Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

Similar documents
Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

03J_sources.key

36 th IChO : - 3 ( ) , G O O D L U C K final 1

Mott散乱によるParity対称性の破れを検証

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

,,..,. 1

0406_total.pdf

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

A

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

TOP URL 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

chap9.dvi


講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

main.dvi

2011de.dvi


Z: Q: R: C: sin 6 5 ζ a, b

総研大恒星進化概要.dvi

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B


IA

1 2 2 (Dielecrics) Maxwell ( ) D H


TOP URL 1

( )

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

30

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

( ) ,

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

基礎数学I

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

量子力学A

TOP URL 1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

4‐E ) キュリー温度を利用した消磁:熱消磁

untitled

1 12 CP 12.1 SU(2) U(1) U(1) W ±,Z [ ] [ ] [ ] u c t d s b [ ] [ ] [ ] ν e ν µ ν τ e µ τ (12.1a) (12.1b) u d u d +W u s +W s u (udd) (Λ = uds)

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i


6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

: , 2.0, 3.0, 2.0, (%) ( 2.

物理化学I-第12回(13).ppt


H1-H4

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence



高知工科大学電子 光システム工学科

prime number theorem

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

QMI_10.dvi

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

元素分析

PDF

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

4 1 Ampère 4 2 Ampere 31

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

gr09.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

量子力学 問題

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co


From Evans Application Notes

Transcription:

8 8.1 8.1.1 1 Chadwick [ 1 ] 1919,, electron number Q 0.0 0. 0.4 0.6 0.8 1.0 kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = E γ φ φ E e X 153

154 8, 3 H 3 He, ( ) 3 H( 1 ) 3 He( 1 )+e ( 1 ) 3 H 1 3 He 1 1930 Pauli [ ] m ν m ν =0 3 H 3 He m ν 0.5 kev 0. kev 3 H( 1 ) 3 He( 1 )+e ( 1 )+ν e( 1 ) 1 Fermi

8.1 155 8.1. Fermi Fermi 1934 [3] Fermi g Fermi golden rule ε ε+dε w(ε)dε = g m e 5 c 4 π 3 h 7 M if F (Z, ε)(ε 0 ε) ε ε 1dε (8.1) ε m e c β ± Q Q β = ε 0 1 (8.) M if F (Z, ε) Coulomb β + Z Z F ( Z, ε) (8.1) K(ε) = [ w(ε) ε ε 1 F (Z, ε) ] 1/ = [ ] g m 5 e c 4 1/ M if (ε 0 ε) (8.3) π 3 h 7 K(ε) ε Kurie plot 64 Cu 64 Cu 8. β β + β 64 Cu 64 Zn + e + ν β + 64 Cu 64 Ni + e + + ν (8.4)

156 8 64 Cu 1 β 64 Zn 0 64 Ni 0 β Q( β ) = 579 kev Q( β ) = 653 kev 8.: 64 Cu 5 5 ω( ε ) [arbitrary] 4 3 1 K( ε ) [arbitrary] 4 3 1 0 0.0 0.1 0. 0.3 0.4 0.5 0.6 0.7 kinetic energy [MeV] 0 0.0 0.1 0. 0.3 0.4 0.5 0.6 0.7 kinetic energy [MeV] 8.3: Kurie plot β + β 8.3 64 Cu [4] (8.1) 8.3 (8.3) ε 1 ε 0 λ ε 0 f = ε0 1 λ = g m e 5 c 4 π 3 h 7 M if f (8.5) F (Z, ε)(ε 0 ε) ε ε 1 dε (8.6) Fermi Gamow-Teller

8.1 157 τ m =1/λ t 1/ = log /λ M if g ft ft = log g m e 5 c 4 π 3 h 7 M if (8.7) (8.5) t (8.1) - (8.6) m ν =0 (8.1) (ε 0 ε) m ν : ε 0 ε ε 0 ε : ε 0 ε (ε 0 ε) (m ν /m e ) (8.8) Kurie plot 8.4 K( ε ) 16.6 17.0 17.4 17.8 18. 18.6 kinetic energy [kev] 8.4: Kurie plot, m ν = 0.0 kev, 0. kev, 0.5 kev 0. kev (8.6) ε

