α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2



Similar documents
1 I

N = Q R = R N < R

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1


dプログラム_1

基礎数学I

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

04.dvi

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

日本内科学会雑誌第98巻第3号

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

DVIOUT

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.


I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

日本内科学会雑誌第102巻第10号

( )

応用数学特論.dvi

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

2301/1     目次・広告

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

Chap9.dvi

Riemann-Stieltjes Poland S. Lojasiewicz [1] An introduction to the theory of real functions, John Wiley & Sons, Ltd., Chichester, 1988.,,,,. Riemann-S

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

情報理論 第5回 情報量とエントロピー

本文27/A(CD-ROM

パーキンソン病治療ガイドライン2002

熊本県数学問題正解

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

tnbp59-20_Web:P1/ky108679509610002943

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

Part. 4. () 4.. () Part ,

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

数学概論I

日本皮膚科学会雑誌第122巻第3号

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

.1 1,... ( )

入試の軌跡

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

D 24 D D D

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

( ) ( ) Iverson


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1


8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

v er.1/ c /(21)

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta


A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

サイバニュース-vol134-CS3.indd

Otsuma Nakano Senior High School Spring Seminar Mathematics B

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a


II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

チュートリアル:ノンパラメトリックベイズ

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

ii

n ( (


- II

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

数学Ⅱ演習(足助・09夏)

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

(2000 )

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

2011de.dvi

,2,4

1 2 X X X X X X X X X X Russel (1) (2) (3) X = {A A A} 1.1.1

example2_time.eps

Ł\”ƒ-2005

untitled

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

Transcription:

1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

1 R, A, C B,... a, b, x,... 6 1. N Z Q R C. 2. {x N : 0 x 5} = {0, 1, 2, 3, 4, 5}. 3. {0, 1} {x R : x 3 x = 0}. 1 7 a A a A a / A a A A = B A B x(x A x B) x... x... x...... x A B A B x(x A x B) {x A : C(x)} A x x... p q C(x) p q p q A p q p q {a, b} a b {a}, {a 1,..., a n } A B A B A 1 A n A B A B A 1 A n 2 1. 0 {0, 1}. 2. 2 / {0, 1}. 3. {0, 1}. x, y R ( x < y f(x) f(y) ) 3 C = {A i : i I} 4 1. A i C i I A i 2. A i i I A i C 1. {a, b} {c, d} = {a, b, c, d}. 2. {0, 1, 2} {1, 2, 3} = {1, 2}. 3. C = {{0, 1}, {1, 2}, {3}} C = {0, 1} {1, 2} {3} = {0, 1, 2, 3}. 8 0, Z, Q, 5 N 1. f : R R x, y R ( x < y f(x) < f(y) ) 2. f : R R 3. 0 = 1 2 = 3 0 = 1 9 C = {A n : n N} C = {x : n N(x A n )}, C = {x : n N(x A n )}. 3

10 1.,, a f : A B b f : A B c f : A B d f : R R a A B = A B c e f : R R b A B = A B = A f a R f : R R f(a) g a R f : R R f(a) h f : R R a i f : R R 2. C n {A B : A, B C n } {A B : A, B 3. C n } (n N) C = a P Q n N C n P Q a F N k F A k C b x = 1 x + 1 = 2 b F 0,..., F n x 2 2 = 1 3 = 2 A k A k C c P Q P k F 1 k F n Q Q P 4. A 5. A = A 6. { } = 7. = 8. C = {{0, 1}, {1, 2}, {1, 3}} C C 9. {a} = {b} a = b 10. A (B C) = (A B) (A C) 11. A (B C) = (A B) (A C) 12. A B A B = B 13. A C B C A B C 14. (A B) C = A (B C) C A 15. X A X A c A c = {x X : x / A} a A B =, A c B = B = b (A B) c = A c B c c (A B) c = A c B c 16. A B = {a A : a / B} 17. A + B = (A B) (B A) a A + B = B + A, A + = A, A + A = b A + (B + C) = (A + B) + C 18. C = {A i : i N} C 0 = C, C n+1 = c C (b) 4

