IV.dvi



Similar documents

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

notekiso1_09.dvi

24.15章.微分方程式

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

mugensho.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

main.dvi

2011de.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

K E N Z OU

untitled


Gmech08.dvi

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Acrobat Distiller, Job 128

Chap11.dvi

( ) ( )

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


sec13.dvi

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

2 2 L 5 2. L L L L k.....

Z: Q: R: C: 3. Green Cauchy

x ( ) x dx = ax

main.dvi

I 1

KENZOU


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Fubini

II 1 II 2012 II Gauss-Bonnet II

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =


(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

i

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


body.dvi

2

meiji_resume_1.PDF


29

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Microsoft Word - 触ってみよう、Maximaに2.doc

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

KENZOU

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

untitled

A

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

08-Note2-web

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

y = f(x) (x, y : ) w = f(z) (w, z : ) df(x) df(z), f(x)dx dx dz f(z)dz : e iωt = cos(ωt) + i sin(ωt) [ ] : y = f(t) f(ω) = 1 2π f(t)e iωt d

Untitled


(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

CIII CIII : October 4, 2013 Version : 1.1 A A441 Kawahira, Tomoki TA (Takahiro, Wakasa 3 )

Gmech08.dvi

(, Goo Ishikawa, Go-o Ishikawa) ( ) 1

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

応力とひずみ.ppt

E F H0 A.F. Beardon Iterations of rational functions. Springer. Q Q Q Q H3/4 URL: kawahira/courses/5s-k

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

EndoPaper.pdf

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

Transcription:

IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z <δ z f 1 (z 0 ) f 1 (z) = z 0 z = z 0 z <δ= ε f 1 z 0 z 0 0 ε 0 <δ< ε +ε z 0 δ z z 0 z <δ z z 0 z 0 z > z 0 δ > z 0 ε +ε z 0 = +ε z 0 > 0 (3 ) z 0 z f (z 0 ) f (z) = z 0 (z z 0 ) z 0 ( z z 0 ) z 0 z z z 0 z δ +ε z 0 <ε

IV f z 0 0 z 0 z = re it (r, t R, r>0, 0 t<π) z z = e it lim z 0 f (z) f z =0. z 0 z 0 f 3 z = re it (r, t R, r>0, 0 t<π) lim f z 3(z) = lim z 0 z 0 z = lim r 0 re 3it =0 f 3 (0) = 0 f 3 z =0 x = ξ, y = η ( ) ε δ x ξ <δ, y η <δ e x e ξ < ε, sin y η < εeξ e ε (ξ, η), (x, y) (x ξ) +(y η) δ x ξ <δ, y η <δ (ex cos y e ξ cos η) +(e x sin y e ξ sin η) = e ξ (1 e x ξ ) +4e x ξ sin y η e ξ (εe ξ ) +4e x ξ ( εe ξ e ε δ ε ε R R )

IV 3 {ex cos y} + {e x sin y} = e x x [ ] ( ) 3. 1 f(z) =1 z 1 āz z < 1 f(z) < 1, = (1 )(1 z ) 1 āz f D f D D 1 1 z 1,z D f(z 1 )=f(z ) (1 )(z 1 z )=0 z 1 = z f D D w D z := w + 1+āw z < 1 f(z) =w ( ) f (z) = (1 āz)+ā(z ) = 1 0 (z D) (1 āz) (1 āz) f D

IV 4 4. u u(x, y) = u x + u y = x u x + y u y = x (x)+ ( y) = =0 y u (ξ,η) { x(t) = ξt y(t) = ηt 0 t 1 v(ξ,η) v(0, 0) = = = (ξ,η) (0,0) 1 0 1 0 u u dx + y x dy ( u y (x(t),y(t))x (t)+ u ) x (x(t),y(t))y (t) dt (ηt ξ +ξt η) dt =[ξηt ] 1 0 =ξη u v v(x, y) =xy +const.. 5. C {0} z( 0) ε 0 <ε< z D(z, ε) C z =1 z z C X 1 := C \ (, 0] z C X := C \ [0, ) X 1 X = C z, z C C C C

IV 5 u(x, y) =x y +3y C u x u y = x + xy (x + y ), y (x + y ) = y +3 x y (x + y ), u = +y y 3x x (x + y ), u = +y 3x y y (x + y ) C u =0 v (ξ,η) C z =1 γ v(x, y) = u u dx + y x dy = γ γ = (y 3+ x y γ (x + y ) ydx + xdy 3 dx γ + 1 γ =xy 3x x y (x + y ) dx + xy (x + y ) dy x (x + y ) +const. ) ( ) xy dx + x + dy (x + y ) v(x, y) =xy 3x 1 x x + y +const.