158 8 8.1.3 Fermi 0 ν ν γ p e γ n Cd γ γ 8.5: Reines Cowan Reines Cowan 8.5 [ 5] n p + e + ν ν + p n + e + (8.9)

8.1 159 e + + e γ + γ (8.10) 8.1.4 Goldhaber [6] h h = σ p p (8.11) σ p h =1 h = 1 Goldhaber 15 Eu 3 15 Eu m (0 )+e 15 Sm (1 )+ν 15 Sm (1 ) 15 Sm(0 + g.s.)+γ (8.1) z 1. 1 + 0 1 z + 1 1. z z 1 0 3 Gamow-Teller. l =0 1s 1/

160 8 Sm γ 0.046 15 Eu 0 Eu Sm Sm 1 0.963 ν ν 15 Sm 0.1 0 0.0 8.6: Goldhaber 15 Eu 15 Sm 15 Sm 1 + 0 + 1 1 z 1 z m m ν = + 1 m γ = 1 m ν = 1 m γ = +1 m ν m γ m γ =+1 m γ = 1 m ν 3. 15 Eu m 15 Sm (1 ) 15 Sm (1 ) τ m =0.03 ps 15 Sm z 4. 15 Sm 1 0 + 8.6 15 Sm 1 Goldhaber Sm O 3 1 + 0 + 15 Sm 15 Sm

8.1 161 5. h ν = h γ (8.13) h γ h ν Goldhaber 15 Sm 1 0 + m γ = 1 z h γ = 1 h ν = σ ν p ν p ν = 1 (8.14) 0.67 ± 0.15 h ν = 1 0.75 Vylov h ν = 0.93 ± 0.10 [7] β h ν =+1 h e = ±1 v [8] 8.1 8.1 ν ν e e + 1 +1 v c + v c

16 8 8. 8..1 K [9] K π π θ π + + π 0 τ π + + π + + π (8.15) θ τ π + L π 0 π + L 1 L π + π 8.7: π 3π π 0 8.7 θ π π + π 0 L ( 1) 1+1 ( 1) L =( 1) L θ J = L τ 3π π + L 1 π L ( 1) 1+1+1 ( 1) L 1( 1) L =( 1) L 1+L +1 τ J = L 1 L L 1 L +1... L 1 + L 3π Q- L 1,L τ L 1 = L =0 τ J =0 J =0 π J =0 K K π K 3π

8. 163 8.. x x, y y, z z (8.16) r p E J σ B E B E B E B 0 0 1956 Lee Yang[9] 198 v e σ e 0 e ν σ e p e p ν σ ν J 8.8: 8.8

164 8 J p e σ e p e / p e σ ν p ν / p ν 8..3 J p e 1957 [10] 60 Co 60 Ni + e + ν (8.17) 8.9 60 Co 5 + 99 % 60 Ni 4 + (.84) 5 60 Co.506 1.333 4 0.0 0 60 Ni 8.9: 60 Co J J θ p e π θ p ν p ν p e (a) (b) 8.10: 8.10 (a) (b) p e p e, J J (8.18) (a) (b)

8. 165 J θ =0 θ = π 1.3 counting rate 1. 1.1 1.0 0.9 0.8 H H 0.7 0 4 6 8 10 1 14 16 18 time [min] 8.11: 60 Co Wu 60 Co θ =0 θ = π 8.11 Counting rate

166 8 8.3 4 Fermi 8.3.1 Lorentz Fermi 1934 [3] J EM µ J EM µ = ψ e (x) γ µ ψ e (x) (8.19) A µ Hamiltonian H EM (x) =+ej EM µ (x) Aµ (x) = eψ e (x) γ µ ψ e (x) A µ (x) (8.0) ψ e ψ e = ψ e γ 0 γ µ Dirac γ ( ) ( ) I 0 0 σ γ 0 =, γ k k = 0 I σ k (8.1) 0 γ 5 γ 5 = γ 5 = iγ 0 γ 1 γ γ 3 = ( 0 I I 0 ) (8.) I ( ) ( 0 1 0 i σ 1 =, σ = 1 0 i 0 ), σ 3 = ( 1 0 0 1 ) (8.3) Pauli x µ =(x 0, x) x µ =(x 0, x) 1 0 0 0 g µν = g µν = 0 1 0 0 0 0 1 0 (8.4) 0 0 0 1 - Fermi (8.19) V c µ l c µ V c µ (x) = ψ p (x) γ µ ψ n (x) l c µ(x) = ψ e (x) γ µ ψ ν (x) (8.5)

