1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

Similar documents
D 24 D D D

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

DVIOUT

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

difgeo1.dvi

2011de.dvi

Morse ( ) 2014

8.3 ( ) Intrinsic ( ) (1 ) V v i V {e 1,..., e n } V v V v = v 1 e v n e n = v i e i V V V V w i V {f 1,..., f n } V w 1

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin



body.dvi


Gmech08.dvi

II 2 II

untitled

phs.dvi

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p



f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

³ÎΨÏÀ

第10章 アイソパラメトリック要素

v er.1/ c /(21)

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

1 Euclid Euclid Euclid

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (


6.1 (P (P (P (P (P (P (, P (, P.

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

Part () () Γ Part ,

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II Lie Lie Lie ( ) 1. Lie Lie Lie

i 18 2H 2 + O 2 2H 2 + ( ) 3K

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

6.1 (P (P (P (P (P (P (, P (, P.101

Gmech08.dvi

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

: , 2.0, 3.0, 2.0, (%) ( 2.

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

A

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Untitled

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x




Maxwell

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

『共形場理論』

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)


t, x (4) 3 u(t, x) + 6u(t, x) u(t, x) + u(t, x) = 0 t x x3 ( u x = u x (4) u t + 6uu x + u xxx = 0 ) ( ): ( ) (2) Riccati ( ) ( ) ( ) 2 (1) : f

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

??

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

DE-resume

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1


II Time-stamp: <05/09/30 17:14:06 waki> ii

tokei01.dvi

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Transcription:

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg) = v(f)g(p ) + f(p )v(f) {v} { x 1,..., x m } m (1),(2) (3) f x 0 R m x 0 = (x 1 0,..., x m 0 ) g i ( x 0 ) = f x i ( x 0 ) m {g i } x 0 x = (x 1,, x m ) f( x ) = f( x 0 ) + (x i x i 0)g i ( x ) ϕ ϕ(t) = f ( x 0 + t( x x 0 )) f( x ) f( x 0 ) = ϕ(1) ϕ(0) 2

1 = = = 0 1 ϕ (t)dt d 0 dt f ( x 0 + t( x x 0 ) 1 (x i x i 0) 1 0 x i f ( x 0 + t( x x 0 )) g i ( 1 x ) = 0 x i f ( x 0 + t( x x 0 )) {g i } g i ( x 0 ) = x i f( x 0 ) P M P (U, ϕ; x i ) P ϕ(u) R m ϕ(p ) P M v 3 v : C P R f, g C P, λ R (1) v(f + g) = v(f) + v(g) (2) v(λf) = λv(f) (3) v(fg) = v(f)g(p ) + f(p )v(f) f(x) 1 v(f(x)) = v(1) = v(1 1) = 2v(1) v(1) = 0 f(x) k 3

v(f(x)) = v(k) = kv(1) = 0 ϕ(p ) = x 0 f C x0 g i ( x 0 ) = f x i ( x 0 ) g i C x0 f( x ) = f( x 0 ) + (x i x i 0)g i ( x ) v(f) = v(f( x 0 ) + (x i x i 0)g i ( x )) = v(x i ) f x i ( x 0 ) v ( v(x 1 ),..., v(x m ) ) v(x i ) = a i v(f) = v = a i a i v(x i ) = a i x i x = x0 f x i x = x0 R m R m f x 0 a = (a 1,..., a m ) D a f( x 0 ) D a f( x 0 ) = d dt t=0f( x 0 + t a ) 4

= a i f x i ( x 0 ) x 0 v x 0 (v(x 1 ),..., v(x m )) M P T P M T P M v, v 1, v 2 T P (M), λ R (v 1 + v 2 )(f) = v 1 (f) + v 2 (f) v(λf) = λv(f) f C P T P M M P M m T P M m (U, ϕ; x i ) v { x 1 P,..., x m P } v = a i x i P v = a i x i P = 0 a i = v(x i ) = 0 { x 1 P,..., x m P } 5

2. M m M P T P M M X M T P M X : P X(P ) T P M M X M M P P (U; x i ) X X = X i x i X i C X M (V ; y α ) U V φ X = Y α y α α=1 Y α C M X (M) X (M) 6

X M f C (M) fx fx(p ) = f(p )X(P ), P M fx X (M) X (M) C (M) X (M) X M f C (M) X(f)(P ) = X(P )(f) X : C (M) C (M), X : C (M) C (M) f, g C (M) λ R 3 (1) X(f + g) = X(f) + X(g) (2) X(λf) = λx(f) (3) X(fg) = X(f)g + fx(g) 3 X : C (M) C (M) 1 ( ) X X (M) M P (U; x i ) X = X i x i X i C (U) 7

