JUNE 1988



Similar documents
Fig.1 Chemical structure of BAY o 9867

CHEMOTHERAPY JUNE 1987 Table1 Media used *BHIB, brain heart infusion broth (Difco); /3 -NAD, S -nicotinamidoadeninedinucleotide (Sigma Chemical Co.);


Fig. 1 Chemical structure of DL-8280

Clostridium difficile ciprofloxacin, ofloxacin, norfloxacin Bifidobacterium Lactobacillus Lactobacillus Bacteroides fragilis B. fragilis C. difficile



CHEMOTHERAPY APRIL 1992 Acinetobacter calcoaceticus Staphylococcus aureus, Escherichia coli P. aeruginosa E. eoli, Klebsiella pneumoniae Serratia marc

1272 CHEMOTHERAPY MAR. 1975

CHEMOTHERAPY Methicillin-resistant S.aureus(MRSA) coccus epidermidis 105 Streptococcus pyogenes E.faecali senterococcus avium Enterococcus faecium Str


CHEMOTHERAPY

Key words: Disinfectants, Gram negative rods, Bactericidal effect P. aeruginosa 1, P. fluorescens 20 P. putida 179, P. cepacia 216 P. maltophilia 227,


THE JAPANESE JOURNAL OF ANTIBIOTICS 48-8 Enterococcus avium 5Š, Corynebacterium xerosis 10Š, Corynebacterium pseudodiphtheriticum 10Š, Corynebacterium

coccus aureus Corynebacterium sp, Haemophilus parainfluenzae Klebsiella pneumoniae Pseudornonas aeruginosa Pseudomonas sp., Xanthomonas maltophilia, F

VOL.32 S-7 CHEMOTHERAPY Table 1 MIC of standard strains of CTRX Fig. 2 Cumulative curves of MIC S. aureus (26 strains )

CHEMOTHERAPY aureus 0.10, Enterococcus faecalis 3.13, Escherichia coli 0.20, Klebsiella pneumoniae, Enterobacter spp., Serratia marcescens 0.78, Prote


CHEMOTHERAPY NOV S. aureus, S. epidermidis, E. coli, K. pgeumoniae, E. cloacae, S. marcescens, P. mirabilis, Proteus, P. aeruginosa Inoculum siz


CHEMO THE RAPY OCT. 1994

VOL.27 S-3 CHEMO THERAPY mido)-3-[[[1- (2-dimethylaminoethyl)-1H-tetrazol-5-yl] -thio] methyl]-ceph-3-em-4-carboxylic acid dihydro- S. aureus 209-P JC

CHEMOTHERAPY 52 MAY d a a. Normal S. aureus d Đg/ml, 2h; e b b Đg/ml, Abnormal e. division lh; Abnormal thickening division cross f c. 1

988 CHEMOTHERAPY NOV. 1971


epidermidis, Enterococcus faecalis, Enterococcus Klebsiella pneumoniae, Proteus mirabilis, indolepositive Proteus spp., Enterobacter spp., Serratia


CHEMOTHERAPY JUN Citrobacter freundii 27, Enterobacter aerogenes 26, Enterobacter cloacae 27, Proteus rettgeri 7, Proteus inconstans 20, Proteus

CHEMOTHERAPY Proteus mirabilis GN-79 Escherichia coli No. 35 Proteus vulgaris GN-76 Pseudomonas aeruginosa No. 11 Escherichia coli ML-1410 RGN-823 Kle


CHEMOTHERAPY DEC (NFLX), ofloxacin (OFLX), ciprofloxacin (CPFX) Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecali

Table 1. Antibacterial activitiy of grepafloxacin and other antibiotics against clinical isolates

Fig.2. Sensitivity distribution of clinical isolates of S. epidermidis (24 strains, 106 CFU/ml) Staphylococcus aureus Staphylococcus epider- midis Ent

CHEMOTHERAPY FEB Table 1. Activity of cefpirome and others against clinical isolates

CHEMOTHERAPY Table 1 Urinary excretion of mezlocillin Fig. 4 Urinary excretion of mezlocillin Fig. 3 Blood levels of mezlocillin