8.3 4 Fermi 167 c W Fermi V c µ l c µ 8.1 e e p e p e γ W e e n ν n ν 8.1: Hamiltonian G β H β (x) = G ] β [l cµ (x) Vµ c (x)+v cµ (x) lµ c (x) = G β [ψ e (x) γ µ ψ ν (x) ψ p (x) γ µ ψ n (x) ] + ψ n (x) γ µ ψ p (x) ψ ν (x) γ µ ψ e (x) (8.6) β 8.13 Hermite β + p e ν n ν e n ν n p p e β decay β decay electron capture 8.13: β β +

168 8 Lorentz Fermi V c µ l c µ ψγ µψ Lorentz (8.6) γ µ γ µ - J =0 Fermi Fermi - Gamow Teller[ 11 ] 1936 - Lorentz ψ ψ 16 8. ψ ψ S ψψ 1 V ψγ µ ψ 4 T ψγ µ γ ν ψ 6 P ψγ 5 ψ 1 A ψγ µ γ 5 ψ 4 γ S-S V -V T -T P-P A-A S-P V -A 8.3. Fermi Gamow-Teller Q- J =0, 1 Fermi Gamow-Teller 8.14 8.15 Fermi Gamow-Teller L =0 π =0 S S =0 Fermi J =0 Fermi Fermi isobaric analog state,

8.3 4 Fermi 169 (5.143) 0 3.948 1 14 O (3.508) 0.313 0 6 He 0.0 14 N 1 0.0 6 Li 1 8.14: Fermi 0 + 0 + Gamow-Teller 0 + 1 + Fermi S=0 p e ν Gamow-Teller S=1 p e ν n S= 0 L = 0 J = 0 n S= 1 L = 0 J = 1 8.15: Fermi Gamow-Teller IAS Gamow-Teller J =1 S =1 S =1 J =1 J J =0 J =0 (Fermi Gamow-Teller ) Lorentz Fermi Gamow-Teller 8. γ γ m p E = p c + m c 4 u ± = E + mc χ ± cσ p E + mc χ ± (8.7)

170 8 χ ± Pauli ( ) ( 1 0 χ + =, χ = 0 1 ) (8.8) ± σ ˆp χ ± = ±χ ± (8.9) γ 0 0 8. γ ( ) I 0 S : 1 = (8.30) 0 I V : γ 0 = T : γ 0 γ 0 = P : γ 5 = γ k γ l = m ( I 0 0 I ( I 0 0 I ( 0 I I 0 ) ) iε klm ( σm 0 0 σ m ) ( ) 0 I A : γ 5 γ 0 = I 0 γ k = ( 0 σk σ k 0 ) γ 0 γ k = γ k γ 0 = ( 0 σk σ k 0 ) γ 5 γ k = ( σk 0 0 σ k ) ) (8.31) (8.3) (8.33) (8.34) Fermi (V ) (S) γ 0 γ 0 Fermi θ θ V : 1+ v c cos θ, S : 1 v c cos θ (8.35) v/c γ

8.3 4 Fermi 171 8.16 Fermi S =0 Fermi Gamow-Teller e ν e e e ν ν ν V S A T 8.16: Fermi Gamow-Teller β Gamow-Teller Gamow-Teller (A) (T : γ k γ l ) A : 1 1 v 3 c cos θ, T : 1+ 1 v cos θ (8.36) 3 c 8.16 Gamow-Teller [1] Fermi Gamow-Teller 8.3.3 Fermi Gamow-Teller Lee Yang

