スーパーカミオカンデにおける 高エネルギーニュートリノ研究

Similar documents
untitled


Microsoft PowerPoint - okamura.ppt[読み取り専用]

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Solar Flare neutrino for Super Novae Conference

nakajima_

RCNP A Super-Kamiokande KamLAND, LVD, AMANDA/IceCube

スライド 1

CMB and DM (Cosmic Microwave Background and Dark Matter) ~ ~


LHC-ATLAS Hà WWà lνlν A A A A A A

rcnp01may-2

HK-Yokoyama-ICRR2013.key

Mott散乱によるParity対称性の破れを検証

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

21 Daya Bay θ 13 Lawrence Berkeley National Laboratory Brookhaven National Laboratory 2012 ( 24 ) Daya Bay 2011

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

main.dvi

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

05/09/2009


A05班合宿 超新星爆発ニュートリノ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ


スーパーカミオカンデ実験


PowerPoint Presentation

150518_shin_gakujutsu

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

総研大恒星進化概要.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

B

untitled

( ) ,

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

B


nenmatsu5c19_web.key

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Canvas-tr01(title).cv3

25 3 4

nsg02-13/ky045059301600033210


The Physics of Atmospheres CAPTER :

Drift Chamber

untitled

I II III IV V

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

Hasegawa_JPS_v6

36 th IChO : - 3 ( ) , G O O D L U C K final 1

FPWS2018講義千代

untitled

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

PowerPoint Presentation

Fermi ( )

Strangeness spin in the proton studied with neutrino scattering

7-1yamazaki.pptx

Muon Muon Muon lif

03J_sources.key

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE(

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

pptx

LLG-R8.Nisus.pdf

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

untitled

Ł\”ƒ-2005

基礎数学I

第90回日本感染症学会学術講演会抄録(I)

本文/目次(裏白)

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

pdf


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Microsoft PowerPoint - Ppt ppt[読み取り専用]

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

,,..,. 1


1 2 2 (Dielecrics) Maxwell ( ) D H

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

ヘテロジニアス型事象再構成アルゴリズムの開発_矢野_修正版

橡博論表紙.PDF

橡実験IIINMR.PDF

J-PARC October 14-15, 2005 KEK

Microsoft Word - 章末問題



ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

Transcription:

2009 11 20

Cosmic Ray PD D M P4

?

CR M f M PD MOA M1

ν ν

p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ + ν e GeV χ+ χ W + W µ + ν µ χ µ + ν µ

10 12 pp Solar ν e SN ν @G.C. cm -2 sec -1 MeV -1 10 8 10 4 1 10-4 B 8 reactor ν e Relic SN ν Atmospheric ν µ Neutrino flux at Earth 10-8 10-12 WIMP ν Astrophysical ν as BG 10-16 SK 10-20 10-2 1 10 2 10 4 Eν(GeV)

Two neutrino case () ν α = ( cosθ sinθ ( ) m2 = m2 2 -m 2 1 (ev 2 ) L (km): Neutrino flight length ν β ν 2 E (GeV): Neutrino energy -sinθ cosθ ) ν 1 P(ν α ν β ) = sin 2 2θ sin 2 (1.27 m 2 L/E) sin2θ ~1 ν e : ν µ : ν τ = 1 : 2 : 0 1 : 1 : 1 ν µ ν τ m 2 = 2.5 10-3 ev 2,sin 2 2θ=1.0 Losc= ~3000km@Eν=100GeV ν e ν µ ( ν τ ) m 2 =8 10-5 ev 2, sin 2 2θ=0.88 Losc= ~10 6 km@eν=100gev

( ~30 (E ν ~1GeV), ~1 E ν ~1TeV) ν E ν -2.7, ν E -2.0 (?) burst ) (WIMP Flavor (anti-ν e ν τ

Super-Kamiokande detector 42 m 50kt water Cherenkov 1000m underground ID viewd by 11176 PMT 2m thick OD for veto Fiducial mass 22.5kt E th ~5 MeV (~7MeV for SKII) 96~ 01 SK-I 02~ 05 SK-II (w/ half PMTs) 06~ SK-III (restore full PMTs) 39.3 m

History of Super-Kamiokande detector 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 SK I SK II SK III SK IV 11146 ID PMTs (40% coverage) 5.0 MeV ~4.5MeV Energy Threshold (Total energy) (Visible energy) SK I SK II SK III SK IV Acrylic (front) + FRP (back) 5182 ID PMTs (19% coverage) 7.0 MeV ~6.5MeV 11129 ID PMTs (40% coverage) 4.5 MeV ~4.0MeV Work in progress Electronics Upgrade < 4.0 MeV <~3.5MeV Target

Ring imaging Cherenkov ν + e ν + e ν Electron

Neutrino telescopes in operation Detector volume Muon effective area Super- Kamiokande ICECUBE ANTARES 50 kt (>5MeV) 0.0012 km 2 (>1.7GeV) ~1Gt (>100GeV) ~1km 2 ~10Mt (>100GeV) ~0.002km 2 (>100GeV) ~0.06km 2 (> 10 6 GeV) Super-Kamiokande ICECUBE ANTARES