CHEMOTHERAPY JUNE 1986

CHEMOTHERAPY Fig. 1 Chemical structure of CXM-AX



Staphylococcus sp. K.pneumoniae P.mirabilis C.freundii E. cloacae Serratia sp. P. aeruginosa ml, Enterococcus avium >100ƒÊg/ml

Table 1. Antibacterial spectrum SBT ABPC ABPC CPZ : sulbactamiampicillin : ampicillin : cefoperazone


pneumoniae 30, C. freundii 32, E. aerogenes 27, E. cloacae 32, P. mirabilis 31, P. vulgaris 34, M. morganii 32, S. marcescens 31, H. influenzae 27, P.

CHEMOTHERAPY

VOL. 23 NO. 3 CHEMOTHERAPY 1067 Table 2 Sensitivity of gram positive cocci isolated from various diagnostic materials Table 3 Sensitivity of gram nega

VOL. 33 S-5 CHEMO THERAPY Fig. 1 Chemical structure of HAPA-B 1-N-[ (2 S)-3-Amino-2-hydroxypropiony1]-4- O-(6-amino-6 - deoxy-ƒ -D- glucopyranosyl) -6





CHEMOTHERAPY

VOL.30 S-1 CHEMOTHERAPY Table 1 Antibacterial activity of CTT against standard strains Table 2 Antibacterial activity of CTT against standard strains

CHEMOTHERAPY DEC phvlococcus aureus Staphylococcus Enterococcus faecalis Escherichia Klebsiella pneumoniae Serratia marcescens Pseudomonas cepac

CHEMOTHERAPY APR Fig. 1 Chemical structure of cefotetan (CTT, YM09330)

CHEMOTHERAPY Table 1 Clinical effect of Sultamicillin

THE JAPANESE JOURNAL OF ANTIBIOTICS ( 37 ) methicillin-susceptible Staphylococcus aureus (MSSA) Escherichia coli levof

Key words:fatty acid,plant oil,staphylococcus aureus,skin care, atopic dermatitis

dihydrostreptomycin(sm), sulfanilamide(sa), kanamycin(km), paromomycin(prm), fradiomycin(frm), ampicillin(apc), cephaloridine (CER), nalidixic acid(na


CHEMOTHERAPY DEC Table 1 Antibacterial spectra of T-1982, CTT, CMZ, CTX, CPZ and CEZ 106 CFU/ml Note: P; Peptococcus, S; Streptococcus, G; Gaffk

THE JAPANESE JOURNAL OF ANTIBIOTICS 65 6 Dec DNA 2, , % 1.65% 1.17% 90% 9 Escherichia coli -

VOL.48 NO.7 lase negative staphylococci, Escherichia coli, Klebsiella spp., Citrobacter freundii, Enterobacter spp., indole-positive Proteus, Serratia

VOL.47 NO.5 Table 1. Susceptibility distribution of Ĉ- lactams against clinical isolates of MRSA MRSA: rnethicillin- resistant Staphylococcus aureus

Table1MIC of BAY o 9867 against standard strains

Fig. 1 Chemical structure of norfioxacin (AM-715)

Fig. 1 Chemical structure of KW-1070

CHEMOTHERAPY NOV Fig. 1 Imipenem (MK-0787) Enterobacter cloacae Enterobacter aero Morganella morganii Pseudo- Acinet ob acter Staphylococcus aur

CHEMOTHERAPY JUNE 1993 Table 1. Background of patients in pharmacokinetic study

Staphylococcus epidermidis Streptococcus pneumoniae Staphylococcus epidermidis Streptococcus pneumontae S. epidermidis Table 1. Summary of the organis

日本化学療法学会雑誌第61巻第6号

Key Words: Klebsiella pneumoniae, CEP-AIS, MIC, "MBC", MIC of drugs in combination

ヒビスコール液A カタログ



Streptococcus pneumoniae,streptococcus pyogenes,streptococcus agalactiae,neisseria gonorrhoeae,h.influenzae,moraxella subgenus Branhamella catarrharis

VOL.35 S-2 CHEMOTHERAPY Table 1 Sex and age distribution Table 2 Applications of treatment with carumonam Table 3 Concentration of carumonam in human