IV 6 C v x = u y, v y = u x [ ] (x y ( ) ) (x + y ) dx + xy A(x, y) (x + y ) dy = d x + y { (x + y )A x xa = x y A(x, y) = x (x + y )A y ya = xy (x, y) (r, θ) (1, 0) (R, Θ) γ γ 1 : { r(t) = (1 t)+tr θ(t) = 0 (0 t 1) { r(t) = R γ : θ(t) = tθ (0 t 1) γ 1 + γ X 1,X z =1 z = 1 X 1,X v 1,v v 1,v (X 1 X )

IV 7 u C z = x + iy c f(z) = u(x, y)+iv(x, y) ( ) = x y y +3y (x + y ) ( ) x +i xy 3x (x + y ) = z z 3iz i z = z 3iz ı z. + ic 6. (r, θ) r = x + y,θ = rctn y x ( ) x = r r x + θ θ x = cosθ r sin θ r θ = r y r y + θ = sinθ θ y r + cos θ r θ z z = 1 ( r z r i ) θ = 1 z ( r r + i ). θ [ ] z 8 ( ) r = z z, θ = 1 (log z log z) i

IV 8 z = r r z + θ θ z, z = r r z + θ θ z 7. 4 4 =4 { ( 1 z z =4 r z z r + i )} θ =4 1 z ( r r i ){ ( 1 r θ z r + i )} θ = 1 ( r z r i )( r θ r + i ) θ = 1 { r ( r ) + ir r r r r θ i ( r ) } + θ r θ = 1 { r ( r ) } + r r r θ r + 1 r r + 1 r θ 4 4 8. C u u =0 r u r ( r u r ) + u θ =0 u θ ( u r u ) =0 r r

IV 9, b u u(r) = log r + b u (x, y) u(x, y) = log(x + y )+b v(x, y) = y x + y dx + x x + y dy = rctn y + c (c R) x u θ + c (c R) [ ] C 9. z 1 1 r cos θ + r 0 u(r, θ) = 1 r 1 r cos θ + r = r + 1 r r + 1 r θ u r = 4r +(1+r )cosθ (1 r cos θ + r ) 3, u = 4{cos θ r(r +3)cosθ +3r 1}, r (1 r cos θ + r ) 3 u = r(1 r ){(1 + r )cosθ +r cos θ 4r}. θ (1 r cos θ + r ) 3 u D u

IV 10 [ ] 1 r cos θ + r =(1 r) +r(1 cos θ) 0 r =1,θ=0(modπ) u C \{(1, 0)} 10. 6 1 (r r z + i θ ). (u + iv) =0 v r = 1 r u θ, v θ = r u r. f(z) =R(x, y)(cos Θ(x, y)+i sin Θ(x, y)) R, Θ ( ) { u = R cos Θ R = u + v v = R cos Θ Θ = rctn v u R x = R u u x + R v v y Θ = Θ u y u x + Θ v v y = cosθ u v sin Θ x y = cos Θ u R x sin Θ v R y u, v R x = R Θ y R y R y = R Θ x.

IV 11 R f R, Θ r, θ 11. [, b] M := mx ϕ = ϕ(ξ ), m := min ϕ = [,b] [,b] ϕ(ξ ) ξ,ξ [, b] M = m (c (, b) ) m<m m 1 b 1 b b b ϕ(t) dt M ϕ(t) dt = ϕ(c) c ξ ξ <c<b ϕ 0 if 0 x < 1 ϕ(x) = 1 1 if < x < 1. 1. f(z) =u(x, y)+iv(x, y) γ γ : x = x(t),y = y(t) ( t b) x() =x(b), y() =y(b)

IV 1 b f(z)f (z) dz = [(u(x(t),y(t)) iv(x(t),y(t))][(u x (x(t),y(t)) γ = = b b + iv x (x(t),y(t))][x (t)+iy (t)]dt [(uu x + vv x )+i(uv x vu x )][x (t)+iy (t)]dt [(uu x + vv x )x (t) (uv x vu x )y (t)]dt + i b [(uu x + vv x )y (t)+(uv x vu x )x (t)]dt b = [(uu x + vv x )x (t)+(uu y + vv y )y (t)]dt b + i b d dt (u + v )dt + i =[(u + v )] t=b t= + i = i b [(uv x vu x )x (t)+(uu x + vv x )y (t)]dt b b [(uv x vu x )x (t)+(uu x + vv x )y (t)]dt [(uv x vu x )x (t)+(uu x + vv x )y (t)]dt [(uv x vu x )x (t)+(uu x + vv x )y (t)]dt

IV 13 Re f(z)f (z) dz = fdf + γ = γ γ γ fdf fdf + fd f = 13. w = u + iv dudv = udv = f( ) f( ) f( ) γ d( ff)=0 udv f( ) dudv f( D) w = f(e it ), 0 t π, z (t) = sin t + i cos t dv =(v x ( sin t)+v y cos t) dt =( v x sin t + u x cos t) dt =Im[(u x + iv x )( sin t + i cos t)] dt =Im[f (z(t))z (t)] dt

IV 14 π udv = (Re f)(z(t))im [f (z(t))z (t)] dt f( ) = = 0 π 0 π 0 Im [(Re f)(z(t))f (z(t))z (t)] dt [ f(z(t)) + f(z(t)) Im ( = 1 π Im f(z(t))f (z(t))z (t) dt 0 ] f (z(t))z (t) dt + 1 π Im [f(z(t))f (z(t))z (t)] dt 0 = 1 4 Im [f(z(t)) ] π 0 + 1 π Im [f(z(t))f (z(t))z (t)] dt = 1 π Im [f(z(t))f (z(t))z (t)] dt = 1 Im 0 C f(z)f (z) dz 1 f(z)f (z)dz i C [ ] ( ) u = f(z)+f(z), v = 0 f(z) f(z) i

