A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

Similar documents
untitled

2005 1

GD152

untitled

CWContinuous Wave CW XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

P361

J.qxd

鉄鋼協会プレゼン

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


( ) : 1997

スライド タイトルなし

Doctor Thesis Template

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>


AD_Vol42_No1_J1


LD

JIS Z803: (substitution method) 3 LCR LCR GPIB

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

untitled

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

it-ken_open.key

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

重力方向に基づくコントローラの向き決定方法

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

untitled

untitled

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

Mott散乱によるParity対称性の破れを検証

untitled

main.dvi

こんにちは由美子です

2007-Kanai-paper.dvi

keisoku01.dvi

untitled

dp0206_j

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Keysight MIMO MIMO Cluster n Path n σ n, AoA σ n, AoD Θ n, AoA MS/UE Array Boresight Rx0 Tx0 Θ n, AoD LOS BS Array Boresight Θ n+1, AoA Rx1 Tx1 Path n


Microsoft Word - 学士論文(表紙).doc

空気の屈折率変調を光学的に検出する超指向性マイクロホン

°ÌÁê¿ô³ØII

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

[ ] [ ] [ ] [ ] [ ] [ ] ADC

第122号.indd

スライド 1

untitled

LMS NLMS LMS Least Mean Square LMS Normalized LMS NLMS AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N =

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

Gmech08.dvi

2000年度『数学展望 I』講義録

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

PowerPoint Presentation

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

B


MainOfManuscript.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

WT3000 プレシジョンパワーアナライザ ユーザーズマニュアル

( )

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

201711grade1ouyou.pdf

高速データ変換

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

5988_4096JA.qxd

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

news

TOP URL 1

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

85 4

修士論文

組込みシステムシンポジウム2011 Embedded Systems Symposium 2011 ESS /10/20 FPGA Android Android Java FPGA Java FPGA Dalvik VM Intel Atom FPGA PCI Express DM

2: 3: A, f, φ f(t = A sin(2πft + φ = A sin(ωt + φ ω 2πf 440Hz A ( ( 4 ( 5 f(t = sin(2πf 1t + sin(2πf 2 t = 2 sin(2πt(f 1 + f 2 /2 cos(2πt(f 1 f


時間インタリーブ方式ADCシステム向け高精度クロックの生成

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Keysight Technologies LTE規格に準拠したトランスミッタのACLR測定


c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

AD

2005年度卒業論文

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

Transcription:

A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133

LSI DSP CMA 10km/s i

1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1... 13 2.2.2... 15 2.2.3... 17 3 18 3.1... 18 3.2... 19 3.2.1... 19 3.2.2... 20 3.3... 23 3.3.1... 23 3.3.2... 26 3.4... 28 4 29 30 31 32 ii

1 e ( 1.1 ) 1.1: 1

S/(N + I)( ) n x i (i =1, 2, n) w i (i =1, 2, n) ( 1.2) #1 #2 x w 2 2 x 1 w 1 Array Output #n x w n n Weight Vector Weight Estimator 1.2: 1) MMSE(Minimum Mean Square Error): 2 LMS (SMI) 2 (RLS ) 2

2) MSN(Maximum Signal-to-Noise ratio): SNR (S/(N + I)) (Jammer) 3) CMP(Constarained Minimization of Power): CMP DCMP( ) PI( ) 4) CMA(Constant Modulus Algorithm): ( ) MMSE CMA LSI DSP PHS [1] 3dB 2 8 16 CMA 3

2 CMA 3 4 4

2 LS-CMA CMA CMA CMA FPGA 2.1 CMA 2.1.1 CMA(Constant Modulus Algorithm) Treichler [2] CMA 1 CMA [3] CMA 2.1 MMSE MMSE 5

CMA 2.1: CMA CMA 2 (SD-CMA) 2 (LS-CMA) Marquardt Marquardt Gauss-Newton Marquardt LS-CMA Marquardt α =0 W SD-CMA W (m +1)=W (m) 4X(m)y (m)( y(m) 2 σ 2 ) LS-CMA W (m +1)=R 1 xx (m)r xd (m) n R xx (m) = X(i)X H (i) r xd (m) = δ(i) = i=0 n i=0 σ y(i) y(i) X(i)δ (i) y σ m ( ) n n 6

2.1.2 CMA 2.2 2.1 IF A/D 8[GHz] 4 1 A/D IF 4 2.2: 2.1: Center Frequency 8.45[GHz] IF Modulation Bit rate 1 10[MHz] π/4shiftqpsk 2[Mbps] Number of element 4 Sampling Frequency Update Algorithm 4 40[MHz] LS-CMA,SD-CMA 7

