平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

Similar documents
Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

linearal1.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

Dynkin Serre Weyl


数学Ⅱ演習(足助・09夏)


all.dvi

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

ii

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

応用数学III-4.ppt

Part () () Γ Part ,

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

newmain.dvi

等質空間の幾何学入門

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

II Time-stamp: <05/09/30 17:14:06 waki> ii

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

untitled

16 B

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

2010 ( )

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

,2,4


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 Affine Lie 1.1 Affine Lie g Lie, 2h A B = tr g ad A ad B A, B g Killig form., h g daul Coxeter number., g = sl n C h = n., g long root 2 2., ρ half

nakata/nakata.html p.1/20

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

Morse ( ) 2014


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

S n Lie sl n (C) :={ n n } C (i) (ii) V V {} Specht Lie sl n (C) -p Hecke - Lie 98 -Drinfeld Lie - Hecke Lie () - v, q Hecke H n (q) C U v (sl n ) C L

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

1


1 Edward Waring Lagrange n {(x i, y i )} n i=1 x i p i p i (x j ) = δ ij P (x) = p i p i (x) = n y i p i (x) (1) i=1 n j=1 j i x x j x i x j (2) Runge

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

直交座標系の回転

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

ユニセフ表紙_CS6_三.indd

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

2012 A, N, Z, Q, R, C

行列代数2010A

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

D 24 D D D

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

n ( (

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

コホモロジー的AGT対応とK群類似

Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity

2011de.dvi

B ver B


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

untitled

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

DVIOUT

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

main.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

January 27, 2015

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

all.dvi

ver Web

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

73

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

Transcription:

1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i P j P j P i = 0, X i P j P j X i = 1 h 2π δ ij 1 (1)

. 1 L 1 = X 2 P 3 X 3 P 2, L 2 = X 3 P 1 X 1 P 3, L 3 = X 1 P 2 X 2 P 1 L 1, L 2, L 3 L 1 L 2 L 2 L 1 = 1 h 2π L 3, L 2 L 3 L 3 L 2 = 1 h 2π L 1, L 3 L 1 L 1 L 3 = 1 h 2π L 2, X = 2π ( L1 + ) 2π ( 1L 2, Y = L1 ) 4π 1L 2, H = h h h L 3 HX XH =2X, HY Y H = 2Y, (2) XY Y X =H,. 2 ( ) ( ) 0 1 0 0 X =, Y =, H = 0 0 1 0 ( 1 0 0 1 1. X, Y, H Mat(n, n, C) (2) P P 1 XP, P 1 Y P, P 1 HP P 1 XP = diag(x (1),..., X (s) ), P 1 Y P = diag(y (1),..., Y (s) ), P 1 HP = diag(h (1),..., H (s) ), ) 1 C n ) C[x 1, x 2,... ] X i = x i, P i = 1 h 1 2π x i 2 U(sl 2 ) 2

(X (i), Y (i), H (i) ) (1 i s) 0 l 0 0 l 1 1 0 X =, Y = 0 1 l 1 0 0 l 0 l l 2 H = l+2 l X, Y, H Mat(l+1, l+1, C) C l+1 V l l/2 sl 2 Hamiltonian E n (n = 1, 2,... ) V 1 V l l l {0, 2,..., 2n 2} l/2 l/2 = 0, 1, 2,... s p... (sharp, principal,...) 1.3 Lie X 1,..., X n X i X j X j X i = n k=1 ak ij X k Lie a k ij X i X j X j X i = (X j X i X i X j ) a k ij + ak ji = 0 X i (X j X k X k X j ) (X j X k X k X j )X i + X j (X k X i X i X k ) (X k X i X i X k )X j + X k (X i X j X j X i ) (X i X j X j X i )X k = 0 3

X 1,..., X n n p=1 3 ( ) a p jk aq ip + ap ki aq jp + ap ij aq kp = 0 {ψ i, ψ i} i Z. 4 ψ i ψ j + ψ j ψ i = 0, ψ i ψ j + ψ j ψ i = 0 ψ i ψ j + ψ j ψ i = δ ij (3) vac Fermion Fock ψ i vac = 0 (i < 0), ψ i vac = 0 (i 0), Fock H n = i Z : ψ i ψ i+n : = i<0 ψ i+n ψ i + i 0 ψ i ψ i+n : H n (n Z) :. 5 H m H n H n H m = mδ m+n,0 affine Kac Moody Lie Fock 3 Jacobi 4 Cψ i Cψ i Clifford 5 i 1 X i = 1 i H i P i = 1 h 1 2π H i H 0 X i = X i H 0 H 0 P i = P i H 0 X i P i (1) 4