IV 15 f(z)+f(z) f (z)dz f (z)d z C i = 1 f(z)f (z)dz f(z)f 4i (z)d z + f(z)f (z)dz f(z)f (z)d z C 0 f(z)f (z)dz = 1 d(f(z)) =0, f(z)f (z)d z = 1 d(f(z)) =0. C C 1 f(z)f(z)d z + f(z)f (z)dz = 1 4i Im C C C C f(z)f (z)dz f(d) =f( D) u = w + w, v = w w i idudv = dwd w 14. f : z z = x iy f = u + iv u x =1, u y =0; v x =0, v y = 1 [ ] C

IV 16 15. (1) =1,b= 1; f(z) =z ; f (i) =i. 16. () = 6,b=,c=0,p=6,q =0;f(z) =z 3 ; f (i) = 6. 17. p = 6,q = 5,r =3,s =10 f(z) =u(x, y) +iv(x, y) = (5 + 3i)z f (5 3i) =68. 18. { C if 0 T (C) =, S(C \{ d/c}) =C \{/c} {b} if = 0 λ := d bc 1 := / λ, b := b/ λ, c := c/ λ, d := d/ λ z z + b S c z + d d b c =1 19. T =0 0 T 1 C T 1 (w) = w b,w C. T 1 C S 1 C \{/c} S 1 (w) = dw + b,w C \{ d/c}. cw dt 1 dw = 1, ds 1 dw = 1 cw d). 0. z = x + iy u(x, y) +iv(x, y) z u = x + y,v =0 x = y =0 z z u = x + y,v =0 x = y =0 u x = x x + y, u y = v x = 0, v y = 0 y x + y ;

IV 17 z z 3 u =(x + y ) 3,v =0 x = y =0 u x = 3x x + y, u y = 3y x + y ; v x = 0, v y = 0 x = y =0 [ ] z z 3 h 0 lim = lim h = 0; h 0 h h 0 h 3 0 lim h 0 h 0 = lim h 0 h h =0 1. z z( 0) z = x + iy w = z = u + iv u = x y, v =xy c 1,c 0 x = c 1 y u = c 1 y, v =c 1 y y ( ) v u = c 1. c 1 y = c x u = x c, v =xc x ( ) v u = c c.

IV 18 (c 1,c ) ( c, c 1 ), (c 1, c ) 0 ( ) ( ). () G f () z G z 0 G z = z 0.G ε>0 D(z 0,ε) G. D(z,ε) G z D(z,ε) z z 0 = z z = z z <ε z D(z 0,ε) z G z G D(z,ε) G G G z1,z G z 1, z G (b) f (z) G f (z) z = f( z) z f = f( z) z =0 3. f f(z) = {f(z)f(z)} =4 z =4 z =4 f z f (z) ( z {f(z)f(z)} =4 f f z z ( f f ) =4 f f z z z +4f f z z =4 f f z z =4 ) f + f z

IV 19 u = u(x, y),v(x, y) u u (u, v) (x, y) := x y v v = u v x y u v y x x y ( ) ( ) u v + = f (z) 0 x x 4. f C {zf(z)} =4 z f =0 z {zf(z)} =4 f {z z z } =4 f z + z f {zf(z)} =0 f z =0. 5. C u (u )=4 z z (u )=4 ( u u ) z z =8 u u z z +u u =8 u u z z +8u z u u ( ) u + x u u z z =0 ( ) u =0 y ( ) u z u u u ū (z )

IV 0 6. (1) () z G ε>0 z G ε G ε S[1,z] G ε.g ε G (3) z G G S[1,z] 7. (1) () {f,z} =0 g := f /f g (z) = 1 g(z) 1 g(z) = 1 z + c 1, c 1 C f (z) f (z) =. z +c 1 1 c log f (z) = log(z +c 1 )+c f (z) = c 3,c 4 f(z) = c 3 z +c 1 + c 4 c 3 (z +c 1 ) d bc 1, b, c, d C z + b cz + d 8. {ϕ,ζ} = ϕ (ζ) ϕ (ζ) 3 ( ) ϕ (ζ) ϕ (ζ)

IV 1 ϕ (ζ) = f (z)g (ζ) ϕ (ζ) = f (z)g (ζ)+f (z)g (ζ) ϕ (ζ) = f (z)g 3 (ζ)+3f (z)g (ζ)g (ζ)+f (z)g (ζ) {f g, ζ} = {f,z}g (ζ) + {g, ζ}

IV [] 1. 70 13 151 16. 71 5 0 O 3. 73 (0) 4. 75 4.15 z 0 C 1 f f z 0 f z 0 f z 0 f f z 0 ( ) z 0 z 0 z 0 (43 ) 4.15 1 ( ), 5. 76 4.3 6. /0 = 7. 78 8 f(ζ) F (ζ) 8. 78 5 4.1 4.