Abstract Gale-Shapley 2 (1) 2 (2) (1)



Similar documents
2 (S, C, R, p, q, S, C, ML ) S = {s 1, s 2,..., s n } C = {c 1, c 2,..., c m } n = S m = C R = {r 1, r 2,...} r r 2 C \ p = (p r ) r R q = (q r ) r R

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

i (almost stable matching)


表紙参照.PDF


T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

<303395C48DE88D8E95462E696E6464>

z.prn(Gray)

CHUO UNIVERSITY 3


1 Flores, D. (009) All you can drink: should we worry about quality? Journal of Regulatory Economics 35(1), Saggi, K., and Vettas, N. (00) On in

untitled

わが国企業による資金調達方法の選択問題


(1) (Karlan, 2004) (1) (1973) (1978) (1991) (1991) 1

1

inkiso.dvi

main.dvi

自発的繰り返し囚人のジレンマにおける確率的受け入れと漸次協力の効果について On Stochastic Acceptance and Gradual Cooperation in Voluntarily Repeated Prisoner's Dilemma with No Information


1604きらり_P01

自殺の経済社会的要因に関する調査研究報告書

商学 66‐1☆/16.田口

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


1 (1) (2)


p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2


COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

橡同居選択における所得の影響(DP原稿).PDF

2 ( ) i

”Лï‡Æ™²“¸_‚æ4“ƒ__‘dflÅPDF‘‚‡«‘o‡µ.pdf

「産業上利用することができる発明」の審査の運用指針(案)


OECD Benartzi and Thaler Brown et al. Mottla and Utkus Rooiji et al. Atkinson et al. MacFarland et al. Elton et al. Tang et al. Benartzi and Thaler Br


04-04 第 57 回土木計画学研究発表会 講演集 vs

,.,.,,. [15],.,.,,., , 1., , 1., 1,., 1,,., 1. i

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x


incompatible 2. 基 本 となるモデル オリジナルモデル A B, A x A B x A B x B A x B x A x B x A x B x B x A A B i AB t Hendricks et al. 84

坪沼

ベンチャーと戦略ゲーム

DGE DGE (1) ( 1

Centralizers of Cantor minimal systems

New Public Management NPM Walsh Leibenstein, H. X Leibenstein1966 Leibenstein1969 X X X X Blois ue

モノグラフ・中学生の世界 Vol.62

s d



* *2 Russell et al. (2015) 2



203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3

aisatu.pdf

Sigma

Sigma

本文/110 国際競争時代のコストP21‐41

cm H.11.3 P


III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

xia2.dvi

untitled


CE2554日報販売冊子.indd

Gilovich et al., 1985, p.313 Gilovich et al Adams, 1992; Albright, 1993; Koehler and Conley, 2003; Clark, 2005a, 2005b Gilovi

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

:

The Empirical Study on New Product Concept of the Dish Washer Abstract

penalty cost. back log KM hq + cm + Q 2 2KM Q = h economic order quantity, EOQ Wilson 2

2 / 24

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

仁科財団50周年のあゆみ/仁科博士写真p1

(CFW ) CFW 1

<90AD8DF489C88A D322E696E6462>

01社会学部研究紀要.indd

株式保有構成と企業価値 ─コーポレート・ガバナンスに関する一考察─

And Business


untitled


46−ª3�=4�“ƒ‚S“·‚Ö‡¦

448 Vol. 44 No 図


23 Study on Generation of Sudoku Problems with Fewer Clues

JSPS Grants-in-Aid for Creative Scientific Research Understanding Inflation Dynamics of the Japanese Economy Working Paper Series No.7 日本家計の消費 貯蓄 労働プロ




A B C E ( ) F

白山の自然誌21 白山の禅定道

平成16年度 市政年報

Micro-D 小型高密度角型コネクタ

WE7281_help

Transcription:

( ) 2011 3

Abstract Gale-Shapley 2 (1) 2 (2) (1)