Table 1. MICs of fosfomycin and other antibiotics determined by agar dilution method against Pseudomonas aeruginosa FOM: fosfomycin, PIPC: piperacilli

2108 CHEMOTHERAPY SEPT Table 1 Antimicrobial spectrum Fig. 1

PCG = Benzylpenicillin ABPC= Ampicillin AMPC= Amoxicillin MPIPC = Oxacillin MCIPC = Cloxacillin SBPC= Sulbenicillin PIPC= Piperacillin

CHEMOTHERAPY JUNE 1988 ( })-1-ethyl-6,8-difluoro-1,4-dihydro-7-(3-methyl-l-piperaziny1) 4-oxo-3-quinolinecarboxylic acid hydrochloride Fig. 1. Chemica

日本化学療法学会雑誌第53巻第S-3号

VOL. 34 S-2 CHEMOTH8RAPY 913


VOL. 43 NO. 4


CHEMOTHERAPY MAY. 1988


VOL. 21 NO. 2 CHEMOTHERAPY 137

日本化学療法学会雑誌第64巻第4号


CHEMOTHERAPY OCT Fig. 1 Chemical structure of CVA-K


CHEMOTHERAPY FEB Table 1 Background of volunteers


CHEMOTHERAPY FEB. 1994

.i...j...[.X8-2

VOL.42 S-1

Transcription:

JUNE 1988

VOL.36 S-2 CHEMOTHERAPY Table 1. Antibacterial activity of NY-198 against standard strains of bacteria By the agar-dilution method (inoculum: 106 CFU/ml)

JUNE 1988 Fig. 3. Antibacterial activity of NY-198 against MRSA (44 strains) Fig. 2. Antibacterial activity of NY-198 against S. aureus (161 strains) Fig. 4. Antibacterial activity of NY-198 against S. epidermidis (107 strains)

VOL. 36 S-2 CHEMOTHERAPY Fig. 6. Antibacterial activity of NY-198 against S. pneumoniae (24 strains) Fig. 5. Antibacterial activity of NY-198 against S. pyogenes (92 strains) Fig. 7. Antibacterial activity of NY-198 against E. faecalis (54 strains)

JUNE 1988 Fig.8. Antibacterial activity of NY-198 against E. coli (93 strains) Fig.9. Antibacterial activity of NY-198 against K. pneumoniae (40 strains) Fig.10. Antibacterial activity of NY-198 against K. oxytoca (56 strains)

106 CFU/ml 106CFU/ml Fig. 11. Antibacterial activity of NY-198 against C. freundii (76 strains) Fig. 13. Antibacterial activity of NY-198 against Salmonella spp. (107 strains) 106 CFU/ml 106 CFU/ml Fig. 12. Antibacterial activity of NY-198 against Shigella spp. (107 strains) Fig. 14. Antibacterial activity of NY-198 against E. cloacae (100 strains)

JUNE 1988 Fig.16. Antibacterial activity of NY-198 against P vulgaris (99 strains) Fig.15. Antibacterial activity of NY-198 against P. mirabilis (99 strains) Fig.17. Antibacterial activity of NY-198 against M. morganii (50 strains)

VOL.36 S-2 CHEMOTHERAPY Fig.18. Antibacterial activity of NY-198 against P. inconstans (88 strains) Fig.20. Antibacterial activity of NY-198 against P. aeruginosa (99 strains) Fig.19. Antibacterial activity of NY-198 against S. marcescens (100 strains)

Fig. 21. Antibacterial activity of NY-198 against GM-resistant P. aeruginosa (45 strains) Fig. 23. Antibacterial activity of NY-198 against X. maltophilia (50 strains) Fig. 22. Antibacterial activity of NY-198 against P. cepacia (51 strains) Fig. 24. Antibacterial activity of NY-198 against A. calcoaceticus (49 strains)

Fig. 25. Antibacterial activity of NY-198 against Legionella spp. (15 strains) Fig. 26. Antibacterial activity of NY-198 against H. influenzae (72 strains) Fig. 27. Antibacterial activity of NY-198 against ABPC-resistant H. influenzae (64 strains)

