7-1yamazaki.pptx

Similar documents
Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

Fermi ( )


スーパーカミオカンデにおける 高エネルギーニュートリノ研究

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

Microsoft PowerPoint - takaahara

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

untitled

nenmatsu5c19_web.key

Solar Flare neutrino for Super Novae Conference

PowerPoint Presentation

atomic line spectrum emission line absorption line atom proton neutron nuclei electron Z atomic number A mass number neutral atom ion energy

LHC-ATLAS Hà WWà lνlν A A A A A A

untitled

総研大恒星進化概要.dvi

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

PowerPoint Presentation

スライド 1

B

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

天体物理特論

Recent results from Swift

2 X-ray 6 gamma-ray :38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

加速器の基本概念 V : 高周波加速の基礎

2

放射線化学, 92, 39 (2011)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE(

PowerPoint Presentation

[2] ATMUKN [3] (ATMU ATMUKN)[4] ( ) X tr = f photo photo + f incoh incoh + f pair pair = E h 0 (2) h 0 E 1 f photo =1; X h 0 f incoh f pair =1;

スライド 1


news

抄録/抄録1    (1)V

Mott散乱によるParity対称性の破れを検証

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号


25 3 4

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

輻射の量子論、選択則、禁制線、許容線

X 20, 1 1 HETE-2 Swift CCD GRB CCD CCD CCD

Microsoft PowerPoint - okamura.ppt[読み取り専用]

パーキンソン病治療ガイドライン2002

研修コーナー

本文/目次(裏白)


pptx

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

untitled

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

B

X線分析の進歩36 別刷

PowerPoint Presentation

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

JAXA Sep., 2010 p.1/36

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

MW鹿児島


rcnp01may-2

500 6 LHC ALICE ( 25 ) µsec MeV QGP

main.dvi

放射線化学, 97, 29 (2014)

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Drift Chamber

1 2 2 (Dielecrics) Maxwell ( ) D H

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors


Microsoft PowerPoint - hoshino_part1.pptx

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

201711grade1ouyou.pdf

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951)

untitled

日本内科学会雑誌第102巻第4号

BH BH BH BH Typeset by FoilTEX 2

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

GJG160842_O.QXD

案 A 003b-2 放 射 線 を 科 学 的 に 理 解 す る 右側の緑の人 放射 線 鳥居 寛之 小豆川勝見 渡辺雄一郎 著 中川 恵一 執筆協力 基 礎 か ら わ か る 東 大 教 養 の 講 義 新刊書籍 発売 2012年10月10日 刊行 を に 的 学 科 理解する 基礎からわか

Report10.dvi

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

muramatsu_ver1.key

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

tsuchiya_090307

Transcription:

Suzaku/ASTRO-H Suzaku/ASTRO-H

1. Vela ( Watchman ) (1967 1979): GRB (1969) 2. GINGA (1987 1991): X-ray counterpart GRB (galactic) X-ray burst? 3. BATSE (1991 2000): Galactic origin models!!! 4. BeppoSAX (1996 2002): X-ray (optical) afterglow cosmological distance!!! 5. HETE-2 (2000 ): long GRB/SN association 6. Swift (2004 ) high-z GRB (z > 6) => 7. Fermi (2008~) : GeV GRB

(=>calorimetry) VLA (redshift, localization, jet structure) (localization, jet structure) Swift/XRT available. *10keV-MeV GeV (jet speed, radiation mechanism, CR) Fermi 7events/yr TeV (radiation mechanism, CR) CTA events/yr.

GRB research in the Fermi era GRB GeV (1) Γ (2) GRB (~MeV ) (synchrotron or SSC?) (3) GRB Γ=300 Γ=1000 2ndary e ± (pγ π ± e ± ) Γ=100 Asano, Inoue primary e -

GRB research in the Fermi era GRB GeV (1) Γ (2) GRB (~MeV ) (synchrotron or SSC?) (3) GRB Γ=300 Γ=1000 2ndary e ± (pγ π ± e ± ) Γ=100 Asano, Inoue primary e -

GRB research in the Fermi era GRB GeV (1) Γ (2) GRB (~MeV ) (synchrotron or SSC?) (3) GRB Γ=300 Γ=1000 2ndary e ± (pγ π ± e ± ) Γ=100 Swift WAM LAT Swift WAM primary e - LAT

Fermi LAT detection of GRB 080916C First GeV γ detection of a GRB with known redshift. * High-z, bright event: z = 4.35±0.15 E iso (10keV-10GeV) = 8.8x10 55 erg ~ 5 M sun c 2 => Jet collimation * GeV photons avoiding pair-creation annihilation => Relativistic motion: Γ > 890±20 (bin b ) Fermi LAT collaboration (2009)

Fermi GeV GRBs GeV delay (delay ) (leptonic model) IC emission? (Hadronic model) proton acceleration time? GeV lepton proton proton

Ahlers + 2011 UHECRs in internal shocks of GRBs In internal shock, P 10^18-20 + γ GRB => π 0, π +, n UHECRs γ, e +/- : => GeV gamma s (1) Hires Fermi diffuse gamma IcuCube (γ, E max ) N(E) E γ exp ( E / E max ) β n => p + e - + ν e UHECRs UHE-Nu s CMB => GeV gamma s (2), UHE-Nu s(gzk-nu)