ν N cross section 10-38 cm 2 / nucleon E ν (GeV) σ tot = ~ 10-38 cm 2 E ν /(GeV) 1 ν (@1GeV) 1 10-38 cm 2 6 10 32 N 3.15 10 7 s 190 int. cm 2 = s nucleon kton year kt yr ν-lepton ~30 @GeV) ~ 1 (@TeV)

ν SK FC ν PC Upgoing µ Stopping µ Through going µ µ µ µ 8.2/day 0.6/day 0.3day 1.1day 7-20MeV Energy spectrum of ν for each event category 1000 750 500 250 FC ν µ FC ν e PC ν µ 0 10 2 10 1 1 10 10 2 10 3 10 4 10 5 E (GeV) ν up-stop µ up-thru µ ν 9.9x10-5 BGν/sec

E ν Contained : σ Eν V=const N SK E ν µ : σ Eν V Eν N SK E 2 ν 1 TeV ν produces up-going through µ at SK Assuming E µ ~1TeV, R µ ~1000m Effective area S=1200m 2 1000m Effective target volume S x R µ x ρ rock 3x10 12 g N SK = 10 35 (cm 2 ) 10 7 (ν/cm 2 /s) 10 36 (proton) ~10-6 events/s µ ν

Two topics from neutrino astrophysics at Super-Kamiokande WIMP (Eν ~100GeV) (Eν~10MeV)

Neutrinos from WIMP annihilations

CR NZ MOA1.8m Super-Kamiokande WIMP XMASS MACHO Xe WIMP

WIMP WIMP WIMP WIMP WIMP- SI 10 4-10 6 m 2 ν 1kg Ge SD 10-500 m 2 ν 50g M.Kamionkowski Phys.Rev.Lett.74 5174(1995)

WIMP

DAMA DAMA LIBRA 250kg NaI)

or PAMELA e + /e - anomaly ATIC e + anomaly O.Adriani et al astro-ph0810.4995 J.Chang et al, Nature 456 07477 132GeV WIMP? Boost factor ~30000? Bergstrom, Bringmann,Edsjp astro-ph0808.3725 620GeV KK DM? Boost factor ~200?

Relic Super Nova Diffuse neutrinos

Neutrinos from SN1987a

Neutrino Flux (/cm2 /sec /MeV) 10 7 10 6 10 5 10 4 10 3 10 2 10 1 10-1 10-2 10-3 10-4 10-5 10-6 Supernova Relic Neutrino SRN SRN Reactor ν (ν e ) Solar 8 B (ν e ) Solar hep (ν e ) SRN (ν e fluxes) 0 10 20 30 40 50 60 70 80 Neutrino Energy (MeV) Constant SN rate (Totani et al., 1996) Totani et al., 1997 Hartmann, Woosley, 1997 Malaney, 1997 Kaplinghat et al., 2000 Ando et al., 2005 Lunardini, 2006 Fukugita, Kawasaki, 2003 (dashed) Atmospheric ν e e + p e + + n Expected SRN signal 0.8-5.0 events/year/22.5kton (10-30MeV) 0.3-1.9 events/year/22.5kton (18-30MeV)

30 25 20 15 10 5 90% CL limit of SRN Relic Search in SK-I I and SK-II (>18 MeV) SK-I (1496days) Total background Atmospheric ν µ invisible µ decay e Events/4MeV 16 14 12 10 8 6 4 2 SK-II(791 days) Atmospheric ν µ invisible µ decay e 0 20 30 40 50 60 70 80 SK1 DATA spectrum Atmospheric ν e 0 20 30 40 50 60 70 80 Atmospheric SK2 DATA ν e spectrum Spallation background Energy (MeV) Φ SK-I < 1.25 ν cm -2 s -1 Φ SK-II < 3.68 ν cm -2 s -1

/cm2/sec Flux limit VS predicted fluxes SK-II limit = 3.68 /cm 2 /sec (E>18MeV) Preliminary SK-I limit = 1.25 /cm 2 /sec Combined limit = 1.08 /cm 2 /sec Constant SN rate (Totani et al. 1996) Totani et al. 1997 Malaney et al. 1997) Hartmann Kaplinghat et al. et al. 1997) 2004 Ando et al. 2005 Fukugita et al. 2003 Lunardini et al. 2006 Observation is touching on the expectations

SFR vs SK limit M.Fukugita, M.Kawasaki, MNRAS 340(2003)7

events/10years/2mev ν e p e + n Gd 10 9 8 relic+b.g.(inv.mu 1/5) 7 6 5 4 3 2 1 B.G. inv.mu(1/5) atmsph. ν e 0 10 15 20 25 30 35 40 45 50 GADZOOKS! Visible energy (MeV) Relic model: Astropart.Phys.18, 307(2003) with flux revise in NNN05. γ 8MeV νe signal could be separated from BG by neutron tagging. Vertex correlation: ~50cm Load 0.2% Gd into SK water to detect gamma by neutron capture. (M.Vagins and J.Beacom) With 10 years SK data: Signal=33events, B.G.=27events (E vis =10-30 MeV) Assuming 67% detection efficiency. Assuming invisible muon B.G. can be reduced by a factor of 5 by neutron tagging. (will be checked in SK-IV by using 2.2MeV γ)

Summary 100GeV background rejection WIMP annihilation neutrino (<100GeV) Solar WIMP annihilation σ SD Relic Super Nova Diffuse neutrinos factor 5 Gd