17 8 Hamiltonian H β = G β [( ψ p γ µ ψ n )( ψ e (C V + C V γ 5 ) γ µ ψ ν ) + ) ] (ψ p γ µ γ 5 ψ n )(ψ e (C A + C Aγ 5 ) γ µ γ 5 ψ ν +h.c. (8.37) γ 5 Hamiltonian G β 0 C V = C V, C A = C A (8.38) 0 (m =0,E = cp) u ± = χ cp ± (8.39) σ ˆp χ ± (8.9) 1 (1 γ 1 5) u = u, (1 + γ 5) u = 0 1 (1 γ 5 ) u 1 + = 0 (1 + γ 5 ) u (8.40) + = u + 1 (1 ± γ 5 ) 1 (1 γ 1 5) ψ ν = ψ ν, (1 + γ 5) ψ ν = 0 (8.41) (8.38) Hamiltonian H β = G [( )( ) ] β ψ e γ µ (1 γ 5 ) ψ ν ψ p γ µ (C V C A γ 5 ) ψ n +h.c. (8.4) C V C A C V C A Fermi Gamow-Teller M F M GT ft- ft = ln G β π 3 h 7 m e 5 c 4 1 C V M F + C A M GT (8.43)

8.3 4 Fermi 173 Fermi IAS Fermi T ± Gamow-Teller 8.3 8.3 14 O M F M GT ft [s] n p 1 3 180 ± 50 14 O 14 N 0 315 ± 10 ft- ft(n p) ft( 14 O 14 N) = C V C V +3C A =0.41 ± 0.08 (8.44) C A =1.14 ± 0.16 (8.45) C V Gamow-Teller 14 O G β C V =(1.403 ± 0.003) 10 49 erg cm 3 (8.46) G β G β C V 1eV J p e p ν dω = ξ G β (π) 5 c 5 h 7 (E 0 E e ) p e E e de e dˆp e dˆp ν [ 1+a c p e p ν E e E ν + A cj p e E e + B cj p ν E ν + D c J (p e p ν ) E e E ν ] (8.47) [13] A B D - -

174 8 ξ C A C V ξ = M F C V + M GT C A a = C V C A ξ } A = Re( C A + C V C A ) D = Im(C V C A ) B ξ ξ (8.48) C V C A V A (C A C V ) J p ν p e V + A J p e J p ν Burgy 8.4 [14] 8.4 A 0.114 ± 0.019 B +0.88 ± 0.15 D +0.04 ± 0.05 a 0.09 ± 0.11 D 0 (175 ± 10) A B C V C A C A C V =1.5 ± 0.05 (8.49) a 14 O V A V (C A /C V )A V A V A γ 5 γ µ ψ e γ µ (1 γ 5 ) ψ ν = ψ e (1 + γ 5 ) γ µ ψ ν γ 5 γ µ 1 γ 5

8.4 175 8.4 8.4.1 γ ρ V = g V k t (k) δ(r r k ) j A = g A k t (k) σ k δ(r r k ) (8.50) g V g A 4 t p t n =1 (8.50) 0 p/m [ 1 j V = g V t (k) Mc {p k δ(r r k )+δ(r r k ) p k } k + h ] Mc µ β σ k δ(r r k ) (8.51) 1 ρ A = g A t (k) Mc [ p k σ k δ(r r k )+δ(r r k ) σ k p k ] k j V µ β A =1 µ β µ β = µ p µ n =4.706 (8.5) µ p µ n 8.4. Hamiltonian r ρ j δ(r r k ) 4 C V, C A g V g A

176 8 q 1 = h/p 10 fm exp(iq r) Bessel j λ (qr) r qr 1 M(ρ, λµ) = r λ Y λµ ( r) ρ(r)dr (8.53) M(j, λµ) = r κ [ Y κ ( r) j(r)] λµ dr ρ j [ Y κ ( r) j(r)] λµ Clebsch-Gordan λ = κ 1, κ, κ +1 forbiddenness r r n π n = r + (8.54) π =( 1) n (8.55) n =0 n 1 n (8.53) λ J i J f J i J f λ J i + J f (8.56) 8.5 log ft t f (8.6) 8.6 (8.50) (8.51) M(ρ V,λµ) = g V t (k)r λ k Y λµ ( r k ) (8.57) k M(j A, κλµ) = g A t (k)r κ k [ Y κ ( r k )σ k ] λµ (8.58) M(ρ A,λµ) = g A 1 Mc k t (k)( σ k p k ) r λ k Y λµ ( r k ) (8.59) k

