0 1 = G MIX n 1 ΔG 2 = G 2 G 0 2 = G MIX n 2 = RTInX 1 T, P, n 2 = RTInX 2 T, P, n 1 (IV-41) (IV-41) μ 1 = μ 1 0 + RTInX 1 μ 2 = μ 2 0 + RTInX 2 (IV-42) Dolton X 1 = P 1 P X 2 = P 2 P P 1, P 2 P = P 1 = 1atm 1atm 0 μ = μ μ 0 : μ i = μ i 0 + RTInX i μ i = μ i 0 + RTInP i

12 Clapeyron-Clausius equation / G 1 = G 2 dg 1 = dg 2 dg = VdP SdT dg 1 = V 1 dp S 1 dt dg 2 = V 2 dp S 2 dt V 1 dp S 1 dt = = V 2 dp S 2 dt T (K), H b dp dt = S 2 S 1 V 2 V 1 S 2 S 1 =ΔS = H b T dp dt = H b ( ) TV 2 V 1 Clapeyron equation V 2 >>V 1 V 2 V 1 V 2 1700 dp dt = H b TV 2 = PH b RT 2 dp P 1 dt = H b RT 2 dinp dt = H b RT 2 Clapeyron-Clausius equation H b H b (A) InP = H b RT + const. (P 1, T 1 ) (P 2, T 2 ) In P 2 = H b 1 1 P 1 R T 2 T 1 (B) (C)

13 (Phase Rule) C α, β, γ, P (C - 1) P (C - 1)P μ α 1 = μ β p 1 == μ 1 μ α 2 = μ β p 2 == μ 2 C C μ α c = μ β p c == μ c P : C : P μ A = μ 0 A +RTInC A (P - 1) C F = 2+ (C 1)P (P 1)C = 2 + C P 1) C = 1, 2 P = 2 F = 2 + C P F = 1

14 2) C = 2, P = 2 F = 2 + C P F = 2 3) α- β C = 1, 2 P = 2 F = 2 + C P F = 1 96 4) 3 C = 1, P = 3 F = 2 + C P F = 0 0.0075 (273.16K) 0.006atm 71 c t b x t : b t : c t : t : x t : b t : c t : t : x

15 U(S,V) c U = U(S,V,n 1,n 2,,n c ) U(S,V,n i ) n i i U du = U ds + U dv + S V, n i V S, n i = TdS PdV + μ i dn i c i =1 c i =1 U dn n i = TdS PdV + i S, V, n j i c i =1 U dn n i i S, V, n j i μ i chemical potential μ i = U n i S, V, n j i dn i 2 IV.1

16 2 IV.2 IV.3 IV.3 1 3 2 2 2 T(X g ) (X l ) *X g X 2 X 2 X l X 2 T 1 T 2 2 T T 2 X 2 2 2

17 IV.4 (critical solution temperature) (a)(b) (c) (a) (b) (c) 2 2 1 2 2 2 2 IV.5 [G/(n 1 +n 2 )] 2 2 2 (X B, X B ) 2 2 2 2 2 2 1 IV.4(a) 2 y, z y, z (tie line)2 2 2 IV.1 2 2 1 2

18 IV.6 IV.7 b 50 (E, eutectic point) 2 3 1 (e) 2 (solid solution) Ni-Cu 2 IV.8 IV.3 IV.6 IV.8

19 (S 1,S 2 ) 2 (S A,S B ) IV.9 2 IV.6 2 IV.10 1 2 (congruent melting compound, C ) 2 (congruent melting point) 2 3 ( r = 1)

20 2 / ( ) 2 X 2 n g, n l P 2 (n g + n l )X 2 = n g X g 2 + n l l X 2 X 2 X 2 g X 2 l X 2 = n l n g Gas P Liquid g l 0 X 2 X 2 X 2 2