1 1 1.1........................................... 1 1.2......................................... 2 2 4 2.1................................... 4 2.1.1 Gale-Shapley.......................... 4 2.1.2............................ 6 2.2................................... 9 2.2.1.............................. 9 2.2.2.............................. 10 2.2.3................................. 12 3 14 3.1.............................. 14 3.2........................................ 17 4 20 4.1.................................... 20 4.2........................................ 23 4.2.1 Knuth (1976).............................. 23 4.2.2............................. 24 5 27 A 28 A.1 3.2........................................ 28 A.2 4.1........................................ 29 Acknowledgements 32 i

References 33 ii

1 1.1 2 two-sided matching Gale and Shapley (1962) deferred acceptance *1 Roth and Vande Vate (1990) Gale-Shapley *1 Roth (1991) 1

2 Gale-Shapley 2 3 (1) (2) (3) Gale-Shapley (1) (2) strategy-proof 1 (1) (2) (3) Roth (1989) 1.2 2 Gale-Shapley Gale-Shapley Gale-Shapley 2

3 4 Roth and Vande Vate (1990) 5 2 3

2 Gale-Shapley Roth and Vande Vate (1990) Roth and Vande Vate (1990) Adachi (2000) Adachi (2000) 2.1 2.1.1 Gale-Shapley 1 1 2 Gale-Shapley Gale-Shapley Gale-Shapley (M, W; P) 2 M W M = {m 1, m 2,..., m p } p 4

W = {w 1, w 2,..., w q } q m M W {m} m w W M {w} w rational *1 completeness *2 transitivity {{ m } m M } {{ w } w W } 2 {{ m } m M, { w } w W } P Gale-Shapley 1 outcome Definition 2.1 matching µ µ µ(x) = x M W M W µ(m) m µ(m) W µ(w) w µ(w) M Definition 2.2 µ stable µ µ (IR) (S) (IR) (S) µ(m) m m for all m M and µ(w) w w for all w W; and (m, w) M W such that w m µ(m) and m w µ(w). 2.2 (S) (m, w) blocking pair Gale and Shapley (1962) *3 Gale-Shapley (1) Gale-Shapley *4 (2) (3) *1 m W x y x m y y m x *2 m W x y z x m y y m z x m z *3 *4 strategy-proof Gale-Shapley 5

Gale-Shapley (1) 2.2 Gale-Shapley 2.1.2 Roth (1989) Gale-Shapley (M, W; P) Gale-Shapley P = {P(m 1 ),..., P(m p ), P(w 1 ),..., P(w q )} *5 P(m) m Q(m) w P(w) Q(w) Q = {Q(m 1 ),..., Q(m p ), Q(w 1 ),..., Q(w q )} *6 h Q µ Q µ = h(q) Q h h(q) Q *7 h (N = M W, Q, h, P) i M W Q (i) Q i µ = h(q (i), Q i ) µ(i) ν = h(q(i), Q i ) ν(i) i M W Q (i) *5 P *6 P Q *7 2 µ ν µ ν 1 ν µ ν 6

Q (i) Q i Theorem 2.1 (Roth (1982)) Gale-Shapley 2 Theorem 2.2 (Dubins and Freedman (1981)) (N = M W, Q, h, P) Q = (Q(m 1 ),..., Q(m p ), Q(w 1 ),..., Q(w q )) i M W Q(i) Q i 2.1 Corollary 2.1 (Roth and Sotomayor(1990)) 2.2 *8 2.1 Theorem 2.3 (Roth (1984)) h (N = M W, Q, h, P) P = (P (w)) w W P 1 *8 Gale and Sotomayor (1985) 7

*9 Γ = (N = M W, Q, h, U = U i, F). h : Q L[M] M L[M] U i u = {u i } i N U F F F σ i U i σ = {σ} i N Q = σ(u) h(σ(u)) u i i u i (σ) = p i (u i u i )u i [h(σ(u i, u i ))]. u i U i p i (u i u i ) i F Γ σ i N u i U i i σ i u i (σ ) u i (σ i, σ i ) h Q h(q) 1 2.3 i N Theorem 2.4 (Roth (1989)) Gale-Shapley 2 Γ h(σ (u)) 1 σ 1 h *9 Roth (1989) i Q(i) D i 8