8.4 177 [15] 8.5 L J π log ft Fermi 0 0 no 3 Gamow-Teller 0 1 no 3-6 1 0,1, yes 6-10 1,, 3 no 11-15 3,3,4 yes 16-0 4 3, 4, 5 no 1-1 n p 3 H 3 1 He 8.6 J π i J π f log ft + 1 + + 1 + F GT 3.0 614.8 s F GT 3.0 1.33 y 6 He 6 Li 0 + 1 + GT.8 0.8067 s 14 O 14 N 0 + 0 + F 3.5 71.08 s 64 Cu 64 Ni 1 + 0 + GT 5.0 1.0 h 38 Cl 38 Ar 0 + 9. 1.08 h 39 Ar 39 K 7 3 + 10.1 69 y 10 Be 10 B 0 + 3 + 13.4 1.51 10 6 y Na Ne 3 + 0 + 15.1 6.8 10 3 y + 5 + 97 Tc 97 Mo 9 13.0.6 10 6 y 40 K 40 Ca 4 0 + 19.7 1.430 10 9 y 87 Rb 87 Sr 3 9 + 113 Cd 113 In 1 + 9 + 115 In 115 Sn 9 + 1 + 17.5 4.75 10 10 y 3. 9.3 10 15 y.5 4.41 10 14 y

178 8 8.5 8.5.1 Fermi 8.17 µ µ ± π ± n ν µ e νµ ν e e νµ ν e π 0 e ν e π 0 e ν e p µ µ µ π π 8.17: µ µ ± π ± µ e µ µ Hamiltonian (8.4) H µ = G ] β [(ψ νµ γ µ (1 γ 5 )ψ µ )(ψ n γ µ (C V C A γ 5 )ψ p )+h.c. (8.60) G β µ µ ± Hamiltonian H µ = G ] µ [(ψ e γ µ (1 γ 5 )ψ νe )(ψ νµ γ µ (1 γ 5 )ψ µ )+h.c. (8.61) G µ H µ µ ω(µ e + ν µ + ν e )= G µ m µ 5 c 4 µ 4(π) 3 h 7 (8.6) G µ =(1.435 ± 0.001) 10 49 erg cm 3 (8.63) Hamiltonian G β C V %

8.5 179 Hamiltonian λ = C A /C V eν e J (N) µ = g N ψ p γ µ (1 λγ 5 )ψ n J (e) µ = g e ψ νe γ µ (1 γ 5 )ψ e µν µ J (µ) µ = g µ ψ νµ γ µ (1 γ 5 )ψ µ (8.64) β µ µ µ e + ν µ + ν e (8.64) Hamiltonian 8.7 β J (N)µ J µ (e) G β C V / =g N g e µ J (N)µ J µ (µ) G βc V / =g N g µ µ J (e)µ J µ (µ) G µ / =g µ g e g N g e g µ (8.65) µ λg N g e g µ (8.66) e-µ-τ l c µ = ψ e γ µ (1 γ 5 )ψ νe + ψ µ γ µ (1 γ 5 )ψ νµ + ψ τ γ µ (1 γ 5 )ψ ντ (8.67) µ τ 8.17 π ± h c µ Fermi H W (x) = G F J cµ (x) Jµ c (x) (8.68) J c µ (x) = lc µ + hc µ (8.69)

180 8 G F π ± l cµ h c µ h cµ l c µ µ ± l cµ l c µ h cµ h c µ Fermi 4Fermi 8.5. (8.67)-(8.69) V A G F (Conserved Vector Current : CVC) 8.18 p γ p n π π γ p e ν e p p π 0 e π ν e p p n n 8.18: π + 0 π + Dirac π + π + π + e µ J EM µ = 0 (8.70) t Q = t d 3 x J0 EM = d 3 x k Jk EM = ds k J EM k (8.71)

8.5 181 0 V µ µ V µ = 0 (8.7) n p + e + ν e π π π π 0 + e + ν e (8.73) π J π =0 π (8.73) Fermi 14 O ft- π π π µ + ν µ (8.74) (8.73) 10 8 π 8.18 Gamow-Teller Fermi C A C V Partially Conserved Axial-vector Current : PCAC π (8.74) J π =0 π 0 π π m π c 140 MeV

18 8 p e ν e π n 8.19: π 8.19 π Goldberger Treiman [16] C A C V = gπ g πnn m p + m n (8.75) g π π g πnn π m p m n C A /C V g πnn Goldberger-Treiman g π 10% π