2.2 3 1 2 3 2.2: Power[dB] DOA[deg] Delay[µs] 1 st wave Desired 0-30 0 2 nd wave Delayed -2 60 1.6 3 rd wave CCI -4 20 - n=10 2.3 2.4 LS-CMA BER 2.5 1bit LS-CMA SD-CMA BER SD-CMA LS-CMA LS-CMA LS-CMA 8

Iteretion[time] 0 20 40 60 80 100 0 Magnitude[dB] -10-20 -30-40 -50 1 st wave 2 ndwave 3 rdwave 0 200 400 600 800 1000 Time 2.3: LS-CMA Magnitude[dB] 0-10 -20-30 -40 1 st wave 2 ndwave 3 rdwave -50 0 200 400 600 800 1000 Time 2.4: SD-CMA 9

1-1 10 BER -2 10-3 10 LS-CMA SD-CMA -4 10 2 4 6 8 10 12 14 Eb/N[dB] 2.5: BER 2.1.3 ( ) f D V λ f D = V/λ 100km/s 100km/s 8GHz 100km/s LS-CMA n 2.3 10

2 3 2000-25.7dB -41.3dB ( 2.6 ) n 2.7 2.7 200[µs] 8GHz 100km/s f D 2.6[MHz] IF 212[µs] λ/20 [4] 2.7 ( 200[µs]) n =5 10[sample] 1 1[MHz] n[µs] 2.8 100 1 2 3 Iteretion[time] 0 200 0 Magnitude[dB] -10-20 -30-40 -50 0 2000 Time 2.6: 11

Iteretion[time] 50 40 30 20 10 nd 2 wave rd 3 wave < 200 s 0 4 10 100 n 0 2.7: n Magnitude[dB] -10-20 -30 1 st wave nd 2 wave rd 3 wave -40-90 -60-30 0 30 60 90 Angle[degree] 2.8: 100 12

2.2 LS-CMA 2.2.1 2.3 2.9 RF IF ADC 2.3: 8.45[GHz] 10[MHz] 2channnel,40MHz, 12bit resolution FPGA Altera epf10k200src240-3, eplk100qc208-3, epf6024aqc208-3 CPU Hitachi SH-4 200MHz (360MIPS,1.4GFLOPS) Interface OS 10base-T Ethernet(TCP/IP) NetBSD RF IF A/D FIFO FPGA CPU Ethernet 2.10 RF Input 8.45[GHz] IF Input 10[MHz] ADC 40MSPS FIFO FPGA Digital Down Convert I Q I Q CPU Rxx rxd Rxx rxd Input y=w*x Output weight caluculation PC TCP/IP 2.9: 13

2.10: A. ADC 8.45GHz RF 10MHz IF 3 IF ADC 4 40MHz IQ B. CMA CMA CPU CPU 200MHz FPU DSP C 32 2.11 LS-CMA α 0 Omni (1,0) R xx C. PC OS NetBSD TCP IP Telnet PC 14

2.11: 2.2.2 10.1MHz 100kHz I/Q CMA 500 2.12 2.13 ±30 549µs 8.45GHz 10km/s 15

Magnitude[dB] 0-10 -20-30 +30-30 -90-60 -30 0 30 60 90 Angle[degree] 2.12: y -1 2 1 0.1 0.01 0.001 0.0001 0 200 400 600 800 1000 Iteration 2.13: 2 16

2.2.3 LS-CMA A/D CPU TCP/IP PC 2 10km/s FPGA PC Pentium3-800MHz CPU 80µs 17

3 1 3.1 1 2 [5] 3.1 18

PS PS PS PS Rx PS:Phase Shifter 3.1: FET 3.2 3.2.1 3.2 1/( ) A/D D/A 19

PS PS Rx ADC w PS Rx ADC Rx Rx ADC ADC w w PS Rx ADC w D/A weight control weight control 3.2: 4 2 2 n 2 180 4 d 0.3λ -20dB 4 3.2.2 3.3 r k (k =1,..., K) v k (k =1,..., K) [ v k (θ, φ, f) = exp j2π f ] [ c rt k L(θ, φ) = exp j 2π ] λ rt k L(θ, φ) L(θ, φ) = [sin θ cos φ, sin θ sin φ, cos θ] T 4 ( 3.4) 4 20

z x 0 φ θ rk L y 3.3: K d d y d z x 3.4: y 0 θ 180 360 2 4 d v k (θ, φ, f) = exp [j2π f c d sin θ cos { φ 2π K (k 1)}] = exp [ j 2π λ d sin θ cos { φ 2π (k 1)}] K K =4 d =0.5λ θ = π/2 [ v k (φ) = exp jπcos {φ π }] 2 (k 1) (k =1, 2, 3, 4) 21