3 3 2.2 2.2.1 Roth and Vande Vate (1990) Gale-Shapley Theorem 2.5 (Roth and Vande Vate (1990)) µ (M, W; P) µ = µ 1 µ k µ 1,..., µ k i = 1,..., k 1 µ i (m i, w i ) µ i+1 µ i (m i, w i ) Knuth (1976) 2.2 (S) (S) (S) * 10 Gale-Shapley (1) (1) (3) Gale-Shapley (1) (3) Roth and Vande Vate (1990) *10 Roth and Sotomayor (1990) 9

2.5 Corollary 2.2 (Roth and Vande Vate (1990)) µ 1 1 1 Knuth (1976) 4 Adachi (2000) 2.2.2 Adachi (2000) * 11 2.1 µ M W M W 3 (1) x M W µ µ(x) = x (2) µ(m) m µ(m) W (3) µ(w) w µ(w) M (1) 1 1 (2) (3) 3 (1) Definition 2.3 v M : M M W v W : W M W 2 *11 Gale and Shapley (1962) Tarski Adachi (2000) 10

v = (v M, v W ) v M (m) m v M (m) W; v W (w) w v W (w) M. (2.2.1) 1 1 1 m w w w w w m w 2.3 1 Adachi (2000) v M (m) = max m {w W : m w v W (w)} {m} for all m M; v W (w) = max w {m M : w m v M (m)} {w} for all w W. (2.2.2) (2.2.2) (2.2.2) (2.2.2) 1 (2.2.2) v M v W v W v M 11

Adachi (2000) 2.2.3 Roth and Vande Vate (1990) 2 Blair (1988) Alkan (2001, 2002) Alkan and Gale (2003) Alkan (2001, 2002) 2 3 2.1.2 12

4 Roth and Vande Vate (1990) 4 13

3 2.2 Roth and Vande Vate (1990) 2 2 3.1 Gale-Shapley Roth and Vande Vate (1990) W P(W) P(W) K W K W K W K = M K W K (M, W; P, K) K- 2.2 2 Assumption 3.1 Assumption 3.2 14

3.1 3.2 2.2 (IR) 3.2 *1 Definition 3.1 K-GS µ K- K-stable µ (KS) (KS) (m, w) M K W such that w m µ(m) and m w µ(w). K- K- Example 3.1 M = {m 1, m 2, m 3 } W = {w 1, w 2, w 3 } *2 m1 : w 1, w 2, w 3, m 1, w1 : m 1, m 2, m 3, w 1 ; m2 : w 1, w 2, w 3, m 2, w2 : m 1, m 3, m 2, w 2 ; m3 : w 1, w 3, w 2, m 3, w3 : m 1, m 2, m 3, w 3. K = {m 1, m 2, m 3, w 2, w 3 } w 2 w 3 w 1 µ 1 K- µ 2 *1 K- 3.1 3.1 K- K- K- µ 1 w 2 w 3 w 1 µ 1 m 2 w 1 m 2 w 1 *2 15

(m 1, w 2 ) K- *3 µ 1 = ( ) m1 m 2 m 3, µ w 2 w 1 w 2 = 3 ( ) m1 m 2 m 3. w 3 w 1 w 2 K-GS K K- Lemma 3.1 K-GS (M, W; P, K = M K W ) K = M K W (M, W; P, K ) K- M M K W K W M M K W K W µ M K- µ w m µ(m) m w µ(w) M K W (m, w) K W = K W µ K K- K W K W w w K W w K W W µ K K- w m µ(m) m w µ(w ) M K W (m, w ) w w K W w K W W (m, w ) M K W w m µ(m) m w µ(w ) M K W (m, w ) K W K W µ K K- K W K W µ M µ M 3.1 Proposition 3.1 K-GS K- Gale and Shapley (1962) 3.1 K = M W M W K W M Roth and Vande Vate (1990) K-GS Proposition 3.2 K K-GS (M, W; P, K) µ (M, W; P, K) µ = µ 1 µ k K- µ 1,..., µ k i = 1,..., k 1 µ i (m i, w i ) µ i+1 µ i (m i, w i ) *3 16