Virasoro Lie Fock. 6 Wess-Zumino-Witten C. N. Yang Yangian U(sl 2 ) [F], [GRS] [JM] 20 Hecke Lie Lie Hecke 2 2.1 A Mat(m, n, C) P Mat(m, m, C) Q Mat(n, n, C) P 1 AQ = E 11 + + E rr E ij (i, j) 1 0 r P, Q A r A rank A 6 Virasoro Lie L n (n Z) L m L n L n L m = (m n)l m+n + m3 m δ m+n,0 12 5

A 1 r A A A A A Mat(n, n, C) P Mat(n, n, C) P 1 AP = diag(j 1,..., J s ) J i λ 1 λ 1 J(k, λ) = Mat(k, k, C) λ 1 λ Jordan J 1,..., J s P A Jordan 2.2 f 1 (X) = 0,..., f r (X) = 0 f 1,..., f r f f(x) = O f 1 (X) = O,..., f r (X) = O X f(x) = O f(p 1 XP ) = O X Jordan 2. (X 2I) 2 (X + 3I) = O X Jordan λ = 3, 2 λ = 3 X 2I X = 3I Jordan 1 ( 3) λ = 2 X + 3I (X 2I) 2 = O Jordan (2) ( 2 1 0 2) J = ( 2 1 0 2) { X = P 1 diag( 3,, 3, 2,, 2, J,, J)P P } 6

2.3 a(b + c) = ab + ac (a + b)c = ac + bc f(x) n A = C1 CX n 1 a(x) A b(x) A a(x)b(x) (mod f(x)) A A A C[X]/(f) f(x) = O X C[X]/(f) ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ). 7 C X 1,..., X n /(f 1,..., f r ) X i X j = n k=1 ak ij X k Lie a k ij (X ix j )X k = X i (X j X k ) X 1,..., X n n a p ij aq pk = p=1 n a p jk aq ip I = c i X i p=1 IX i = X i I = X i (1 i n) X 1,..., X n X i X j = n k=1 ak ij X k A = n i=1 CX i X i X j = n k=1 ak ij X k A = C X 1,..., X n / (Xi X j n a k ijx k 1 i, j n ) k=1 7C X 1,..., X n n 7

. 8 A A A E 1 = E 11, F = E 12, E 2 = E 22 E i E j = δ ij E i, E 1 +E 2 = I, E i F = δ i1 F, F E j = δ 2j F, F 2 = O (4) A (4) (E 1, E 2, F ) X 2 = O 2.4 Jordan X 2 = O Jordan X = P diag(0,, 0, J,, J)P 1 J = ( 0 1 0 0) P X Mat(n, n, C) V C n V = Ker X = {v Xv = 0} X 2 = O Im X V V {e 1,..., e l } e l+1,..., e n {e 1,..., e n } C n e 1,..., e n T = (e 1,..., e n ) {e 1,..., e n } C n T XT 1 i l V Xe i = 0 l + 1 i n Xe i V a ij Xe i = a 11 e 1 + + a l1 e l A Mat(l, n l, C) A = (a ij ) XT = (Xe 1,..., Xe n ) = (e 1,..., e n ) ( O O ) A = T O ( O O ) A T 1 XT = ( O A O O) T = ( P O O Q) ( ) (T T ) 1 X(T T O P 1 AQ ) = O O 8 B B V =CX 1 CX n X i V V 1 V V = B B A O 8

Jordan ( ) O E 11 + +E rr X = P O O P 1 r = dim(im X) = n dim(ker X) = n l l. 9 2.5 Jordan Kostant X Mat(n, n, C) X n = O X Kostant 3. X H, Y (2) 1 X 2 = O Jordan X 2 = O X (X, Y, H) Lie 2.6 T (2, C) X 2 = O T (2, C) T (2, C) (4) E i E j = δ ij E i, E 1 +E 2 = I, E i F = δ i1 F, F E j = δ 2j F, F 2 = O (E 1, E 2, F ) X 2 = O 2.4 {e 1,..., e n } E 1, E 2 Mat(n, n, C) E 1 : n c i e i i=1 l c i e i, E 2 : i=1 n c i e i i=1 n i=l+1 c i e i, T 1 E 1 T = ( ) I O O O, T 1 E 2 T = ( ) O O O I F = X (E 1, E 2, F ) (4) T (2, C). 10 X U(sl 2 ) X T (2, C) T (2, C) 9 X 2 = O Im X Ker X n l l 10 rank X = n l F : Im E 2 Im E 1 9