2 x = u y = x = u = v x y {{x}, {x, y}} = {{u}, {u, v}} 1 {x} {u} x = u { } = {x, y} = {u, v} y u v y = u { } y = u = x y x C = {{0, 1}, {1, 2}} C = {0, 1} y = v {1, 2} = {0, 1, 2} 18 1. a A, b B (a, b) 1. {x A : x = x} = A, {x A : x P(P(A B). x} =. 2. 16 2. B = {x A : x / x} B / A. 17 11 A A P(A) A 12 X P(A) X A 19 A, B 13 A = {0, 1} A A B = {(a, b) : a A, b B}, {0}, {1}, {0, 1} P(A) = {, {0}, {1}, {0, 1}}. A B A A A 2 A n+1 = A n A 14 A n P(A) 2 n A = {a 1,..., a n } 20 (A B) C A (B C) X P(A) a k (k = 1,..., n) X k a k k = 1,...n 2 n P(A) 2 n ((a, b), c) (a, (b, c)) (a, b, c) (A B) 15 x y (x, y) C A (B C) A B C (x, y) = (u, v) x = u y = v 16 (x, y) = {{x}, {x, y}} 17 (x, y) = (u, v) x = u y = v x = y x y x = y (x, y) = {{x}, {x, x}} = {{x}} (u, v) = {{u}, {u, v}} u = v (u, v) = {{u}} ((a, b), c) (a, (b, c)). 5

21 1. {{ }} = { } 2. A B A B A, B 3. A 0 = A n (n = 0, 1, 2,...) A n+1 = A n {A n } a A 1, A 2, A 3 b n m A n A m 4. P( ) = { } 5. P({ }) 6. P({a}) 7. P({a, b}) 8. P({a, b, c}) 9. A B P(A) P(B) 10. P(A) P(B) = P(A B) 11. P(A) P(B) = P(A B) 12. A B = P(A) P(B) 13. X P(A) X = 14. P(A) = A 15. {1, 2, 3} {2, 3} 16. A n A 2 17. A = 18. a, b (A {a}) (B {b}) = 19. B C = (A B) (A C) = 20. (A B) X = (A X) (B X) 21. (A B) (X Y ) = (A X) (B Y ) 22. A = B = A B = 23. A X, B Y A B X Y 24. A B 25. A 0 P(A), B 0 P(B) A 0 B 0 P(A B) 26. P(A B) A 0 B 0 A, B 27. A 0 =, A n+1 = P(A n ) (n = 0, 1, 2,...) A n 6

3 A, B P(A) = {X : X A}. 26 1. X = {(x, y) X 2 : x = y} 2. Z E men m n 3 E A B = {(a, b) : a A, b B}. 27 E X x (a, b) a, b X {y X : xey} E x [x] E x/e {[x] E : x X} X/E 22 R < O = {(a, b) R 2 : a < b} R 2 2. 1/ O R 2 3. a b a b a < b a < b (a, b) O 29 C x y x = y 1/ 1 23 X X R X 2 (x, y) R 30 E X xry [x] E = [y] E xey. 24 1. X 2 R = R 31 C X 3 2. R = X 2 X A C A, X R A, B C, A B A B =, C = X 32 f : A B R f b R A b = {a A : f(a) = b} C = {A b : b R} A 25 X E X 2 X 33 X 1. E X X/E X 1. xex ( x X) 2. xey yex ( x, y X). 3. xey, yez xez ( x, y, z X). 28 1. Z a b a b 2. C X E xey ( A C)[x, y A] E X 7

34 1. A = {0, 1, 2, 3} 2 E E = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)} a E A b C = A/E C 11. E X E 2. f : N N N a b f(a) = f(b) C X N F E = F 3. a b f(a) f(b) 12. X n 4. A Z Z E xey x y A E Z S = {(x, y) R 2 : (x 1, y + 2) R} a A = Z b A = c A = {0} d A = {1} e A = mz (m ) f A = g A = {x Z : 10 x 10}. h A = N. 5. E, F A 2 A E F A 6. E F 7. A N 2 (x, x) A (x, y) A (y, x) A x, y N x 0 = x, x n = y, (x i, x i+1 ) A (i = 0,..., n 1) x 0,..., x n N x y N 8. E, F A 2 A E F 9. X n E X X/E n [x] E 10. X = R 2 {(0, 0)} 0 X x y ( λ 0)( x = λ y) C = X/E 13. X Y 14. R R 2 S R x 1 y 2 8