K-GS Roth and Vande Vate (1990) A.1 3.2 * 4 K- Roth and Vande Vate (1990) (M, W; P) p q Gale-Shapley Gale- Shapley K K-GS (M, W; P, K) K W = K = M = M K- M = {µ 1,..., µ n } 3.1 M Gale-Shapley 3.2 3.1 K M W K-GS M K- G = (W, { w } w W, {S w } w W ; M, { m } m M ), (1) W = {w 1,..., w q } (2) w W w (3) S w = {r w, n w } w r w reveal n w *5 (4) M = {m 1,..., m p } (5) m M m *4 Fishburn (1978) Perea et al. (2006) *5 2 17

s w1 S w1,..., s wq S wq (s w1,..., s wq ) S w1 S wq K K-GS K-GS K- M p M p M (M) f : S w1 S wq (M) K- w i W M w i M(w i ) M(w i ) = {m 1,..., m k,..., m l,..., m p } 1 k < l p k l m k wi m l K- M p M w i p M(wi ) (M(w i )) p M K- µ j M p M (µ j ) p M(wi ) m M(w i ) p M(wi )(m) m M(w i ) p M(wi )(m) = j { j : µ j (w i ) = m } p M (µ j ). g wi : (M) (M(w i )) f g wi h wi = g wi f : S w1 S wq (M(w i )) (s w1,..., s wq ) S w1 S wq M(w i ) p M(wi ) p M(wi ) = h wi (s w1,..., s wq ) H wi : M(w i ) [0, 1] m k M(w i ) H wi (m k ) = m k m = m 1 p M(wi )(m). M(w i ) h w i H w i Definition 3.2 M wi 2 h wi h w i h wi h w i h wi first degree stochastically dominates h w i ; h wi D 1 h w i m M wi H wi (m) H w i (m) 1 18

w i Definition 3.3 w i s wi S wi s wi = (s w1,..., s wi 1, s wi+1,..., s wq ) best response under first degree stochastic dominance; FSD- h wi (t wi, s wi ) D 1 h wi (s wi, s wi ) t wi S wi Definition 3.4 G s = (s w 1,..., s w q ) first degree stochastic dominance equilibrium w i W s w i s w i FSD- K- K- 1 FSD- K- 2 19

4 4.1 Roth and Vande Vate (1990) 3 M = {m 1, m 2, m 3 } 3 W = {w 1, w 2, w 3 } Gale-Shapley 3.1 m w w w w w m w Definition 4.1 µ C : M W M W (4.1.1) C max{w W : i w µ(w)} {i} if i M; C(i) = i (4.1.1) max{m M : i m µ(m)} {i} if i W. i (4.1.1) i µ i µ µ(w) w i µ w = µ(i) *1 {w W : i w µ(w)} i {w W : i w µ(w)} {i} i 1 C(i) i (4.1.1) Adachi (2000) (2.2.2) (4.1.1) µ C 3 3 Gale-Shapley µ *1 µ i = µ(w) w = µ(i) 20

2.2 (IR) *2 3 (1) µ C (m, w) C(m) = w C(w) = m (m, w) ν (m, w) µ 1 i M W C(i) = i i ν (2) (1) µ(w) µ(m) µ 2 ν (1) (3) µ ν (1) 3 C µ ν Example 4.1 M = {m 1, m 2, m 3 } W = {w 1, w 2, w 3 } m1 : w 2, w 1, w 3, m 1, w1 : m 1, m 3, m 2, w 1 ; m2 : w 1, m 2, w 3, w 2, w2 : m 3, m 1, m 2, w 2 ; m3 : w 1, w 2, w 3, m 3, w3 : m 1, m 3, m 2, w 3. µ µ = ( ) m1 m 2 m 3. w 1 w 2 w 3 C *2 21