X(f) U = X i f x i P X(f) C (M). X : C (M) C (M) ( ) C (M) P v C p X : C (M) C (M) X P : C P R f C P g U 1, g M\V = 0 g f = fg P U V U V f f C (M) X P (f) = (X(f))(P ) (U; x i ) X = X i xi 8

X i = X(x i ) C (U) X M M X X : C (M) C (M) f, g C (M) λ R 3 (1) X(f + g) = X(f) + X(g) (2) X(λf) = λx(f) (3) X(fg) = X(f)g + fx(g) Intrinsic X, Y X (M) X, Y : C (M) C (M) X Y : C (M) C (M) X Y X Y (fg) = X (Y (f)g + fy (g)) = X Y (f)g + Y (f)x(g) + X(f)Y (g) + fx Y (g) (1) 9

[X, Y ] = X Y Y X [X, Y ] (1) X, Y [X, Y ](fg) = [X, Y ](f)g + f[x, Y ](g) [X, Y ] X, Y [, ] : X (M) X (M) X (M) (X, Y ) [X, Y ] X, Y, Z X (M), λ R, f, g C (M) (1) [X + Y, Z] = [X, Z] + [Y, Z] (2) [λx, Y ] = λ[x, Y ] (3) [X, Y ] = Y, X (4) [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 (5) [fx, gy ] = fx(g)y gy (f)x + fg[x, Y ] M P T P M T P M P ω TP M ω ω : T P M R v T P M, ω T P M 10

ω(v) =< ω, v >=< v, ω > <, >: T P M TP M R f CP df : T P M R df(v) = v(f) P df P df(p ) (U; x i ) P { } x 1 P,..., x m P {dx 1 P,..., dx m P } df(p ) : T P M R {dx 1 P,..., dx m P } df(p ) = f i dx i P ( ) f i = df x i P df(p ) = = f x i (P ) f x i (P )dxi P df 11

f 3. X Y Y X 3 X, Y, Z Z Y X Y Z X 0 n 2 Z Y X Y Z X n 12

M P T P M TP M P r s r s {}}{{}}{ Ts r (P ) = T P M T P M TP M TP M P (r, s) M r s M T r s (P ) T : P X(P ) T r s (P ) M r s (r, s) T M M P P (U; x i ) X T = T i 1...i r j 1...j s x i... 1 x i dxj 1 dx j s r X i 1...i r j 1...j s C X M M r s T r s (M) T0 1 (M) = X (M) T1 0 (M) 1 (M) 13

T r s (M) C (M) (1, 2) (1, 3) (1, 3) M T M (1, 3) 3 T : X (M) X (M) X (M) X (M) P M, X, Y, Z (M) T (X, Y, Z)(P ) = T (P ) (X(P ), Y (P ), Z(P )) T X, Y, Z C (M) f, g C (M), X, Y X (M) T (, fx + gy, ) = fx(, X, ) + gx(, Y, ) 3 T : X (M) X (M) X (M) X (M) C (1) T M (1, 3) M P (1, 3) T (P ) 3 T (P ) : T P (M) T P (M) T P (M) T P (M) T (P ) (X(P ), Y (P ), Z(P )) X(P ), Y (P ), Z(P ) f (P ) f P f(p ) 14

P (1) T (P ) P X(P ), Y (P ), Z(P ) M (U; x i ) X = X i x i, Y = Y i x i, Z = Zi x i T (X, Y, Z) = X i Y j Z k T ( x j, x k ) x i, T ( x i, x j, x k ) T (X, Y, Z) X i (P ), Y j (P ), Z k (P ) T (1,3) [, ] [, ] : X (M) X (M) X (M) [fx, gy ] = fx(g)y gy (f)x + fg[x, Y ] X = X i x i, Y = Y j x i [X, Y ] = (X i Y j ) x i Y i Xj x i x j ( ) [X, Y ] P X p, Y p ( ) Y j x i, Xj x i 15

X P, Y P 4. M R 3 f 2 f x i = f u k u k x i 2 f x i x j = 2 f u k u l u k u l x i x j + f 2 u k u k x i x j ( ) ( ) R 3 ( ) 16

M f Hess(f) D D(df) ddf = 0 R 3 0 d M r (0, r) T : X (M) X (M) C }{{} r X, Y X (M) T (, X,, Y, ) = T (, Y,, X, ) 17

T r r ( ) 1 Pfaff M r r (M) 0 (M) = C (M) 1 (M) = T 0 1 (M) M m m + 1 M m i (M) = i=0 (M), (U; x 1,..., x m ) T P (M) {dx1,..., dx m } U p (M) {dx i 1 dx i p i 1 < < i p } p (M) T U i 1 < <i p T i1...i p dx i1 dx ip = 1 p! T i 1...i p dx i 1 dx i p i 1,..., i p 1 m i 1,..., i p T i1...i p = 0 X i = X j i x j T = T i1...i p dx i1 dx ip i 1 < <i p 18

