E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

Similar documents
Morse ( ) 2014

2

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Dynkin Serre Weyl


Note.tex 2008/09/19( )

基礎数学I


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

D 24 D D D

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

: , 2.0, 3.0, 2.0, (%) ( 2.

16 B

0 Intoduction 0.1 (localization fomula) T = U(1) M µ M T µ = M M T µ eff M T 2. M T M T Gauss µ µ eff (1) (2) Atiyah-Singe U(1) [At85]

第10章 アイソパラメトリック要素

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

量子力学 問題

ver Web

201711grade1ouyou.pdf

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

30

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

TOP URL 1

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±


D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

プログラム

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

2000年度『数学展望 I』講義録

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

newmain.dvi

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

II 1 II 2012 II Gauss-Bonnet II

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

四変数基本対称式の解放

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

本文/目次(裏白)

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

TOP URL 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Z: Q: R: C:

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

数学Ⅱ演習(足助・09夏)


1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

Z: Q: R: C: 3. Green Cauchy


³ÎΨÏÀ

17 Θ Hodge Θ Hodge Kummer Hodge Hodge


φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,


chap10.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Transcription:

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

(4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n F T n := {( x, l) F n+1 P n F x l}. T n P n F. tautological 3. M T M. f : M N C 2 -. T f : T M T N 4. C 1 - M T M ( M R N ), T M M. 5. p : E N C 1 -. x E T p x : T x E T f(x) N ( submerssion ) b N, f 1 (b) R dime dimn., p : E N, N C 1 - p : E N, p 6. M M. 7. p : E X, p E B. 8. n- M, n E M. M C 1 -, E T M ( ). 2

(4/19) 2, ( ) 9. S 2 10. S 2m+1 S n S n S n ; id S n x x 11. S 5 12. Lie G T G G R dimg ( ) 13. S 7 S 7 R 7 (S 7 Lie ) 14. E, F X, f : E F. x X, f x : E x F x. Ker(f) = {u E u E x, f x (x) = 0, x X} E, Ker(f) E, F X, f : E F., f Ex : E x F x x U. 15. (Faldbau ) I [0,1] n- I n I n, 2 16. 17. (Swan [ ] )Swan X C 0 (X) R C 0 (X)- P E X C 0 (X)- P = Γ(E) Γ(E) 3

(4/26) 18. E X, F X, F E E/F, E, F = E/F 19. E B, s 1,..., s n : B E b B, s 1,..., s n s 1,..., s n E b n, n- I E = I E/I 20. E X n n- S n E, n- n E,, E n = S n E n E 21. E n T n E n T n RP n R n+1 22. ξ = η 1 η n n Whitney r n r (η 1 η n ) = i(1)< <i(r) λ i(1) λ i(r). ( : B 5.6 23. E X, F X, G X, i : E F p : F G b X. i 0 E x i x x Fx Gx 0., F = E G 24. X X E, E E () X 25. S 1 ϵ, η S 1 n ϵ n ϵ n 1 η ϵ ϵ = η η 2.1 ( ) 26. X Wikipedia 27. 28. Stone 29. 4

(5/10) 5 24 30. E X m. m- m E, E n P n R 31. f : A B g : B C E, E B (g f) (E) = g (f (E)), f (E E ) = f (E) f (E ), f (E E ) = f (E) f (E ) 32. M S 1 Mobious f : S 1 S 1 ; z z n n f (M) n f (M) Mobious 33. C - g : M N T M (f) := {u x X, u T x (g 1 (g(x)))} T M T M = T M (f) g (T N). 34. n p : E B, P (E) f : P (E) B b B, f 1 (b) m E P (E) m 1 η 1,..., η m f (E ) = η 1 η m 35. C - g : M N U g(m) T M T N U 2.2 ( 3 4 ) 36 (Faldbau ). B 1 = A [0, c] B 2 = A [c, 1] 0 < c < 1 B = A [0, 1] p : E B E E B1 E B2 E 37. E A [0, 1] A {U i i I} E E Ui [0,1] 38. A 1 A 2 B 1 B 2 A, B A B A 1 B 1 A 2 B 2 39. A 1 A 2 A 5

(5/17) 40. R G n,k l G n,k π l : R n l U l := {l G n,k π l (l ) n } {U l l G n,k } G n,k C ω - 41. R G n,k {A Mat(n n; R) A 2 = A, t A = A, ranka = k } Mat(n n; R) G n,k Mat(n n; R) 42 (, Hatcher ). χ B B = i I U i χ Ui {W j j 1} χ Wj n N b B #{ i I b U i } n #{W j } n 43. p : E(η) B η g : E R Gauss β : E(η η) R β(x, y) = g(x) g(y) η η 44. R G n,k = Gn,n k 45. R 46. E n (R k ) G n,k 47 ( Grassman ). G n,k k l R n V n (R k ) G n,k G n,k 2:1 48 (Plüker ). V k (R n ) n R k (x 1,..., x n ) x 1 x n G n,k RP k C n 1 49. F R C H η FP η η FP FP 1 FP FP FP FP F R C 50. q F q k > n (F q ) k n (qk 1)(q k q) (q k q n 1 ) (q n 1)(q n q) (q n q n 1 ) 51. γ FP n T FP n, ϵ T FP n ϵ = γ γ 6