4. (E 1, E 2, F ) (4) V = Im E 1 W = Im E 2 (1) V = Ker E 2 W = Ker E 1 C n = V W (2) F W V V {e 1,..., e l } W {f 1,..., f n l } V F e i = 0 (1 i l) W F (f 1,..., f n l ) = (e 1,..., e l )A A = E 11 + + E rr. 11 V W F ( ) O E 11 + + E rr F (e 1,..., e l, f 1,..., f n l ) = (e 1,..., e l, f 1,..., f n l ) O O F W 12 Ker F = V. 13 T (2, C) C Id C, C 0, 0 C T (2, C) X 2 = O T (2, C) Lie. 14 3 3.1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 11C n 8 F Ce i >< >: Ce i Cf i (1 i r) F f i = e i, F e i = 0, Cf i F Cf i (r < i n l) F f i = 0, Cf i 0 Ce i (r < i l) F e i = 0 0 Ce F i 12 A 13 Ker F V 14 T (2,C) 10

X = (X 1,..., X n ) 5. P P 1 X i P P ( ) P 1 X (1) i O X i P = O X (2) (1 i n) i 6. P P 1 X i P P ( ) P 1 X (1) i Y i X i P = O X (2) (1 i n) i 1 1 4 2 ( ) ( ) ( ) E 1 = 1 0 0 0 0 1, E 2 =, F = 0 0 0 1 0 0 T (2, C) F 1 T (2, C) E 1 = (1), E 2 = (0), F = (0), E 1 = (0), E 2 = (1), F = (0), 7. ( ) C X 1,..., X n /(f 1,..., f r ) A A Ind(A). 15 15 Ind(A) A 11

3.2 X 2 = O T (2, C) X 2 = O Jordan J = ( 0 1 0 0) Jordan X = P diag(0,, 0, J,, J)P 1 P = (e 1,..., e n ) J r V = Ker X V = ( n 2r i=1 V, ) r 1 Ce i j=0 Ce n 1 2j {e 1,..., e n 2r, e n 2r+1, e n 2r+3,..., e n 1 } {e n 2r+2,..., e n } C n e n 2j (0 j r 1) Xe n 2j = e n 1 2j e 2i+n 2r 1 (1 i r) f i = e i r (r < i n r) e 2i n (n r < i n) 1 i n r Xf i = 0 n r < i n i = n r+j (1 j r) Xf n r+j = Xe n 2(r j) = e n 1 2(r j) = f j Q = (f 1,..., f n ) Q 1 XQ Jordan Jordan X 2 = O T (2, C) C Id C, C 0, 0 C X W (0 C) ( ) (n 2r) C Id r C 12

Jordan P 1 XP = diag(0,..., 0, J,..., J). 16 3.3 X i p F p G = x x p = 1 X p = I X Mat(n, n, F) Jordan p 0 J i (1 i p) 1 i Jordan J i = J(i, 1) i 1 J i = I + N i, N i = k=1 E k,k+1 1 i p N p i = O 17 J p i = I + p k=1 ( ) p Ni k = I + N p i = I k X = P diag(j 1,..., J 2,......, J p )P 1 Ind(FG) p G = x, y x p = y p = 1, xy = yx p = 2 16 T (2,C) 4 {e 1,..., e l, f 1,..., f n l } 8 >< Id F C Ce i Cf i (1 i r) Cf i Ce i F C 0 Cf i (r < i n l) Cf i 0, >: 0 C Ce i (r < i l) 0 Ce F i e i, f i e i, f i i p X 17 i > p N p i = E k,k+p O k=1 13

1 4 0 1 0 0 0 0 1 0 X = (1), Y = (1), X = 1 0 0 0 0 0 0 1, Y = 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 2n+1 (n 1) ( ) ( ) I n (I n 0) I n (0 I n ) X =, Y = O I n+1 O I n+1 ( (I In0 )) ( ( n+1 I 0 )) n+1 I X =, Y = n O O I n F { } 2n (n 1) ( ) ( ) I n I n I n J(n, λ) X =, Y = (λ F) O I n O I n ( ) ( ) I n J(n, 0) I n I n X =, Y = O O I n C p p Ind(FG) 8. f 1,..., f r A = F X 1,..., X n /(f 1,..., f r ) Ind(A) Ind(FG) A n X n+1 = O n+1 = 2N, n n = 2N A M M (i) = F N M = M N (i = 1, 3), M (2) = F N+1 M = M N+1 FG F (M) F (M) = M (1) M (2) M (3) F (M) X Y X p = I, Y p = I, XY = Y X I n I n 14