C(m 1 ) = max m1 {w 1, w 2, w 3 } {m 1 } = w 2 ; C(m 2 ) = max m2 {w 2 } {m 2 } = m 2 ; C(m 3 ) = max m3 {w 2, w 3 } {m 3 } = w 2 ; C(w 1 ) = max w1 {m 1, m 2, m 3 } {w 1 } = m 1 ; C(w 2 ) = max w2 {m 1, m 3 } {w 2 } = m 3 ; C(w 3 ) = max w3 {m 3 } {w 3 } = m 3. C m 1 m 3 w 2 w 2 w 3 m 3 3 ν (1) (m 3 = C(w 2 ), w 2 = C(m 3 )) ν (m 3, w 2 ) µ (2) m 2 w 3 m 2 w 3 2 3 m 1 w 2 w 1 m 1 (m 1, w 1 ) ν ( ) m1 m ν = 2 m 3. w 1 w 2 w 3 4.1 ν ν C C(m 1 ) = max m1 {w 1, w 3 } {m 1 } = w 1 ; C(m 2 ) = max m2 {w 3 } {m 2 } = m 2 ; C(m 3 ) = max m3 {w 2, w 3 } {m 3 } = w 2 ; C(w 1 ) = max w1 {m 1, m 2, m 3 } {w 1 } = m 1 ; C(w 2 ) = max w2 {m 1, m 3 } {w 2 } = m 3 ; C(w 3 ) = max w3 {w 3 } = w 3. ν C C 22

Proposition 4.1 µ µ C C C(i) = i for all i M W. (4.1.2) Proof: A.2 4.2 C (3) (1) C Knuth (1976) 4.2.1 Knuth (1976) M = {m 1, m 2, m 3 } W = {w 1, w 2, w 3 } m1 : w 2, w 1, w 3, m 1, w1 : m 1, m 3, m 2, w 1 ; m2 : w 1, w 3, w 2, m 2, w2 : m 3, m 1, m 2, w 2 ; m3 : w 1, w 2, w 3, m 3, w3 : m 1, m 3, m 2, w 3. µ 1 µ 6 6 µ 5 µ 6 ( m1 m µ 1 = 2 m 3 µ 4 = w 1 w 2 w 3 ), µ 2 = ( ) m1 m 2 m 3, µ w 3 w 2 w 5 = 1 ( ) m1 m 2 m 3, µ w 2 w 1 w 3 = 3 ( ) m1 m 2 m 3, µ w 2 w 3 w 6 = 1 ( ) m1 m 2 m 3 ; w 3 w 1 w 2 ( ) m1 m 2 m 3. w 1 w 3 w 2 Knuth (1976) µ 1 µ 2 µ 3 µ 4 µ 1. (4.2.1) 23

4.2.2 C Knuth (1976) µ 1 C 3 C(m 1 ) = max m1 {w 1, w 2, w 3 } {m 1 } = w 2 ; C(m 2 ) = max m2 {w 2 } {m 2 } = w 2 ; C(m 3 ) = max m3 {w 2, w 3 } {m 3 } = w 2 ; C(w 1 ) = max w1 {m 1, m 2, m 3 } {w 1 } = m 1 ; C(w 2 ) = max w2 {m 1, m 2, m 3 } {w 2 } = m 3 ; C(w 3 ) = max w3 {w 2, w 3 } {w 3 } = m 3. (1) C(m 3 ) = w 2 C(w 2 ) = m 3 (m 3, w 2 ) (2) (1) m 2 = µ 1 (w 2 ) w 3 = µ 1 (m 3 ) (3) (m 1, w 1 ) µ 6 µ 2 C 3 C(m 1 ) = max m1 {w 1, w 2, w 3 } {m 1 } = w 2 ; C(m 2 ) = max m2 {w 1 } {m 2 } = w 1 ; C(m 3 ) = max m3 {w 1, w 2, w 3 } {m 3 } = w 1 ; C(w 1 ) = max w1 {m 2, m 3 } {w 1 } = m 3 ; C(w 2 ) = max w2 {m 1, m 3 } {w 2 } = m 3 ; C(w 3 ) = max w3 {m 3 } {w 3 } = m 3. (1) C(w 1 ) = m 3 C(m 3 ) = w 1 (m 3, w 1 ) (2) (1) m 2 = µ 2 (w 1 ) w 3 = µ 2 (m 3 ) (3) (m 1, w 2 ) µ 5 24

