untitled

Similar documents
(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

橡実験IIINMR.PDF

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

untitled

TSP信号を用いた音響系評価の研究

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

³ÎΨÏÀ

Note.tex 2008/09/19( )

pdf

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

201711grade1ouyou.pdf

untitled

Microsoft Word - 章末問題

A

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

A 99% MS-Free Presentation

: , 2.0, 3.0, 2.0, (%) ( 2.

( ) ,

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

05Mar2001_tune.dvi

Microsoft Word - 学士論文(表紙).doc

PDF

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

修士論文

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

JA.qxd

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

LD

The Physics of Atmospheres CAPTER :

Untitled

2011de.dvi

gr09.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Z: Q: R: C: sin 6 5 ζ a, b

devicemondai

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Mott散乱によるParity対称性の破れを検証

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π


untitled

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


QMI_09.dvi

QMI_10.dvi

Gmech08.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) ( )

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

Microsoft Word - 11問題表紙(選択).docx


85 4

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie


* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

総研大恒星進化概要.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

() [REQ] 0m 0 m/s () [REQ] (3) [POS] 4.3(3) ()() () ) m/s 4. ) 4. AMEDAS

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (


(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

untitled

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

訂正目次.PDF

I


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

TOP URL 1


r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

構造と連続体の力学基礎

Part () () Γ Part ,

0.1 I I : 0.2 I

keisoku01.dvi

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

H.Haken Synergetics 2nd (1978)

 5月9日、看護の日の記念イベントとして、病院を訪れた方々に絆創膏が配布されました

all.dvi

数学の基礎訓練I

橡博論表紙.PDF

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

Transcription:

MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1

4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave) ( ) 1.4 FM-CM 1.4.1 ( ) ( ) ( ) 2 f0 B/2 f0 B/2 th = 2h/c h ( ) c th, T 2 2

1.4.2 s () t S sin( ϕ () t ) = (1.4.2.1) S ϕ () t ( t)dt S ω s B ω () t = π t s ω 2 0 T T 2 t T 2 1.4.2.2 3

B 2 s() t = S sin ω t 2π t 1.4.2.3 0 2T t h = 2h c (th ) ϕ e () t = ϕ ( t t ) e t) = E sin s h ω B 2 2 t ω t 2 ( + ) 0 h π t tht t 1.4.2.4 2T ( 2 0 h (mixing) s(t) e(t) 2 s(t) e(t) 2 s(t) e(t) B f0 2f0 ϕe ( t) ϕs ( t) 644444444 744444444 8 644744 8 1 B 2 1 B 1 B 2 1 B 2 ϕm( t) = ω0t ω0th 2π t + 2π tht 2π th ω0t + 2π t (1.4.2.5) 2 T 2 T 2 T 2 T f (1.4.2.5) m = ( 1/ 2π ) ϕ ( t) / t th fm = B 1.4.2.6 T f=1/t (1.4.2.6) th f T δ t h = δ f (1.4.2.7) B (1.4.2.7) f 1/T th h h=(1/2)c th δh 1 = 2 c B (1.4.2.8) m 4

1.4.3 FFT 1/T FFT 1.4.3.2 (1.4.3.1) 3 (Beat signal) ( 1 FT) ( )r 3 10 (0 r 9) MRR 32 3 4 3 4 5

/8 3 4 90 1/T 1/nT 2 FT ( ) N=1/T f = / 4 f N 1.4.3.2 1.4.3.3 f 2 / 2 0 N 1.4.4 (1 /h) 2000m -3 (=2 /l) (500m 50m ) 10 4 m 3 2 10 7 FM CW 6

1.5 1.5.1 (Incoherent Averaging) (random) (spectral power) (stochastic) incident (power) (expectation, ) (ensemble) n 1 1/ MRR SP(?) 1 25 80% (n=25 n=5 1/ n=0.8) SP 10 4 6 6 150 single power spectra (n=150 1/ n=0.08) 8% 0.34dB 1/T 1/nT ( ) 2FT N=1/T 3 4 1.5.2 ( ) ( ) ( % ) ( ) 8% 0.34dB S/N( ) 7