4 A 3. a b, b a a = b. A A R A 2 A (A, ) (a, b) R arb 39 X = P({0, 1}) A E A C = {X i : i I} A (1) {0, 1} X i (2)i j X i X j =, (3) A = i I X i {0} {1} E A a A [a] E = {x A : xea} a E A/E A 4.1 (order) (preorder) 35 A O 1. a O a ( a A) 2. a O b, b O c a O c ( a, b, c A) A/ = {[a] : a A} O 36 A [a] [b] a b a b a b A/ 37 A a b, b a (well- a = b definedness) 38 A A 4.2 40 A A a b (a b b a) 41 A a b (a b b a) [a] [b], [b] [b] [a] = [b]. 9

42 1. X a b a b X 2. X = {0, 1, 2} O = {(0, 0), (1, 1), (2, 2), ((0, 1), (1, 2)} O X U 1 V U V, 3. X = {0, 1, 2} O = {(0, 0), (1, 1), (2, 2), ((0, 1), (1, 3)} O X (A, 1 ) (A, 2 ) 4. R[X] R f(x) g(x) f(x) g(x) 5. N + = N {0} m n n m 6. A = P(X) A X = {0, 1, 2} 7. C α β α β 8. p N + m n p m n 9. A = P(N) B C B \ C 10. N 2 (a, b) (c, d) (3a + 1)3 d (3c + 1)3 b a N 2 b N 2 {(a i, b i ) : i N}, i N (a i+1, b i+1 ) (a i, b i ) u v u v u v 11. (A, A ) (B, B ) f : A B x A y f(x) B f(y) ( x, y A). A = P(X) U 2 V V U. 10

5 F : a b F 1 : b a 43 F A B 49 A B F : X Y, A X, B Y (*) a A (a, b) F 44 F = {(a, b) R 2 : 2a + b = 0} R R a R 2a + b = 0 (a, b) F b R F : R R 45 F : A B a A b B i.e., F (a) = b, F : a b 46 F = {(x, y) R 2 : y = x 2 } 1. F R R F : R R 2. F 0 S = {r R : r 0} F : R S 48 F : A B 1. F ranf = B. 2. F x x F (x) F (x ) ( x, x A). 3. F F 4. F : A B F 1 = {(b, a) B A : (a, b) A B} F b B 1. F (A) = {F (a) : a A} A F F : A B a A 2. F 1 (B) = {a X : F (a) B} B F (a, b) F b B F (a) 50 1. F : X Y ranf = F (X). 2. A 1 A 2 X F (A 1 ) F (A 2 ) Y. 3. B 1 B 2 Y F 1 (B 1 ) F 1 (B 2 ) X. 51 F : R R F : x x 3 x domf = R, ranf = R, F ({1, 2}) = {0, 7}, F 1 ({0}) = { 1, 0, 1} 52 1. A = {, { }} F : A A F ( ) = { }, F ({ }) = F ({ }) { } F (A) F [A] F A 2. F 1 (B) F 1 B F F 1 3. F R R F : 53 F : A B, G : B C F G R R G F G F (a) = G(F (a)) 4. F : 2 4 47 F : A B G F = {(a, c) A C : (a, b) F, (b, c) G( b B)} 1. A F domf 54 2. {b B : b = F (a) ( a A)} F ranf ranf = {F (a) : a A} 11

