Untitled

Similar documents
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

b3e2003.dvi



Gmech08.dvi


untitled

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

i

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi


KENZOU Karman) x

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Part () () Γ Part ,

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


i 18 2H 2 + O 2 2H 2 + ( ) 3K

Gmech08.dvi

II 2 II

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) ( )

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

pdf


TOP URL 1

DVIOUT

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

2000年度『数学展望 I』講義録

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

第1章 微分方程式と近似解法

A

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

meiji_resume_1.PDF

KENZOU


( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


Microsoft Word - 11問題表紙(選択).docx

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

2011de.dvi

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

TOP URL 1

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

all.dvi


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

量子力学 問題

phs.dvi

³ÎΨÏÀ

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

sec13.dvi

Transcription:

II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j j (ρv i v j )=F (ex) i i p + j j τ ij τ ij = µ ( i v j + j v i ) ρ ( t + v ) v = F (ex) p + µ v (#1) v Dv t Dt 3 L U Reynolds Navier Stokes df dx = lim f(x + x) f(x) x x (#) f(x + x) f(x) = df x ( x ) (#3) dx 3 (#3) x r x r f(r + r) f(r) = (grad f) r (#4) r r grad f A

II 14 B r = OA, r = AB f(b) f(a) = AB grad f (#4 ) grad f f (gradient) (#4) f(r + r) f(r) = f f f x + y + x y z z grad f = xf y f (#5) z f (#5) grad f = f, = e x x + e y y + e z z (#6) f(b) f(a) = AB f (#7) p/ x = x p p x (#6) e x x x e x 4 (pq) p q : x y p v v divergence rotation : divv = v (#8) : rot v = v (#9) x / x x x x balance law V v nds =(divv) V ( V ) (#1) (#1) (#4 ) (#3) (#4 ) AB (#1) 3 rot v3 v =(u, v, w) ω = rot v =( y w z v, z u x w, x v y u) (#11) 3 3 3 (#11) w z ω =(,,ω)=(,, x v y u) (#1) (#3) Γ= v dr (#13) C C xy S v dr =( x v y u) S Γ=ω S C 3 (16.3) f (#7) v grad v Laplace Laplacian f = f = div grad f (#14) (#6) f = ( x + y + z) f (#15)

II 14 3 (#14) v = div(grad v) grad v Laplacian v = rot rot v + grad div v = ( v)+ ( v) div v = 1 v = grad φ =( x φ, y φ) (#16) 6 (6.) 4.4 I (#1) I Bernoulli Lagrange II Reynolds II (6.) II II 4.5 I Reynolds 4.6 Reynolds Reynolds Reynolds p.44 (#11) (#1) 1 1 (#16) µ (#)

II 14 4 1 1 Lagrange t λ νt (46.13 ) λ t λ /ν (#17) A B A B 1 cos θ θ 5 ν t λ ν a t b (46.13 ) a = b =1/ 46.3 x (46.13 ) t x x/u x δ B νx δ B U (#18) L (#18) max δ B νl ν U = L UL Reynolds Re = UL ν max δ B (#19) L Re (#18 ) (#18 ) Reynolds L 6 U =1.5m/s L =1cm Reynolds (#18 ) (#18) Reynolds 1 1 (#18) 48. 1.3 (#18)

II 14 5 Navier Stokes Euler Navier Stokes v I (#16) φ = xφ + yφ = (#) Navier Stokes µ u = µ ( x + y) ( x φ = µ x x + y) φ = µ v = µ ( x + y) ( y φ = µ y x + y) φ = Navier Stokes p p p = p ρ { t φ + 1 ( xφ) + 1 } ( yφ) (#1) (#1) Bernoulli 7 (#16)(#1) Navier Stokes (#16) (#16) Navier Stokes Navier Stokes p Navier Stokes ρ ( tu + u xu + v yu) = xp + µ ( x + y) u (#a) ρ ( tv + u xv + v yv) = yp + µ ( x + y) v (#b) p Navier Stokes p 1 (#b) x (#a) y x (u x v)=( x u) x v + u xu (#1) x u + y v = (#3) t ω + u x ω + v y ω = ν ( x + y) ω (#4) Dω/Dt 3 3 (x, y) z 3 µ = Euler I (6.) ρgz (#1) (#1) Bernoulli (#4)

II 14 6 46 8 Navier Stokes (#1) z? : v =(u, v, w) (#1) u v zw = 9 θ x y g =(g sin θ, g cos θ) Navier Stokes ρ Dv Dt = ρg p + µ v (#5) div v = (#6)? Navier Stokes Fourier ODE U v =(u,, ) y y = const. u : : u = U : u = U : y u = v =(,,w) y = const. x = const. x w = u = u(x) x u 1 y = y = H x = x min p H x = x max p L (<p H ) 11 z = z = H +x U (> ) x

II 14 7 1 (#5) v =(u, ) y =, y = H yu y=h = Reynolds Reynolds p.161 Hagen Poiseuille Hagen Poiseuille a x v =(u,, ) x Navier Stokes Navier Stokes µ ( y + z) u = x p (#7) x u = (#8) ( y p, z p)=(, ) (#9) (#7) x y z (#7) p x 1 dp/dx p L p H, p L dp dx = p H p L L (#7) ( y + z) u = p H p L µl (46.6) u = u y +z =a = (#3) u = u(r), r = y + z (#31) ( y + z) u (y, z) r u y u = r du y dr = y du r dr { } yu = y y u (r) r { = u (r) u } (r) + y y r r = u (r) + y r { d u } (r) r y dr r { = u (r) + y u } (r) u (r) r r r r zu ( y + z) d u du u = + r 1 dr dr (#3) (46.6) d u du + r 1 dr dr = p H p L µl (#33)

