Similar documents
Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

0406_total.pdf

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

QMI13a.dvi

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

19 /

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

修士論文 物性研究 電子版 Vol, 2, No. 3, (2013 年 8 月号 ) * Bose-Einstein.

30

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

IA

all.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

Andreev Josephson Night Club

YITP50.dvi

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

( ) I( ) TA: ( M2)

( ) ) AGD 2) 7) 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Xray.dvi

MS#sugaku(ver.2).dvi

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

II

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

橋本研

hidaka2

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull


構造と連続体の力学基礎


* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

The Physics of Atmospheres CAPTER :

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n



熱場

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

微粒子合成化学・講義

微粒子合成化学・講義

ssp2_fixed.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


MgB 2 Mg B

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

TQFT_yokota

Planck Bohr

III,..

all.dvi


( )

TOP URL 1

i x- p

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit


meiji_resume_1.PDF

TOP URL 1

ii

QMI_09.dvi

QMI_10.dvi


note5.dvi

Meson theory in its developments

i Γ

Maxwell

Transcription:

1. 1.1....................... 1.2............................ 1.3.................... 1.4.................. 2. 2.1.................... 2.2..................... 2.3.................... 3. 3.1..................... 3.2................ 3.3 RKKY........ 3.4.................. 3.4 s-d...................... 3.5.................. 3.6 QCD................................ 3.7....................... 3.8....................... 3.9...... 1

4. 4.1 -................. 4.2....................... 4.3....................... 4.4..................... 4.5...................... 4.5a....................... 4.5b......................... 4.5c...... 4.5d............... 4.6....................... 4.7......................... 5. 5.1 φ 4............................... 5.2 XY -............ 5.3 -............. 5.4...................... 5.5 Ward-Takahashi.................... 5.6.............................. 6. 6.1............... 6.2................ 6.3......................... 6.4..................... 7. 7.1 BCS............................. 7.2................ 7.3......................... 7.4 Nambu-Jona-Lasinio................... 7.5 -................... 8. 8.1............................ 8.2..................... 2

8.3................. 9. 9.1.................. 9.2................. 9.3.................... 9.4.......................... 3

1 1.1 1761 Euler Principia motus fluidorum 1864 Maxwell Electromagnetic field 1900 Planck 12 14 1904 Lorentz Lorentz 1905 Einstein Special Relativity 1908 Minkowski Raum und Zeit 1911 Kamerlingh Onnes Hg T c = 4.2K 1915 Einstein Allgemeine Relativitästheorie 1925 Heisenberg 1926 Schrödinger Wellenmechanik 1826 Dirac Dirac 1927 Dirac Maxwell field 1927 Bloch 1928 Jordan-Wigner 1929 Heisenberg-Pauli 1930 1932 C. D. Anderson 1933 Meissner-Ochsenfeld Meissner 1933 de Haas, de Boer, van den Berg 1934 Pauli-Weisscopf 1934 Fermi 1935 1937 Kapitsa T c = 2.17K 1940 Pauli 1943 Heisenberg S 1943 1945 ESR NMR 1949 Tomonaga, Schwinger, Feynman, Dyson 1954 Yang-Mills 4

1955 S 1957 BCS 1958 Landau 1960 Josephson 1960 1964 Gell-Mann, Zwig 1964 1971 K. G. Wilson 1972 Osheroff, Richardson, Lee T c = 2.6mK 1973 Kosterlitz-Thouless 1974 Gross, WIlczek, Politzer 1979 Anderson 1980 1983 STM Scanning Tunneling Microscopy 1986 Bednorz, Muller 1995 87 Rb 2004 40 K 6 Li 100nK 5

1.2 L L L h2 2m 2 ψ = ɛψ. (1) ψ = 1 V e ik r (2) ψ(x + L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L) = ψ(x, y, z) (3) k x = 2π L n x, k y = 2π L n y, k z = 2π L n z. (4) n x n y n z C T C = 2 π2 π 2 k 3 k2 B 2 Bρ(ɛ F )T = N e h 2 mt (5) kf 2 1000 1000 3R/2 1.3 6

k k k 1 1.4 1. 2. P.W. Anderson Basic Notions of Condensed Matter Physics 1. H H = kσ ɛ k c kσ c kσ g kk c k c k c k c k, (6) 7

BCS BCS ψ = k (u k + v k c k c k ) 0 (7) -BCS 11(1976)297 2. QED 2 2.1 ev 8

ɛ F ev (8) e2 d ev (9) - W = 1/τ T 2 1 τ (k BT ) 2 k B T, (10) ɛ F Fermi liquid theory 1/τ H = kσ ɛ k c kσ c kσ + U 1 N c k q c k +q c k c k. (11) kk q ImΣ R k (ɛ) = U 2 q ImG R k q(ɛ ) k dɛ ( coth ɛ ɛ 2π 2k B T ( dx 2π ) ɛ tanh 2k B T tanh x k B T tanhx + ɛ ɛ 2k B T ImG R k (x)imgr k +q(x + ɛ ɛ ) (12) ) 9

Table 1: Green z ρ ImΣ ReΣ z ρ d = 1 T or ɛ ɛ ln ɛ z = 0 T d = 2 T 2 ln T or ɛ 2 ln ɛ ɛ z 0 T 2 ln T d = 3 T 2 or ɛ 2 ɛ z 0 T 2 G R k (ɛ) Green ɛ = 0 dɛ ( coth ɛ 2k B T ) ɛ tanh F (ɛ ) = F (0)(πk B T ) 2 (13) 2k B T ImΣ R k (0) = 1 2π U 2 (πk B T ) 2 1 dx 2k B T cosh 2 (x/2k B T ) ImG R k q(0)img R k (x)imgr k +q(x) (14) k q 3 ImΣ R k (0) T 2 (15) ImΣ R k (ɛ) ɛ 2 (T = 0) (16) T 2 1 1. I,II. 2. II. 3. A. A. Abrikosov, L. P. Gorkov, I. Ye Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics. 4. K. Nishijima, Fields and Particles (1969). 5. N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized 10

Fields. 6.. 7. C. Hodges, H. Smith and J. W. Wilkins, Phys. Rev. B34, 302 (1971). 8. P. Bloom, Phys. Rev. B12, 125 (1975). 11