1. A0 A B A0 A : A1,...,A5 B : B1,...,B

Similar documents

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ii

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

Pascal Pascal Free Pascal CPad for Pascal Microsoft Windows OS Pascal


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II Time-stamp: <05/09/30 17:14:06 waki> ii


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

r3.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

r3.dvi

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Collatzの問題 (数学/数理科学セレクト1)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

i 18 2H 2 + O 2 2H 2 + ( ) 3K

統計学のポイント整理

応力とひずみ.ppt

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

コンピュータ概論

基礎数学I


DVIOUT

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

6. Euler x

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

「産業上利用することができる発明」の審査の運用指針(案)

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


2000年度『数学展望 I』講義録

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ


I II III 28 29

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

i

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


201711grade1ouyou.pdf


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Chap11.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

II 2 II

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

第10回 コーディングと統合(WWW用).PDF

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y


1 1 [1] ( 2,625 [2] ( 2, ( ) /

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Untitled

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

,2,4

newmain.dvi

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

A

入試の軌跡

4 (induction) (mathematical induction) P P(0) P(x) P(x+1) n P(n) 4.1 (inductive definition) A A (basis ) ( ) A (induction step ) A A (closure ) A clos

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

pdf

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

v er.1/ c /(21)

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

Transcription:

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5.

A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4) (iv) (i) 1

A1 f R n (n ) R n V W f(v ) W f(w ) V (1) dim V dim W f (2) V + W = R n f(v ) = W f(w ) = V f (3) V W = {0} α R \ {0} α f V W A2 (1) x = 0 f(x) = x 3 x 2 + x + 1 g g (1), g (1), g (1) (2) x = 0 F (x) = sin 3 x sin 2 x + sin x + 1 G G (1), G (1), G (1) 2

A3 S S U, V U = {U S U = S U = S U } V = {V S V = S V = S V } (1) U, V S ( ) (2) (S, U) (S, V) (3) f : (S, U) (S, V) g : (S, V) (S, U) f(x) = x, g(x) = x (x S) f g A4 0 < p < 1 X P (X = k) = { p(1 p) k 1 k = 1, 2,... 0 X p Ge(p) X 1 X 2 Ge(p 1 ) Ge(p 2 ) p 1 p 2 (1) Y = X 1 + X 2 P (Y = k) (2) Y (3) Z = min(x 1, X 2 ) P (Z = k) (4) Z 3

A5 Pascal, program sieve(input, output); const maxind = 200; var table: array[0..maxind] of boolean; function ti(n: integer): integer; begin ti := (n div 7) * 2 + (n mod 7) div 5 end; n: integer; function fi(i: integer): integer; begin if i mod 2 = 0 then fi := (i div 2) * 7 + 1 else fi := (i div 2) * 7 + 6 end; procedure mktab(maxnum: integer); var n, m, d, dm, i: integer; begin for i := 0 to maxind do table[i] := true; n := 6; d := 2; while n <= maxnum do begin if table[ti(n)] then begin m := n; dm := d; while m <= maxnum div n do begin table[ti(n*m)] := false; m := m+dm; dm := 7 dm end; n := n+d; d := 7 d end end; end begin readln(n); if (ti(n) <= maxind) and (n = fi(ti(n))) then begin mktab(n); writeln(n, table[ti(n)]) end end. (1) 34, (.) (2) n, 4

B1 p G { g p g G } G G (1) G G G (2) G H G p 1 f : H/H G/G ; f(hh ) = hg (3) (2) G f B2 K 4 S = K[x 1, x 2, x 3, x 4 ] y = x 1 x 4 + x 2 x 3, z = x 3 x 4 R = K[y, x 2, x 3, x 4 ] T = K[y, x 3, x 4 ] R T { 1, z, z 2,... } R z T z a K σ a : S S K x 3, x 4 σ a (x 1 ) = x 1 ax 3, σ a (x 2 ) = x 2 + ax 4 (1) a K σ a (y) (2) S R z (3) K f S a K σ a (f) = f f T z 5

B3 a f a : R 2 R 2 f a (x, y) = (x, y 3 + xy + ay) (1) a = 0 f 0 df 0 (p) : T p R 2 T f0 (p)r 2 p R 2 ( f 0 0 p R 2 ) C 0 R 2 C 0 R 2 (2) C 0 f a f a (C 0 ) R 2 a B4 D, E 2 C {z C z 1}, {z C z = 1} D, E, C D E D E n f n : D C g n : D E f n (z) = z n, g n (z) = z n D E g n Y n = D gn E Y n D E D x g n (x) E Y n = (D E)/ D C f n X n = D fn C (1) X 1, Y 1 H q (X 1, Z), H q (Y 1, Z) (q = 0, 1, 2) (2) X 0, Y 0 H q (X 0, Z), H q (Y 0, Z) (q = 0, 1, 2) (3) X 2, Y 2 H q (X 2, Z), H q (Y 2, Z) (q = 0, 1, 2) 6

B5 C R (R > 0) { C R = z C \ {0} Re 1 z = 1 } R Re (1) C R (2) n C R z n 1 e 1/z dz C R (C R.) B6 y, z, w x, y, z, w. (1) y + xy = 0. (2) y + xy = x 3. (3) y z w x 0 0 y x 3 = 0 0 1 z + x 1 3 2 w x 2 + 3 y(x), z(x), w(x). y(0) = 2, z(0) = 1 9, w(0) = 1 3 7

B7 V (, ). x V x = (x, x). (1) Cauchy-Schwartz. (x, y) x y, x, y V. (2) f : V R x = 1 f(x) M M., N 1 x 1, x 2,..., x N, { 1 i = j (x i, x j ) = 0 i j. N f(x i ) 2 M 2 i=1 8

B8 X M(X) P ( X > M(X) ) 1/2 P ( X < M(X) ) 1/2 (1) M(X) 1 (2) E[X] <, E[X 2 ] < M(X) E[X] + 2 Var(X) Var(X) X (3) X 1 p(x) Ce λx, 0 < x < 1/3, p(x) = 0, x 0 1/3 x 2/3 1 x, Ce (1 λ)(x 1), 2/3 < x < 1. λ 0 λ 1 C M(X 1 ) 1 λ B9 B(n, p) m X 1, X 2,..., X m X = 1 m X k n p m k=1 (1) X/n p (2) p (3) X/n p (4) m p 1 α. 9

B10 E {0, 1} k n- Π E : {0, 1} k {0, 1} n {0, 1} n {0, 1} 2k n- Π F F (K 1 K 2, M) def = E(K 2, E(K 1, M)), ( K 1, K 2 {0, 1} k ) 2 ((m 1, c 1 ) (m 2, c 2 )) Π Π ( ) B11 p, q,... A ν(a) {0, 1} ν, ν( ) = 0 ν(a B) = max{1 ν(a), ν(b)} A A : (A ). Γ Γ 0 A Γ 0 (ν 0 (A) = 1) ν 0, Γ G Γ 0 Γ 1 (1) Γ G Γ ( ) A A, A Γ (2) Γ ( ) Γ 1 ( ) 10

B12 Scheme, (define (r x) (lambda (z) x)) (define (b g f) (lambda (z) ((f (g z)) z))) (define t1 (b (lambda (z) (* 2 z)) r)) (define t2 (b car (lambda (u) (b cadr (lambda (v) (r (+ u v))))))) (define (tn f a) (if (null? f) (r a) (b (car f) (lambda (u) (tn (cdr f) (cons u a)))))) (1) (t1 2), (2) (t2 l) 0 l, (3) l, ((tn (list cadr car caddr) (0)) l), 11