µ 3 C 3 C(m 1 ) = max m1 {w 1, w 3 } {m 1 } = w 1 ; C(m 2 ) = max m2 {w 1 } {m 2 } = w 1 ; C(m 3 ) = max m3 {w 1, w 2 } {m 3 } = w 1 ; C(w 1 ) = max w1 {m 1, m 2, m 3 } {w 1 } = m 1 ; C(w 2 ) = max w2 {m 1, m 3 } {w 2 } = m 3 ; C(w 3 ) = max w3 {m 1 } {w 3 } = m 1. (1) C(m 1 ) = w 1 C(w 1 ) = m 1 (m 1, w 1 ) (2) (1) m 2 = µ 3 (w 1 ) w 3 = µ 3 (m 1 ) (3) (m 3, w 2 ) µ 6 µ 6 µ 4 C 3 C(m 1 ) = max m1 {w 1, w 2, w 3 } {m 1 } = w 2 ; C(m 2 ) = max m2 {w 2 } {m 2 } = w 2 ; C(m 3 ) = max m3 {w 1, w 2 } {m 3 } = w 1 ; C(w 1 ) = max w1 {m 1, m 2, m 3 } {w 1 } = m 1 ; C(w 2 ) = max w2 {m 1, m 2 } {w 2 } = m 1 ; C(w 3 ) = max w3 {m 1, m 2 } {w 3 } = m 1 (1) C(w 2 ) = m 1 C(m 1 ) = w 2 (m 1, w 2 ) (2) (1) m 2 = µ 4 (w 2 ) w 3 = µ 4 (m 1 ) (3) (m 3, w 1 ) µ 5 (4.2.1) C C Knuth (1976) µ 1 w 2 w 2 C(w 2 ) = max w2 {m 1, m 2, m 3 } {w 2 } = m 3 25

µ 1 m 2 = µ 1 (w 2 ) m 1 m 3 w 2 m 3 µ 1 w 3 = µ 1 (m 3 ) w 2 m3 w 3 = µ 1 (m 3 ) w 2 {m 1, m 2, m 3 } {m 1, m 2 } C C(w 2 ) = max w2 {m 1, m 2 } {w 2 } = m 1 C µ 2 (4.2.1) µ 1 µ 2 m 3 µ 2 w 3 = µ 2 (m 3 ) w 1 w 2 m 3 w1 m 2 = µ 2 (w 1 ) m 3 {w 1, w 2, w 3 } {w 2, w 3 } C C(m 3 ) = max m3 {w 2, w 3 } {m 3 } = w 2 µ 3 (4.2.1) µ 2 µ 3 w 1 w 1 m1 w 3 = µ 3 (m 1 ) C C(w 1 ) = max w1 {m 2, m 3 } {w 1 } = m 3 µ 4 µ 4 m 1 w 2 m 1 w2 m 2 = µ 4 (w 2 ) 1 C C(m 1 ) = max m1 {w 1, w 3 } {m 1 } = w 1 µ 1 (4.2.1) Knuth (1976) 26

5 Roth and Vande Vate (1990) Roth and Vande Vate (1990) Gale and Shapley (1962) Roth and Vande Vate (1990) 2.5 Gale-Shapley C 4 3 3 Gale-Shapley 4 4 27

A A.1 3.2 3.1 (KS) µ 1 µ 1 (m 1, w 1 ) µ 1 k = 1 µ 2 µ 2 (m 1 ) = w 1 µ 1 (m 1, w 1 ) A(1) = {m 1, w 1 } A(1) (m 2, w 2 ) µ 2 {m 2, w 2 } A(1) µ k i = 1,..., k 1 A(i) 2 (A1) A(i) A(i + 1); (A2) A(i). {A(i) : i = 1, 2,... } i A(i) = M W A k A(i) = M W (A2) µ k (A1) (A2) {A(i) : i = 1,..., k} i = q A(q) 2 (MI1) (MI2) A(q) µ q+1 ; µ q+1 A(q) A(q). (MI1) (A2) (A1) A 28