4 2 1 p( f ) df = C( r) η ( f ) 2.1 2 r h f 8

h r C(r) MRR η( f ) df f 2 2 nd FT η( f ) df C(r) p ( f ) df PC MMR2-control MMR ver1.3 C(r) 32 ( r ) MRR2-control 2 2 nd FT F 64 ( 3 8 ) (0 63) F dbη F η = 10 F /10 η( f, ) = η / f f = f, f = 30. 52Hz MRR2 2 η(ν ) Gu& intzer(1949) Atlas(1973) ( 5 ) -1 ν ( )[m/s] = 9.65m/s -10.3m/s exp(-0.6mm [mm]) δv( h) for 0.109 6mm 2.5 0.2 v ρ 5 9 2 δv( h) = [ 1+ 3.68 10 h + 1.71 10 h ] ν ν f ν η ( ) = η( f, ) 2.7 v 9

1 [ m ] f = 160.1973 v ν / [m/s/mm] = 6.18 exp(-0.6 [mm]) δv (h) ( (2.5) ) η( )[m -1 mm -1 ] = η( f, -1 ) 990.02 exp(-0.6mm [mm] ) 2.8 ) σ η ) N ) ( ( ( N( η( ) ) = 2.9 σ ( ) 2.8 (2.9) σ () 2 m 2 m1 + K 2 5 π 1 6 σ R ( ) = 2.10 λ 4 23 1 m K 2 24 0.92 0.18 MRR σ () 6 MRR =(6V/ ) 1/3 V MRR2 N MRR ver1.3 ν 0 63 64 =0 12.285 /s (2.8) 0.246mm 5.03mm 0.78 / (h) 8.97m/s 7 10

11

) ( ) ( ) 3 3.1 MRR min(h) max(h) (summation) (h=0) min(h)=4 max(h)=49 9 7 0 max( h) g( f ) df (3.1.1) g min( h) g f ) ( g = g( f, ) f (3.1.2) 12

f = 30.5Hz f 1 g( v ) = g (3.1.3) ν f f 1 1 = (3.1.4) v f 0.1905[m/s] f 1 v g( ) = g (3.1.5) ν f f v 1 v 1 [ mm ] = 3.15 (9.65 v( h) v[ m / s]) f δ (3.1.6) (3.1.5) g g (2.9) N ) η η ) ( ( 3.2 24GHz 0.2dB/km 10g/m3 nac(not attenuation corrected) (recursive) r = 1 N(, r) N(, r) nac exp h κ ( N(, i)) (3.2.1) i= 1 (3.2.1) ( h κ( N(,1))) N(,2) = N(,2) nac exp (3.2.2) N(,1) N(,1)nac = max( h) κ = N( ) σ ( ) (3.2.3) = min( h) e e() e 13

(account for) 3.3 Z e 4 λ = 5 π 1 K 2 0 η( f )df (3.3.1) Z e 4 λ = 5 π 1 K 2 0 ( ) dν η ν (3.3.1) ( ) Ze 6 Z 0 6 ( ) d = N (3.3.2) (2.9) (3.1.1) (3.3.2) 14

(3.3.2) 3.4 w π LWC = ρ w N 6 0 3 3 ( ) d[ g / m ] (3.4.1) 3.5 rr() v() ( / ) N() 3 RR π = N( ) 3 ν ( )d 6 (3.5.1) 0 3.6 W λ = 2 η 0 ( f ) fdf η( f )df 0 (3.6.1) R()=N() R() (2 10) R η R ( f ) = N( ) σ R ( ) ( f / ν )( ν )( ) R (3.6.1) 3.6.2 15

4 4.1 MRR 10 4 6 1 23 138(23 6) 9% 4.2 ( (2.5): ) ( 10m ) (2.5) (2.5) (2.8) Richter(1993) 100m 0 9 9 0 10log(Rcorr/Runcorr) 1dB 10,000 12dB 16

4.3 C C 10% C ( ) 30K 10% ( ) 4.4 (0 ) MRR 17

( ) 5 MRR yymmddhhmmss : 2 H ( ) db (00...63) FFT F η N04-N49 ( ) (04...49) FFT (2.5) = 1 9.65 v( ) / δv( ) ln h 0.6 10.3 Z (3.3.2) RR (3.4.1) (mm/h) (3.5.1) (g/m 3 ) W (3.6.1) 1 18

19

6 20