Fig. 28. Antibacterial activity of NY-198 against N. gonorrhoeae (17 strains) Fig. 30. Antibacterial activity of NY-198 against C. perfringens (16 strains) Fig. 29. Antibacterial B. fragilis (27 strains) activity of NY-198 against Fig. 31. Antibacterial activity of NY-198 against C. difficile (27 strains)

Table 2. Bactericidal activity of NY-198 against standard strains (MIC, MBC: Đg/ml)

NY-198 (MIC: 0.78 pg/ml) OFLX (MIC: 0.39ug/ml) NFLX (MIC: 0.78 pg/ml) PPA (WC: 25 pg/ml) Fig.32. Bactericidal activity of NY-198 against S. aureus Smith

NY-198 (MIC: 0.10 pg/m1) OFLX (MIC: 0.05 pg/m1) NFLX (MIC: 0.10 pg/ml) PPA (MIC: 1.56 pg/ml) Fig.33. Bactericidal activity of NY-198 against E. colt ML4707

NY-198 (MIC: 3.13 ug/ml) OFLX (MIC: 3.13 pg/ml) NFLX (MIC: 1.56 g g/ml) PPA (MIC: 25 pg/mi) Fig. 34. Bactericidal activity of NY-198 against P. aeruginosa GN11189

S. aureus FDA209 JC-1 E. coli NIHJ JC-2 K. pneumoniae PCI-602 S. typhimurium IID-971 S. marcescens IAM1184 M. morganii IF03848 P. aeruginosa IFO3445 Fig. 35. Influence of horse serum on MIC

S. aureus FDA209 JC-1 E. coil NIHJ JC-2 K. pneumoniae PCI-602 S. typhimurium IID971 ph of medium S. marcescens IAM 1184 M. morganii IFO 3848 P. aeruginosa IFO 3445 ph of medium Fig. 36. Influence of medium ph on MIC

S. aureus FDA 209 JC-1 E. co li NIHJ JC-2 K. pneumonzae PCI-602 S. typhimurium LID 971 S. marcescens IAM 1184 M. morganii IFO 3848 P. aeruginosa IFO 3445 Fig. 37. Influence of inoculum size on MIC

S. aureus FDA 209 JC-1 E. coli NIHJ JC-2 K. pneumoniae PCI-602 S. typhimurium IID 971 S. marcescens IAM 1184 M. morganii IFO 3848 P. aeruginosa IFO 3445 <Medium> S: Sensitivity disc agar B: Brain heart infusion agar H: Heart infusion ager N: Nutrient agar Fig. 38. Influence of medium on MIC

Table 3. Frequency of spontaneous mutants resistant to NY-198 Selective concentration: 8 times the MIC value Fig. 39. Inhibition of E. coli KL-16 DNA gyrase supercoiling activity by NY-198

Table 4. Inhibition of E. coli KL-16 DNA gyrase superocoiling activity by quinolonecarboxylic acids Table 5. Protective effects of NY-198 on systemic infections in mice a) Adiministered intraperitoneally. b) Single oral medication immediately after infection.

VOL.36 S-2 CHEMOTHERAPY 1) SATO, K.; Y. MATSUURA, M. INOUE, T. UNE, Y. OSADA, H. OGAWA & S. MITSUHASHI: In vitro and in vivo activity of DL-8280, a new oxazine derivative. Antimicrob. Agents Chemother. 22: 548-553, 1982 2) ITO, A.; K. HIRAI, M. INOUE, H. KOGA, S. SUZUE, T. IRIKURA & S. MITSUHASHI: In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob. Agents Chemother. 77 : 103-108, 1980 3) SHIMIZU, M.; Y. TAKASE, S. NAKAMURA, H. KATAE, A. MINAMI, K. NAICATA, S. INOUE, M. ISHIYAMA & Y. KUBO: Pipemidic acid, a new antibacterial agent active against Pseudomonas aeruginosa: in vitro properties. Antimicrob. Agents Chemother. 8: 132-138, 1975 6) GELLERT, M.; L. M. FISHER & M. H. O'DEA: DNA gyrase: Purification and catalytic properties of a fragment of gyrase B protein. Proc. Natl. Acad. Sci. USA 76: 6289-6293, 1979 7) STAUDENBAUER, W. L. & E. ORR: DNA gyrase affinity chromatography on novobiocin-sepharose and catalytic properties. Res. 9: 3589-3609, 1981 Nucleic Acid 8) SATO, K., Y. INOUE, T. Fuji', H. AOYAMA, M. INOUE & S. MITSUHASHI: Purification and properties of DNA gyrase from a fluoroquinolone resistant strain of Escherichia coli. Antimicrob. Agents Chemother. 30: 777-780,