II 14 8 ODE u r 13 u r=a = (#3 ) (#3) 14 (#33) u = A log r + B p H p L 4µL r (#34) (#3) u A, B u 46.1 Q = u ds = a u πrdr (#33) Q Q = p H p L L πa4 8µ Hagen Poiseuille 15 (46.8) (46.8) (46.8) y = <y<+ t = +x U x Navier Stokes Navier Stokes t u = ν yu (46.1) u t= = (#35) u y= = U (#36) (46.1) 16 Navier Stokes (46.1) Fourier (46.1) PDE Fourier u(y, t) F (k, t) t F (k, t)+νk F (k, t) = (#37) ODE (#36) (#36) u = u(y, t) =U {1 f(y, t)} (#38)

II 14 9 u f (#36) f y= = (#36 ) Fourier <y<+ + (#36 ) F = F (k, t) = π f = f(y, t) = π f(y, t)sinky dy (#39) F (k, t)sinky dk (#4) (#38) (46.1) (#35) t f = ν yf (46.1 ) f t= =1 (#35 ) (#4) (46.1 ) π { t F (k, t)+νk F (k, t) } sin ky dk = (#37) (#37) F (k, t) =F e νkt, F = F (k, ) (#41) ODE F F k t F (#35 ) (#39) f t= F t= F (k, ) = π sin ky dy = (#41) π 1 k (#4) (#4) f 7/18 f = π u = U e νkt sin ky k { 1 erf ( y νt 46. 17 ( ) y dk =erf νt )} (46.1) 18 (46.11) 1 (46.11) Fourier [ ] [ ] x X = 1 [ ][ ] 1 x (#43) y Y 5 1 y (#39) (#4) [ ] [ ] X x = 1 [ ][ ] 1 X (#44) Y y 5 1 Y Fourier (#43) 1/ 5 ±1 (#44) (#39)(#4) /π 1 /π /π F (k, t) = /π k e νk t Stanley Farlow 1.1 (#4) (46.1)

II 14 1 u = u(s), s = y λ(t) (#45) (t, y) s u t u = s du t ds = λ (t) {λ(t)} yu (s) = λ (t) λ(t) su (s) y u = s du y ds = u (s) λ(t) yu = y { u (s) λ(t) } = = u (s) {λ(t)} (46.1) λ(t)λ (t) ν = u (s) su (s) (#46) (#45) s, t, y 3 (46.1) 3 (#46) t s y t y s α λ(t)λ (t) =αν (#47) u (s) = αsu (s) (#48) (#47) (#35) λ t= = λ = ανt (#49) (#48) exp ODE ϕ(s) =u (s) 1 A, B s ( u = ϕ ds = A exp α s) d s + B (#5) (#35)(#36) u(s) u() = U, u(+ ) = A, B α A = U, B = U (#51) π (#49) α/ s = η, α/ s = η u α U =1 π =1 η π s ( exp α s) d s e η d η =1 erf η α α α (#47)(#48) α = λ = νt (#49 ) (46.11) 19 Navier Stokes (46.11) Fourier (46.13 )

II 14 11 Blasius 46.3 Navier Stokes (#) y Navier Stokes : y x µ yu µ xu Navier Stokes (#) t u + u x u + v y u = 1 ρ xp + ν yu (48.9) (48.9) u x u + v y u = ν yu (48.11) (#3) y + u U (48.11) Fourier y/δ B δ B λ u = u(s), s = y λ(x) (#5) (x, y) s u x u = s du x ds = = (x) λ λ(x) su (s) (#53) y u = s du y ds = u (s) λ(x) (#54) yu = y ( y u)= = u (s) {λ(x)} (#55) v (#53) (#3) v = λ (x)v (s) (#56) (#56) y y v = λ (x) s dv y ds = λ (x) λ(x) V (s) (#3) λ(x) s V (s) =su (s) s V (s) = su (s)ds = su(s) u(s)ds (#57) (#56) v u(s) λ(x) (48.11) λ (x) λ(x) u (s) u(s)ds = ν {λ(x)} u (s) u(s) f(s) = U ds, u(s) =Uf (s) (#58) x λ(x) s f(s) U ν λ(x)λ (x) = f (s) f(s)f (s) (#59) U U/ 1 f U (48.15)(48.16) U/

II 14 1 y s x s x y (#46) 1 λ 1/ (48.11) λ dλ dx = ν U (#6) d3 f ds 3 + f d f = ds (#61) ODE (#6) 7 6 5 4 s 3 1.7 λ = νx U (#18 ) 1 (#18) (#61) 1 Blasius 1 u / U 1 (#61) Navier Stokes (#6)(#61) µ yu µ xu xu U x, yu U νx = Ux ν U x Ux/ν 1 yu x Reynolds UL/ν x = (#18) u y = y <y<y y u dy Uy y u dy =(y δ D ) U (y + ) δ D y = δ D (#61) δ D δ D νx =1.7 δ D =1.7 νx/u U 1 (#18)