M (1) 0 m 1 m 1 m 1 m (X 1) = 1 M (2), (Y 1) = M (2) m N m N m N 0 M (2) (X 1) (Y 1) m N m 1 m N+1 m 1 m N+1 M (3) (X 1) m 1 m N m 1 + X 1 m N+1 m = 2 + X 2 m N+1 M (3) m N + X N m N+1 X N+1 m 1 + m 2 X N+2 m 1 + m 3 = M (3) X 2N m 1 + m N+1 0 = 0, (Y 1) m 1 m N = 0 9. FG, A M, N A (1) M F (M). 18 (2) F (M) F (N) F (M) F (N) X Y M N M N X 1,..., X n Ind A Ind(FG) S n 19 18 F (M) EndFG(F (M)) 19 {1, 2,..., n} S n 15

10. f 1,..., f r Ind (F X 1,..., X n /(f 1,..., f r )) Ind(FS n ) n 2p (p 3) n 6 (p = 2) 3.4 Hecke Hecke S n S n σ i (1 i < n) i i+1 σ i : i+1 i k k (k i, i+1) σ 2 i = 1, σ i σ j σ i = σ j σ i σ j (j = i ± 1) σ i σ j = σ j σ i (j i ± 1) FS n = F σ 1,..., σ n 1 /I I I = ( σi 2 1, σ i σ i±1 σ i σ i±1 σ i σ i±1, σ i σ j σ j σ i (j i ± 1) ). q C \ {0} Hecke H n (q) H n (q) = C σ 1,..., σ n 1 /I q I q I q = ( σi 2 (q 1)σ i q, σ i σ i±1 σ i σ i±1 σ i σ i±1, σ i σ j σ j σ i (j i ± 1) ) 16

11. q 1 q n = 1 n e. 20 f 1,..., f r Ind (C X 1,..., X n /(f 1,..., f r )) Ind(H n (q)) n 2e (e 3) n 6 (e = 2) e FS n F e H n (q) A Hecke Lie Lie Kazhdan-Lusztig Brylinski-Kashiwara, Beilinson-Bernstein Jones Temperly-Lieb H n (q) P 1 (C) Wess-Zumino-Witten n Knizhnik-Zamolodchikov H n (q) Drinfeld-Kohno 4 4.1 Lie Lie Lie O Auslander-Reiten translation quiver. 21 community 20 n e = 21 Gabriel 17

Hall. 22 4.2 Hall 4 Weil Deligne. 23 Lie 24 T (2, C) E i E j = δ ij E i, E 1 +E 2 = I, E i F = δ i1 F, F E j = δ 2j F, F 2 = O V 1 : E 1 = (1), E 2 = (0), F = (0), V 2 : E 1 = (0), E 2 = (1), F = (0), ( ) ( ) ( ) 1 0 0 0 0 1 V 12 : E 1 =, E 2 =, F = 0 0 0 1 0 0 Ind(T (2, C)) = {V 1, V 2, V 12 } q F q q Ind(T (2, F q )) = {V 1, V 2, V 12 }. 25 Hall Hall A = F q X 1,..., X n /(f 1,..., f r ) A V 1, V 2, V 3 X i U U (1 i n) U V 3 (a) U V 1 (b) V 3 /U V 2 22 Hall 23 Hecke Weil 24 Lie 25 0 1 F q 18

h V3 V 1,V 2 (q) H V3 V 1,V 2 (x) q H V3 V 1,V 2 (q) = h V3 V 1,V 2 (q) Hall. 26 12. A V [V ] [V 1 ] [V 2 ] = V 3 H V3 V 1,V 2 (1)[V 3 ] A Hall T (2, F q ) V 12 E 1, E 2, F F 2 q ( ) ( ) ( ) 1 0 0 0 0 1 E 1 =, E 2 =, F = 0 0 0 1 0 0 ( 1 ) 0 E1, E 2, F 1, 0, 0 ( 1 0) V1 V 12 ( U = F 1 q 0) V12 /U E 1 = (0), E 2 = (1), F = (0) V 12 /U V 2 ( ) ( ) ( ) ( ) ( ) ( ) a 0 a a a 0 E 1 =, E 2 =, F = b 0 b b b 0 ( a b) ( a b) = ( 0 0) V2 V 12 h V 12 V 1,V 2 (q) = 1, h V 12 V 2,V 1 (q) = 0, h V1 V2 V 1,V 2 (q) = 1, h V1 V2 V 2,V 1 (q) = 1, h V 1 V 1 V 1,V 2 (q) = 0, h V 1 V 1 V 2,V 1 (q) = 0, h V 2 V 2 V 1,V 2 (q) = 0, h V 2 V 2 V 2,V 1 (q) = 0, [V 1 ] [V 2 ] = [V 12 ] + [V 1 V 2 ], [V 2 ] [V 1 ] = [V 1 V 2 ] 26 U V 3 /U 19