(5 31,.,...,,.. 3.,.,. 7

F1 Q (6/14)., ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 8

(6/14) 52. C i (X; R) C j (X; R) C i+j (X; R) H (X; R) = n H n (X; R) 53. T 3 = S 1 S 1 S 1 3 S 1 CW 0-1- 1. T 3 CW 2. H k (T 3 ; Z). 3. H (T 3 ; Z) 54. X, Y, X Y X = S 2 S 4, Y = CP 3 X = S 2 S 2, Y = CP 2 CP 2 55. Σ g g H 1 (Σ; Z) H 1 (Σ; Z) Z 56. S 1 S 1 A = S 1 {x} B = {y} S 1 A B A B 57. M n N M n 1 M \ N N N S n n 1 N 58. H n 1 (X; R) R H n (X; R) Hom R (H n (X; R), R) (X, A) 59. M n K M H i (M, M K; Z) i > n α H n (M, M K; Z) x K, ρ x (α) H n (M, M \ {x}) ρ x (M, M \ K) (M, M \ {x}) 60 ( ). K S n x K, y S n \ K : H i 1 (K, {x}; Z) = H n i (S n \ K, {y}; Z). 9

(6/21) 61. H (RP 2k ; Z) = Z[α]/(2α, α k+1 ), degα = 2 H (RP 2k+1 ; Z) = Z[α, β]/(2α, α k+1, β 2, αβ), degα = 2, β = 2k + 1 62. (1) S k+l S k S l H k+l (S k+l ; Z) H k+l (S k S l ; Z) (2) C n+1 C n+1 ; (z 1,..., z n+1 ) (z d 1,..., z d n+1) f d : C n P C n P f d : H2n (C n P ; Z) H 2n (C n P ; Z) 63. X CP /CP n 1 H (X; Z) Cohen-Macauley 64. M 2 H k (X; Z) H n k (X; Z) H n (X; Z) = Z. 65. X 3 H (X; Z/m) 66 (Künneth ). X, Y CW H i (X; R) R Y i+j=n H i (X; R) H j (Y ; R) H n (X Y ; R) 67 (Hopf ). f : S 4n 1 S 2n C(f) C(f) := S 2n f e 4n 2n- 4n- f H 2n (C(f); Z) = Z, H 4n (C(f); Z) = Z H i (C(f); Z)= 0 for i 0; 2n; 4n. H 2n (C(f); Z) H 4n (C(f); Z) α, β h(f) (h(f) Hopf ) α α = h(f)β (i) h(f ϕ) =deg(ϕ)h(f) ϕ : S 4n 1 S 4n 1 (ii) h(ψ f) =deg(ψ) 2 h(f) ψ : S 2n S 2n (iii) h(f 1 + f 2 ) = h(f 1 ) + h(f 2 ) f 1, f 2 : S 4n 1 S 2n 68. n = 1, 2, 4, 8, h(f) = 1 f : S 4n 1 S 2n h(f) = 3 n f : S 4n 1 S 2n 10

(6/28) 69. v 1 (v 2 c) = (v 1 v 2 ) c, v 1, v 2 H (X; R), c H (X; R). f : X X f (f v c) = v f c v H (X ; R), c H (X; R). 70 (Thom ). E Riemann m. D(E) := { x E x 1 }, S(E) := { x E x = 1 } S(E) ξ E = D(E)/S(E) Thom (i) B Thom E (ii) R k B B Thom (iii) S 1 Thom RP 2 71. Thom H i (B; R) = H i+m (ξ E ; R). 72. Wedge ξ E E = ξ E ξ E. 73. E B E B e(e) e(e ) = e(e E ). f : B B e(f E) = f (E) 74 (, p.178). n E B (i) Thom T (E) H n (E, E 0 ) ϕ : H n (B) = H 2n (B) ϕ (e(e)) = T (E) T (E). (ii) n 2e(E) = 0. 75 (Mathai-Quillen ). E B n B Hcomp(E) n n- 11

(7/5) 76. (i) R = Z (ii) B T M R = Z 77. Thom-Gysin 78. n G n (R ) E G n (R ) E E χ(e E) 79 (Bott-Tu, 12). p : E M M Euler χ(e) Poincaré 80. τ S n A S n S n E S n S n \ A H (E, E 0 ) = H (S n S n, S n S n \ ) = H (S n S n, A) n χ(τ) H n (S n ; Z) 2 τ 81. M m M M N T M 82. U M H m (M M; Z) N Thom a H k (M; Z) b H k (M; Z) a, b = ( 1) m+k2 U M, b (a [M]). 12

(7/12) 83 ( ). p : E B n F l n (E) Flag bundle q; F l n (E) B F l n (E) L 1,..., L n q (E) L 1 L n ( ) Leray-Hirsh q : H (B) H (F l n (E)) 84. X (1 ). (1) P(T X) X. (Hint ). x X, p : P(T X) X p 1 (x) ( P(T X), ). (2), l P(T X), X C - f l, f l x l., l U l,. (cf. ample) (3) U l1,..., U lm P(T X), l 1,..., l m, F = (f l1,..., f lm ) : X R m. (Hint: F, ) 85. Thom-Gysin U(n) H (U(n)) = Z[c 1,..., c n ]. 86. n E s w n (E) = 0, c n (E) = 0 w n (E) = 0 n E 87. E n E R E w 2n (E R ) c n (E) mod 2 c n (E) e(e R ) 13

(7/19) 88. Grothendieck Chern Chern 89. Chern 90. S P C n d α H 2 (P C n ; Z) S S Chern c(s) = (1 + a) n+1 (1 + da) 1. ( S N N = L d Whitney ) 91. n M R n+1, w i (T M) i w 1 (T M) i RP n R n+1 n = 2 r 1 n = 2 r 2 92. B E B n E E w 2 (E) = 0 93. C 2n C 2n P C 2n 1 P : C 2n 1 14