T (X 1,..., X p ) = T i1...i p dx i1 dx ip (X 1,..., X p ) i 1 < <i p = X i 1 1 X i 1 p T i1...i p ( ) i 1 < <i p X i p 1 X i p p dx i 1 dx i p = δ j 1...j p i 1...i p dx j 1 dx j p ( ) ( ) ( ) ( ) T T (..., X i + Y i,... ) = T (..., X i,... ) + f(..., Y i,... ) f C (M) T (..., fx,... ) = ft (..., X,... ) T (, X,, Y, ) = T (, Y,, X, ) (M) M d : (M) (M) 19

(1) d R T, S (M), λ R d(t + S) = dt + ds, d(λt ) = λdt (2) f 0 (M) = C (M) df f (3) T r (M), T (M) d(t T ) = dt T + ( 1) r T dt (4) d 2 = d d = 0 (U; x i ) d () d T = fdx i 1 (f C (U)) (4) d(dx i ) = 0 (3) dt = df dx i 1 T = f dt = df. T = fdx i 1 dt = df dx i 1 d (1),(2),(3),(4). (1),(2) 20

(3) T = fdx i 1, T = gdx j 1 dx j s d(t T ) = d(fg))dx i 1 dx j 1 dx j s = (df dx i 1 ) (gdx j 1 dx j s ) +( 1) r fdx i 1 ) (dg dx j 1 dx j s = dt T + ( 1) r T dt (3) (4) dt = df dx i 1 f x j dxj dx i 1 d(dt ) = = 1 2 = 0 2 f x j x k dxk dx j dx i 1 2 f x k x j ( 2 f x j x k ) dx k dx j dx i 1 d T = fdx i 1 (f C (U)) dt = df dx i 1 Intrinsic. T p (M), X 1,..., X p+1 X (M) 21

dt (X 1,..., X p+1 ) p+1 = ( 1) i+1 X i (T (X 1,..., ˆX i,..., X p+1 )) + i<j( 1) i+j T ([X i, X j ], X 1,..., ˆX i,..., ˆX j,..., X p+1 ) ˆX i X i d p + 1 (p + 1 ) dx j i dx j p+1 S(X 1,..., X p+1 ) S(..., X i + Y i,... ) = S(..., X i,... ) + S(..., Y i,... ) S(..., X i,..., X j,... ) = S(..., X j,..., X i,... ) f C (M) S(X 1,..., fx i,..., X p+1 ) = fs(x 1,..., X i,..., X p+1 ) i i = 1 S(fX 1, X 2,..., X p+1 ) p+1 = fx 1 (T (X 2,..., X p+1 ))+ ( 1) i+1 X i (T (fx 1, X 2,..., ˆX i,..., X p+1 )) i=2 22

( 1) i+1 T ([fx 1, X i ],..., ˆX i,..., X p+1 ) p+1 + i=2 + 2 i<j ( 1) i+j T ([X i, X j ], fx 1, X 2,..., ˆX i,..., ˆX j,..., X p+1 ) X i (T (fx 1, X 2,..., ˆX i,..., X p+1 )) = (X i f)t (..., ˆX i,... ) + fx i (T (..., ˆX i,... )) T ([fx 1, X i ],..., ˆX i,..., X p+1 ) = T (f[x 1, X i ] (X i f)x 1, X 2,..., ˆX i,... ) (X i f)t (..., ˆX i,... ) = ft (X 1,..., X p1 ) p + 1 T = 1 p! T i 1...i p dx i 1... dx i p dt ( x j,..., 1 x j ) p+1 S( x j,..., 1 x j ) p+1 dt ( x j,..., 1 x j p+1 ) T = 1 p! T i 1...i p dx i 1... dx i p 23

dt = 1 T i1...i p p! x i dx i dx i 1... dx i p dt ( x j,..., 1 x j ) p+1 T i1...i p = 1 p! x i δ ii 1...i p j 1...j p+1 i j 1 j p+1 i 1,..., i p p! p+1 = ( 1) T k+1 j 1... jˆ k...j p+1 k=1 x j k S( x j,..., 1 x j ) p+1 [ ] x i, x j = 0 p+1 = ( 1) k+1 x j (T ( k x j,... ˆ 1 x j..., k x j )) p+1 k=1 p+1 = ( 1) T k+1 j 1... ˆ x j k k=1 j k...j p+1 dt ( x j,..., 1 x j ) p+1 = S( x j,..., 1 x j ) p+1 ( ) 24