[V 1 ] [V 2 ] [V 2 ] [V 1 ] = [V 12 ] h V 12 V 1,V 1 (q) = 0, h V 12 V 2,V 2 (q) = 0, h V1 V2 V 1,V 1 (q) = 0, h V1 V2 V 2,V 2 (q) = 0, h V 1 V 1 V 1,V 1 (q) = q+1, h V 1 V 1 V 2,V 2 (q) = 0, h V 2 V 2 V 1,V 1 (q) = 0, h V 2 V 2 (q) = q+1, V 2,V 2 [V 1 ] [V 1 ] = 2[V 1 V 1 ], [V 2 ] [V 2 ] = 2[V 2 V 2 ] Hall C x 1, x 2 / ( x 2 1x 2 2x 1 x 2 x 1 + x 2 x 2 1, x 2 2x 1 2x 2 x 1 x 2 + x 1 x 2 ) 2, 27 E 12, E 23, E 13 E 12 [V 1 ], E 23 [V 2 ], E 13 [V 12 ] Hall. 28 E 12, E 23, E 13 T (3, C) E ij E kl = δ jk E il E 12 E 23 E 23 E 12 = E 13, E 12 E 13 E 13 E 12 = 0, E 23 E 13 E 13 E 23 = 0 Lie sl 3 C X, Y, Z / (XY Y X Z, XZ ZX, Y Z ZY ) = C X, Y / ( X 2 Y 2XY X + Y X 2, Y 2 X 2Y XY + XY 2) 13. T (2, F q ) Hall U(sl 3 ). 29 C X, Y, Z / (XY Y X Z, XZ ZX, Y Z ZY ) sl 3 Lie Lie U(sl 3 ) 27 x i [V i ] (i = 1, 2) x 1 x 2 x 2 x 1 [V 12 ]. 28 E 2 12 E 23 2E 12 E 23 E 12 +E 23 E 2 12 = O, E2 23 E 12 2E 23 E 12 E 23 +E 12 E 2 23 = O. 29 U + (sl 3 ) 20

4.3 Gabriel Mat(n, n, C) T (n, C) E 11, E 22,..., E nn E 12, E 23,..., E n 1,n T (n, C) = E 1,..., E n, F 1,..., F n 1 /I I = (E i E j δ ij E i, E i F j δ ij F j, F j E i δ i,j+1 F j, F j F k (j+1 k)) V i = Im E i i j +1 F j (V i ) = 0 i = j+1 F j (V j+1 ) V j 2.6 T (n, C) V n F Vn 1 F F V1 14. T (n, C) 0 0 C Id Id C 0 0 ( ) n+1 2 T (n, C) T (n, F q ) Hall V ij (n+1 i > j 1) F q (i > k j) Im E k = 0 (k i, k < j) Hall V = i>j V n ij ij (n ij Z 0 ) Hall sl n+1 Lie U + (sl n+1 ) = C X 1,..., X n /I I = ( Xi 2 X i±1 2X i X i±1 X i + X i±1 Xi 2, X i X j X j X i (j i ± 1) ) Dynkin Gabriel 21

Lie Lie Lie Gabriel [ ] 4.4 Lie. 30 Lie Lie [ ] 2002 [A] Susumu Ariki, Representations of Quantum Algebras and Combinatorics of Young Tableaux, AMS University Lecture Series, 2002. [ARS] M. Auslander, I. Reiten and S. Smalo, Representation Theory of Artin Algebras, Cambridge studies in Advanced Mathematics, 1995. [F] J. Fuchs, Affine Lie Algebras and Quantum Groups, Cambridge Monographs on Mathematical Physics, 1992. [GRS] C. Gómez, M. Ruiz-Altaba and G. Sierra, Quantum Groups in Two-dimensional Physics, Cambridge Monographs on Mathematical Physics, 1996. [H] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 1972. [JM] M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models, CBMS Regional Conference Series in Mathematics, 1995. 30 S 2 Riemann SO(3)/SO(2) Laplace Legendre 22

[K] V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, 1990. 23