55 1. F = {(a, b) R 2 : a + b = 1} R R 2. F = {(a, b, c) R 3 60 f : X X X 0 = X, : a + b + c = 0} X F : R 2 n+1 = f(x n ) (n N) R {X 3. F = {(a, b) R 2 : a 2 n } n N = b} R R 4. F = {(a, b) R 2 : a = b 2 } R R 61 1. f : X Y g : Y 56 F : R R 1. F (x) = x 2, 2. F (x) = x 3 + 1, 3. F (x) = sin x + cos x. 57 1. F : R R, x x + 1 2. G : R R, x x 2 3. H : R S, x x 2 S = {r R : r 0} 4. K : S S, x x 2. 58 F : R 2 R 2 F (x, y) = (x + y, xy) ranf R 2 59 f : A B 1. X Y A f(x) f(y ) B 2. C B f(f 1 (C)) C 3. f C B f(f 1 (C)) = C 4. X A A f 1 (f(a)) 5. f A = f 1 (f(a)) 6. X 1, X 2 A f(x 1 X 2 ) = f(x 1 ) f(x 2 ) 7. C 1, C 2 B f 1 (C 1 ) f 1 (C 2 ) = f 1 (C 1 C 2 ) 8. f 1 (C 1 ) f 1 (C 2 ) = f 1 (C 1 C 2 ) P(X) g(y) = f 1 ({y}) g X g 2. f : X Y a f b f(x A) Y f(a) A X 12

6 F : X Y 1. A X F (A) = {F (a) : a A}. 2. B X F 1 (B) = {a A : F (a) B}. 3. domf = X, ranf = F (x). 62 h (g f) = (h g) f 66 X Y Y X 67 1. Y = { } Y = 2. X X = 3. X m, Y n Y X 4. P(X) {0, 1} X A χ A 1. X Y F : X Y, x x X Y (inclusion map) 2. X X X (identity map) id X 68 {X i : i I} 3. F : X Y, X 0 X F I X i X 0 {(x, y) F : i I x X 0 } F X 0 F X 0 : X 0 Y X i (*) f : I i I X i 4. F : X Y X, (x, y) x (*) i I f(i) X i. G : X Y Y, 69 X 0 = {1, 2}, X 1 = {3, 4} i=0,1 (x, y) y X i 5. A X χ A : X {0, 1} A characteristic function 2. g(0) = 1, g(1) = 4, { 3. h(0) = 2, h(1) = 3, 1 x A χ A (x) = 0 x / A. 4. k(0) = 2, k(1) = 4. X 0 X 1 X 0 X 1 1. f(0) = 1, f(1) = 3, 63 1. ran(f X 0 ) = F (X 0 ) 70 1. X i = i I 2. i I X i = 3. π : X Y X, (x, y) x 2. {X 0, X 1 } Y X 0 X 1 i {0,1} X i 4. A X χ A 3. X i X i.e., X i = X ( i I) i I X i = X I 5. χ A B (x) = χ A (x)χ B (x), χ A c(x) = 1 1. X k = i I X i χ A (x). f i I X i f(k) X k 64 f : X Y, g : Y X g f X k = X (i) f (ii) 2. i {0,1} X i f (f(0), f(1)) X 0 X 1 g 3. 65 f : X Y, g : Y Z, h : Z W 13

71 1. F : X Y, X 0 X 1 X (F X 1 ) X 0 = F X 0 2. A = {0, 1, 2} N χ A : X {0, 1} a χ A (0), χ A (1), χ A (2), χ A (3) b {(x, y) N 2 : χ A (x)χ A (y) = 1} c {(x, x+1) N 2 : χ A (x)χ A (x+1) = 1} 3. F (x) = χ A (x)χ A c(x) 0 4. F (x) = χ A (x) + χ A c(x) 1 5. A, B X F (x) = max{χ A (x), χ B (x)} F : X {0, 1} F A B 6. X 0 = {0, 1}, X 1 = {2, 3} i=0,1 X i 7. i = 0, 1, 2 X i n i i {0,1,2} X i 8. X Y Z (X Y ) Z 9. A B = a X A X B = b X A X B X A B 10. {a i } i=0 RN 14