V (θ) =[v 1,v 2,v 3,v 4 ] T D p (θ) = 1 2 W optv H (θ) 2 W opt 3.5 ±150 180 150 120 90 60 30 0 0 60 120 180 3.5: 4 / 3.5 sin y 2 0.25λ x y 2 3.6 2 d d ( 3.7 ) 22

d d d y x 3.6: 180 150 120 90 60 30 0 0 60 120 180 3.7: / ±160 3.3 3.3.1 MMSE MMSE MSN CMA 23

RLS [ W opt = g V s P uv H ] u V s V u P n + KP u g = P s (P n + KP u ) P n (P n + KP s )(1 + P s V H s R 1 nn V s) P V s u n W opt V s V v P u W [ W opt = g V s P ] uv H u V s V P n + KP u = u a e jπθ 1 b e jπθ 2 c e jπθ 3 d e jπθ 4 W phase = e jπθ 1 e jπθ 2 e jπθ 3 e jπθ 4 a, b, c, d 3.8 0 10 180 10 3.6 d = λ/2 exp( 3 2 jπ cos θ) exp( 1 V (θ) = 2 jπcos(θ π v 1 v 1 2 ) v 2 v 2 exp( 3 = = 2 jπ cos(θ π) v 3 v 1 exp( 1 2 jπcos(θ 3π 2 ) v 4 v2 24

0 Magnitude[dB] -10-20 -30-40 -50 0 30 60 90 120 150 180 [degree] 3.8: 3,4 1,2 θ s θ u V (θ s ) V (θ u ) 3,4 1,2 a e jθ 1 exp(jθ 1 ) b e jθ 2 b W opt = = a exp(jθ 2) c e jθ 3 exp(jθ 1 ) d e jθ 4 b a exp(jθ 2) 0 10 180 b/a 3.9 b/a=1 b/a 1 25

10 20 1 10 0-10 0.1 0 30 60 90-20 120 150 180 3.9: b/a 3.3.2 b/a 1 b/a 1 b/a 1 3.6 3.10 0 Magnitude [db] -10-20 -30-40 -50-180 -120-60 0 60 120 180 Angle [degree] 3.10: 26

- 30dB -40dB ±5 ±5 ±5 D p (θ) D p (θ) = 1 W H V (θ) 2 W V (θ) W H V (θ) = 2 exp(jθ 1 ) b a exp(jθ 2) exp(jθ 1 ) b a exp(jθ 2) H exp( 3 2 jπ cos θ) exp( 1 2 jπ cos(θ π 2 ) exp( 3 2 jπ cos(θ π) exp( 1 2 jπ cos(θ 3π 2 ) [ ( )] = exp j 3 2 π cos θ θ 1 + a b exp [ j ( )] 1 2 π sin θ θ 2 = 1 2 [ ( )] + exp j 3 2 π cos θ θ 1 + a b exp [ j ( )] 1 2 π sin θ θ 2 { ( ) cos 3 2 π cos θ θ 1 + a b cos ( ) 1 } 2 π sin θ θ 2 b/a 1 θ u 3 2 πθ u θ 1 + 1 2 π sin θ u θ 2 a b b/a > 1 2 1 π/2 <θ 2 <π/2 θ 2 π/2 <θ 2 θ 2 < π/2 θ 2 b/a < 1 3.11 27

0 Magnitude[dB] -10-20 -30-40 -50-180 -120-60 0 60 120 180 Angle[degree] 3.11: 60-90 [59,71]( ) b/a=0.56 2 [59,35]( ) 3.4 1/( ) 2 4 SNR 28

4 LS-CMA 20Mbps 10km/h 1/( ) 2 4 29

M2 30

[1],,,,,,, PHS,,,B-5-74, Apr.1998 [2] J.R.Treichler and B.G.Agee A News Approach to Multipath Corection of Constant Modulus Signals,, IEEE Trans., Vol.ASSP-31,No.2, pp459-472, Apr.1983 [3] T.Ohgane,T.Shimura,N.Matsuzawa,and H.Sasaoka An Implementation of a CMA Adaptive Array for High Speed GMSK Transmission in Mobile Communication, IEEE Trans,1993 [4] Masahiro Murase, Yoshikazu Tanaka, and Hiroyuki Arai Propagation and Anteenna Measurements Using Antenna Switching and Random Field Measurements IEEE Trans. Vehicular Tech., Vol.43, No.3, pp.537-541, Aug 1994 [5], 1996 [6] Adaptive Signal Processing with Array Anntena, 1999 31

[1],, LS-CMA,, B-1-111, Mar, 2002. [2] Atsushi Suzuki, Shintaro Muramatsu, Koichi Ichige, Hiroyuki Arai A hardware implementation of LS-CMA adaptive array for high-speed mobile communication, PIMRC 2002, MPO2.6, Sep,2002. [1],,,, B-5-198, Mar, 2003.( ) 32