(GRB rate) SFR (GRB rate) SFR x (1+z) 1.4 GeV Gamma s (1),(2) GeV Gamma s (2) GeV Gamma UHECRs Fermi diffuse gamma

(GRB rate) SFR (GRB rate) SFR x (1+z) 1.4 GeV Gamma s (1),(2) GeV Gamma s (2) GeV Gamma UHECRs Fermi diffuse gamma

Ahlers + 2011 GRB Internal shock UHECRs UHECR flux UHECR (γ<2.1) 10 18 ev UHECR 10 18 ev Fermi Diffuse gamma

Neutrino upper limit from IceCube GRB IceCube: Abbasi+2011

Neutrino upper limit from IceCube GRB Waxman03 117 GRB photon spectrum Guetta+04 117 IceCube: Abbasi+2011

Neutrino upper limit from IceCube GRB AMANDA IceCube (40strings) IceCube (22strings) Waxman03 117 GRB photon spectrum Guetta+04 117 IceCube: Abbasi+2011

Waxman Bahcall (upper) bound CR proton ν µ p+p or p+γ => π + or π - => ν µ or ν µ CR proton ( GeV/cm 2 /s/sr ) energy production rate (n p CR E p -2 ) factor 0.25 = 0.5 ( = loss via π 0 production) x 0.5 ( = E ν /E π ) t H : Hubble time (CR proton ) ξ Z ~1 : redshift evolution & energy loss

Waxman Bahcall (upper) bound CR proton WB bound τ (source size) / (CR proton m.f.p.) τ 1 WB bound τ < 1 WB bound (e.g. : τ << 1 for GRB external shocks, Galactic SNRs ) τ > 1 CR proton WB bound => IceCube

GRB? Short GRB 070201 = Soft gamma-ray repeater giant flare? NS-NS merger UV and localized region

Fermi(Ext.Gal.Diffuse GeV), Icecube( ), LIGO( )

GRB is a relativistic version of SNR (Piran99) particle acceleration *internal-external shock model, *models of jet dynamics, jet emission, polarization, external compton, *<V/Vmax> of QSOs, * particle acceleration

2000 X-ray flash γ (Heise et al. 2001) (in t Zand et al. 1999)

Spectral properties of XRFs and GRBs Ep=19 kev Ep=126 kev Kippen et al. 02 Barraud et al. 03 Photon indices α, β ( ) GRB XRF XRF Ep (peak energy) GRB

Motivation : AGN X- ray flash GRB

X-ray flash 1 XRF/XRR classical GRB by HETE-2 XRF/XRR GRB GRB viewing angle, gamma factor, Lamb et al. (2003)

Theoretical Models of the X-ray flash

X-ray flash X-ray flash Amati relation low-energy (by HETE-2) Amati relation Yonetoku, Ghirlanda,Tsutsui relations Ep Sakamoto, RY+08 X-ray flash

Relativistic beaming and Doppler effects 1/γ v = 0 (matter comoving frame) v (observer frame) γ (1 β ) v/c

ff-axis Jet Model of XRFs

Off-axis model Ep E iso : detected by HETE (on-axis) : detected by HETE (off-axis) : not detected by HETE

Off-axis afterglow Granot On-axis Off-axis Observed light curves have a rising part at 0.1-10 days.

2004 Swift Swift (2004.11~)

X-ray/Optical Ghisellini+

2005 Swift X-ray flash/x-ray rich GRB off-axis model Sakamoto, RY+ (08) XRF: Ep < 100 kev XRR: Ep =100-300keV GRB: Ep > 300keV

Off- axis model rising part Guidorzi+09 XRF 080330 XRF 071031 XRF 050408 Kruhler+07 de Ugarte Pos<go+07

GRB 080710 Kruhler et al. 2010 T90(15-350keV) = 120s, Gamma= - 1.47 (BAT) (Ep = 110 +340-60 kev) S(25-50keV)/S(50-100keV) = 0.70 +/- 0.15 classical GRB z = 0.845 => Ep (1+z) 200keV log(eiso) = 51.7-52.1

GRB 080710 = on-axis prompt & off-axis afterglow? (a) (b) (c) prompt prompt prompt prompt: GRB(on-axis), AG: on-axis prompt: XRF(off-axis), AG: on-axis Prompt: XRF(off-axis), AG: off-axis (a) GRB 080710 (a) (b), (c) (c) 1 (b) Prompt

GRB080710 off-axis emission Fermi AGN( ) Cygnus A (700 )

Prompt 1 1. Jets-in-a-jet: magnetic reconnection in prompt Blazer TeV prompt

Prompt 2 2. Bent jet, (like AGN; Fermi/KANATA 2010): * collision with stars or MCs? prompt * current driven kink, KH insta. prompt

Prompt 3 3. Inhomogeneous prompt efficiency of mini-jets. -high efficiency jets: little energy after prompt -low efficiency jets: little dissipative in prompt

Summary GRB GRB X-ray flash off-axis jet model Off-axis jet *prompt jets-in-a-jet, bent jet, inhomogeneous efficiency