7 a b, b a a = b. A (a b a b, b a) 76 1. (R, ) A = (0, 1] 0 1 max A = 1, min A sup A = 1, inf A = 0. 1 A 0 A 2. (Q, ) B = {x Q : 2 < x 1} max B = sup B = 1 min A, A/ inf A 2 Q 2 B 7.1 7.2 72 A (*) a, b A a b b a 73 R 77 X X 74 (X, ) A X, a X 1. a A a A b A, b a A max A 2. a A a A b A, a b A min A 3. a A b A, b a A (1) (X, ) sup A a < b a b a b 4. a A b A, a b A (X, <) a b a < b inf A a = b (X, ) < a b, b a a, b X a, b, c A a b c a c. 78 (X, <) (2) (1) (2) 5. A A 79 75 1. 2. 80 (X, <) < a < b a < c < b 3. c X 15

81 1. a = sup A, a b b A 2. R I = [0, 1) max I, min I, sup I, inf I 3. R X = {1 1/n : n = 1, 2,...} 4. X = {a} P(X) 5. X P(X) 6. Q A Q 7. Q A, B Q A B( ) A, B 8. A R 9. (N, <) < 10. (Q, <) 11. (X, <) 12. 0 1 X 01100 5 X X x y y x 01 01 < 010 < 0100 a (X, ) b a X X a = {x X : x a} (X a, ) 82 1. X X a b a b a = b 2. X X a b a b a b 16 3.

8 N = {0, 1, 2,...} 5. N σ(n) Z, Q R 6. Z 7. Z 0. N 2 = {(m, n) : m, n N} 1. N 2 (m, n) (m 1, n 1 ) m + n 1 = n + m 1 [(0, 0)] = σ(0) 2. Z = N 2 / = {[(m, n)] : (m, n) N 2 } 10. Z a 1 = 1 a = a a Z [(m, n)] (m, n) 11. Z a Z a + b = 3. Z b + a = 0 b Z [(m, n)]+[(m 1, n 1 )] = [(m+m 1, n+n 1 )] well-defined [(m, n)] [(m 1, n 1 )] = [(m m 1 +n n 1, m 4. σ σ(m + n) = σ(m) + σ(n) σ(m n) = σ(m) σ(n) 8. Z 9. Z a + 0 = 0 + a = a a Z 0 = 9 n 1 + n m 1 )] welldefined 4. σ : N Z σ(n) = [(n, 0)] 0. A = {(a, b) : a Z, b Z {0}} σ(m + n) = σ(m) + σ(n) 1. A + N + Z (m, n) (m 1, n 1 ) m n 1 = n m 1 σ(m n) = σ(m) σ(n) N Z 2. Q = A/ = {[(m, n)] : (m, n) A} 3. Q 5. N σ(n) Z N [(m, n)]+[(m 1, n 1 )] = [(m n 1 +n m 1, n Z n 1 )] well-defined 83 1. N 2 [(m, n)] [(m 1, n 1 )] = [(m m 1, n n 1 )] well-defined 2. [(m, n)] = [(m 1, n 1 )] m + n 1 = n + m 1 4. τ : Z Q τ(n) = [(n, 1)] 3. Z well-defined τ(m + n) = τ(m) + τ(n) + N + Z Z well-defined τ(m n) = τ(m) τ(n) 17

N Z 2. R well-defined 5. Z τ(z) Q Z 3. R Q 4. 5. = 2 R 84 Q a < b ( c)a < c < b x 2 10 85 Q {a n } n=0 p Q +, n N, m 1, m 2 N m 1, m 2 n a m1 a m2 < p. 86 {a n } n=0 C 1. C {a n } n=0 {b n } n=0 p Q + n N m 1, m 2 N (m 1, m 2 n a m1 b m2 < p). 2. R = C/ = {[{a n } n=0] : {a n } n=0 C}. 3. R [{a n } n=0] + [{b n } n=0] = [{a n + b n } n=0] [{a n } n=0] [{b n } n=0] = [{a n b n } n=0] [{a n } n=0] [{b n } n=0] p Q +, m N, n N, [n m a n < b n + p] 4. σ : Q R a Q a {a} n=0 σ σ(a + b) = σ(a) + σ(b) σ(a b) = σ(a) σ(b) a b σ(a) σ(b) 87 1. 18