21 entropy eq.(iii-37) T2 C T2 Δ = P S dt = C Pd ln T T1 T T1 20 80g100 60g entropy t 80 (t 20) = 60 (100 t) t = 54.3 = 327.5 K =Cal/g K=4.184J/g K 1mol C p =4.184 18=75.3J K 1 mol 1 80g 327.5K entropy T2 80 327. 5 80 327. 5 ΔS1 = nc P ln = 75. 3 ln = 75. 3 2. 303log T1 18 293. 2 18 293. 2 J [J] = 770. 74 0. 04805 = + 37. 03 = [K][mol] [K] 60g 100 =373.2K 327.5K entropy T2 60 327. 5 60 327. 5 ΔS 2 = nc P ln = 75. 3 ln = 75. 3 2. 303log T1 18 373. 2 18 373. 2 = 32. 8 entropy Δ 2 S over all = ΔS 1 + ΔS = 37.03 32.8 = 4.23 [J/K] > 0 ΔS > 0

22 [IV] Free Energy and Chemical Potential Helmholtz Free Energy and Gibbs Free Energy [Energy or (Enthalpy) and Entropy] U or H ( ), S ( ) A U TS Helmholtz Free energy at constant volume G H TS Gibbs Free energy at constant pressure (IV-1) (IV-2) A or G: ΔA=ΔU TΔS (IV-3) ΔG=ΔH TΔS (IV-4) H (ΔH<0) G (ΔG<0) S (ΔS>0) G G ΔG = 0 Available capacity U A H, S G

23 ΔA = A 2 A 1 ΔG = G 2 G 1 (ΔA) T,V = 0 (ΔG) T,P = 0 (Equilibrium) ΔU = Q + W = TΔS+ W ΔH = ΔU + PΔV = TΔS+ W + PΔV ΔS (IV-3) ΔA=ΔU TΔS ΔA=ΔU TΔS = TΔS+ W TΔS = W (IV-4) : ΔG = ΔH TΔS ΔG = ΔH TΔS = TΔS+ W + PΔV TΔS = W + PΔV (IV-5) (IV-6) (IV-5) A ; Work function (Energy Dimension ) (IV-6) G ; Thermodynamic function ( G ) (Free energy) G 1 = G 2 (ΔG) T,P = 0 ΔG = ΔH TΔS ΔH > 0 = TΔS ΔH ΔG<0 eq. (IV-6) ΔG = W + PΔV W : PΔV : = ΔG<0, ΔG = 0 ΔG = ΔH TΔS

24 = Cell emf (electromotive force) Cell Chemical Reaction Voltaic cell (reversible cell ) Zn electrode 1 Cu electrode dil. H 2 SO 4 Daniell Cell = Reversible cell Zn ZnSO 4 aq. CuSO 4 aq. Cu Cu Zn, emf = 1.1V Zn + Cu 2+ Zn 2+ + Cu 1.1V Zn + Cu 2+ Zn 2+ + Cu 1.1V Cu 2+ Zn + Cu 2+ Zn 2+ + Cu Zn Zn 1.1V 1.1V emf W= ΔG = nfε

25 F = N A e = 6.022 10 23 (mol 1 ) 1.602 10 19(C) =9.648 10 4 (C mol 1 ) 9.65 10 4 Where: F: Faraday constant N A : Avogadro constant e: elementary charge () electric element 1[VC] =1[J] ΔG = nfε (IV-7) = 2 9.648 10 4 (mol 1 )(C) 1.1(V)= 21.23 10 4 = 213.4 (kj/mol) 1.1V emf Daniell Cell 213.4(kJ/mol) Zn + Cu 2+ 213.4(kJ/mol) Zn 2+ + Cu 213.4(kJ/mol) Daniell Cell 1M CuSO 4 Zn ΔH = 218(kJ/mol) Zn + Cu 2+ Zn 2+ + Cu ΔG = 213.4(kJ/mol) at 25 ΔG = ΔH TΔS cell ΔS cell = (ΔH ΔG )/T=[ 218 ( 213.4)]/298.2 = 0.0191(kJ/K)= 19.1 (J/K mol) 218kJ ΔH = 218 kj mol ΔS sur =ΔH/T= 218000/298.2=731.1(J/K mol) ΔS total = ΔS cell +ΔS sur = 19.1 + 731.1=712(J/K mol) > 0