8.6 183 8.6 8.6.1 Fermi µ 8.0 Λ ν µ e ν e p e νe p e νe µ n Λ 8.0: µ Λ J (Λ) µ = g Λ ψ p γ µ (1 λ γ 5 )ψ Λ (8.76) (8.64) 8.0 8.8 µ J (µ)µ J µ (e) g µ g e = G µ / Λ J (N)µ J µ (e) J (Λ)µ J µ (e) g N g e = G µ C V / g Λ g e g e g µ g N g Λ g µ g N % g µ = g N [1 + (0.0 ± 0.00)] (8.77)

184 8 Λ g Λ 0. g N (8.78) Λ g µ = g N + g Λ (8.79) 8.6. J µ (N) = g N ψ p γ µ (1 λγ 5 )ψ n π (8.73) π π 0 + e + ν e ( ) J µ (π) = g π ( µ φ 0 )φ φ 0 ( µ φ ) (8.80) c h φ 0 π 0 φ π ± π (8.73) (CVC) g N g π (PCAC) π π e + ν e 8.19 (8.73) π (8.80) 1

8.6 185 8.6.3 dσ(ν e + e ν e + e ) dω = G µ E ν π c 4 h 4 (8.81) E ν l =0 dσ dω = c h 4E ν M 0 (8.8) M 0 M 0 1 (8.8) (8.81) (8.8) M 0 =1 E ν = ( π c 3 h 3 ) 1/ 300 GeV (8.83) G µ W ± 100 GeV W ± W ±

186 8 8.7 8 1. J. Chadwick, Verhandl. Deut. Physik 16 (1919) 383. W. Pauli, Handbuch derphysik, vol. xxiv (1931) 1 3. E. Fermi, Z. Phys. 88 (1934) 161 4. L.M. Langer, R.D. Moffat and H.C. Price, Phys. Rev. 76 (1949) 175 G.E. Owen and C.S. Cook, Phys. Rev. 76 (1949) 176 C.S. Wu and R.D. Albert, Phys. Rev. 75 (1949) 315 5. F. Reines and C.L. Cowan, Jr., Phys. Rev. 90 (1953) 49, Phys. Rev. 113 (1959) 73 6. M. Goldhaber, L. Grodzins and A.W. Sunyar, Phys. Rev. 109 (1958) 1015 7. Z. Vylov et al, Izv. Akad. Nauk (USSR) ser. fiz. 48 (1984) 1809 8. H. Frauenfelder, R. Bobone, E.V. Goeler, N. Levine, H. Lewis, R. Peacock, A. Rossi and G. DePasquali, Phys. Rev. 106 (1957) 386; Ullman, Fauenfekler, Lipkin and Rossi, Phys. Rev. 1 (1961) 536; A.R. Brosi, A.I. Galonsky, B.H. Ketelle and H.B. Willard, Nucl. Phys. 33 (196) 353 9. T.D. Lee and C.N. Yang, Phys. Rev. 104 (1956) 54 10. C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes and R.F. Hudson, Phys. Rev. 105 (1957) 1413 11. G. Gamow and E. Teller, Phys. Rev. 49 (1936) 895 1. J. Allen, R. Burman, W. Hermannsfeldt, P. Stähelin and T. Braid, Phys. Rev. 116 (1959) 134; C.H. Johnson, F. Pleasonton and T.A. Carlson, Phys. Rev. 13 (1963) 1149 13. J.D. Jackson, S.B. Treiman and H.W. Wyld, Phys. Rev. 106 (1957) 517 14. M.T. Burgy, V.E. Krohn, T.B. Novey, G.R. Ringo and V.L. Telegdi, Phys. Rev. Lett. 1 (1958) 34, Phys. Rev. 10 (1960) 189 15. E.J. Konopinski and G.E. Uhlenbeck, Phys. Rev. 60 (1941) 308, E.J. Konopinski and M.E. Rose, in Alpha-, Beta- and Gamma-Ray Spectroscopy, ed. K. Siegbahn, Vol., (North-Holland, Amsterdam, 1965) 16. M.L. Goldberger and S.B. Treiman, Phys. Rev. 110 (1958) 1178, 1478