JUNE 1988 1986 9) GELLERT, M.; K. MIZUUCHI, M. H. O'DEA & H. A. NASH: DNA gyrase: An enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73: 3872-3876, 1976 10) MILLER, L. C.& M. L. TAINTER: Estimation of the ED50 and its error by means of logarithmic -probit graph paper. Proc. Soc. Exp. Biol. Med. 57: 261-264, 1944 11) SUGINO, A. C. L. PEEBLES, K. N. KREUZER & N. R. COZZARELLI: Mechanism of action of nalidixic acid: Purification of Escherichia coli nal A gene product and its relationship to DNA gyrase and a novel nickingclosing enzyme. Proc. Natl. Acad. Sci. USA 74: 4767-4771, 1977 12) KREUZER, K. N.&N. R. COZZARELLI: Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: Effects on deoxyribonucleic acid replication, transcription and bacteriophage growth. J. Bacteriol. 140: 424-435, 1979 13) ORR, E. N. F. FAIRWEATHER, I. B. HOLLAND & R. H. PRITCHARD: Isolation and characterization of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol. Gen. Genet. 177: 103-112, 1979 14) GELLERT, M.: DNA topoisomerases. Ann. Rev. Biochem. 50: 897-910, 1981 15) KATO, H. 0. NAGATA, E. OKEZAKI, T. YAMADA, Y. ITO, T. TERASAKI & A. Tsuji: NY-198, a new antimicrobial agent of quinolone : Absorption, distribution and excretion in animals. Program Abstr. 25th Intersci. Conf. Antimicrob. Agents Chemother., abstr. no. 568, 1985 17) NAKASHIMA, M.; T. UEMATSU, Y. TAKIGUCHI, A. MIZUNO, M. KANAMARU, A. Tsuji, S. KUBO, O. NAGATA, E. OKEZAKI & Y. TAKAHARA : A new quinolone, NY-198: Parmacokinetics in healthy volunteers. Program Abstr. 26th Intersci. Conf.. Antiinicrob. Agents Chemother abstr. no. 430, 1986 IN VITRO AND IN VIVO ANTIBACTERIAL ACTIVITIES OF NY-198 Laboratory TOHRU HIROSE and Susumu MITSUHASHI Episome Institute, Gunma MATSUHISA INOUE of Drug Resistance in Bacteria, School of Medicine, Gunma University, Gunma NY-198, a new oral difluorinated quinolone, is characterized by the presence of a C-methyl group at the 3- position of the piperazine moiety. We compared the in vitro and in vivo antibacterial activities of NY-198 with those of ofloxacin (OFLX), norfloxacin (NFLX), and pipemidic acid (PPA). The results are summarized as follows: 1) NY-198 had a broad spectrum, with strong antibacterial activity against both Gram-positive and - negative bacteria. Its in vitro activity was similar to those of OFLX and NFLX. 2) NY-198 showed no cross-resistance with methicillin, gentamicin, ampicillin, and nalidixic acid. 3) The action of NY-198 was bactericidal. 4) Variation in medium ph, medium, inoculum size, and addition of horse serum had no effect on MICs of NY -198. 5) The frequency of spontaneous mutation resistance to NY-198 was relatively low. 6) NY-198 strongly inhibited the supercoiling activity of DNA gyrase purified from E. coli KL-16. 7) In vivo antibacterial activity of NY-198 against systemic infections in mice was 2-to 4-fold that of NFLX and 1-to 2-fold that of OFLX.