i = 1 A(1) = {m 1, w 1 } µ 2 µ 2 A(1) m 1 A(1) w 1 = µ 2 (m 1 ) A(1) i = 1 2 (MI1) (MI2) i = k + 1 µ q+1 (MI1) m q+1 w q+1 A(q) (m q+1, w q+1 ) µ q+1 3 (i) (ii) (iii) m q+1 A(q) w q+1 A(q); m q+1 A(q) w q+1 A(q); m q+1 A(q) w q+1 A(q). (i) µ q+2 (m q+1, w q+1 ) w q+1 = µ q+2 (m q+1 ) A(q + 1) = A(q) {w q+1 } µ q+1 m q+1 A(q + 1) µ q+2 (MI1) (MI2) m q+1 µ q+1 w q+2 = µ q+1 (m q+1 ) µ q+2 A(q+1) m q+2 w q+2 = µ q+1 (m q+1 ) (m q+2, w q+2 ) µ q+3 (m q+2, w q+2 ) µ r+1 r + 1 q + 2 A(r) µ r+1 A(r) A(q + 1) A(q + 1) (MI1) (MI2) A(q + 1) = A(q) {w q+1 } r q + 1 A(r) A(q) (A1) (ii) (i) (iii) µ q+1 (m q+1, w q+1 ) µ q+2 A(q + 1) = A(q) {m q+1, w q+1 } A(q + 1) A(q) A(q + 1) µ q+2 (MI1) (MI2) 3 i = q + 1 A(q + 1) 2 (MI1) (MI2) A.2 4.1 µ µ C (4.1.2) m i (1) µ m i w i = µ(m i ) C(m i ) = w i µ 2.2 (S) m j wi m i m j M µ(m j ) m j w i {m M : w i m µ(m)} 29

m m i = µ(w i ) m C C(w i ) = max wi {m M : w i m µ(m)} {w i } = max wi {µ(w i ) w i } µ (IR) µ(w i ) wi w i C(w i ) = max wi {µ(w i ) w i } = µ(w i ) = m i. C(m i ) = w i C(w i ) = m i C C(m i ) = C(w i ) = m i (2) µ m i µ (S) w j mi m i w j W µ(w j ) w j m i {w W : m i w µ(w)} w W m i mi w j C (4.1.1) C(m i ) = max mi {w W : m i w µ(w)} {m i } = m i. C C(m i ) = C(m i ) = m i w i W C C(w i ) = w i µ C (4.1.2) µ µ (4.1.2) 4 (1) m i M w i = µ(m i ) W C(m i ) = w i C(w i ) = m i (2) m i M m i = µ(m i ) C(m i ) = m i (3) w k W m k = µ(w k ) M C(w k ) = m k C(m k ) = w k (4) w k W w k = µ(w k ) C(w k ) = w k (3) (1) (4) (2) m i (1) (2) (1) (2) (4) µ (1) C(m i ) = w i C (4.1.1) w i 30

{w W : m i w µ(w)} {m i } mi m i w j µ(w j ) w j w i = µ(m i ) mi w j (A.2.1) w i = µ(m i ) mi m i (A.2.2) C(w i ) = m i (4.1.1) m i {m M : w i m µ(m)} {w i } wi w i m j µ(m j ) m j m i = µ(w i ) wi m j (A.2.3) m i = µ(w i ) wi w i (A.2.4) (2) C(m i ) = m i (4.1.1) m i {w W : m i w µ(w)} {m i } mi m i w j µ(w j ) w j m i = µ(m i ) mi w j (A.2.5) (4) (2) C(w k ) = w k w k ml µ(m l ) m l w k = µ(w k ) wk m l (A.2.6) (A.2.2) (A.2.4) µ 2.2 (IR) (A.2.1) (A.2.3) (A.2.5) (A.2.6) (S) 31

Acknowledgements 2011 3 32

References Adachi, H. (2000): On a Characterization of Stable Matchings, Economics Letters, 68, 43 49. Alkan, A. (2001): On Preferences over Subsets and the Lattice Structure of Stable Matchings, Review of Economic Design, 6, 99 111. Alkan, A., Gale, D. (2002): A Class of Multipartner Matching Markets with a Strong Lattice Structure, Economic Theory, 19, 737 746. Alkan, A. (2003): Stable Schedule Matching under Revealed Preference, Journal of Economic Theory, 112, 289 306. Blair, C. (1988): The Lattice Structure of the Set of Stable Matchings with Multiple Partners, Mathematics of Operations Research, 13, 619 628. Dubins, L. E., Freedman, D. A. (1981): Machiavelli and the Gale-Shapley Algorithm, The American Mathematical Monthly, 88, 485 494. Fishburn, P. C. (1978): Non-cooperative Stochastic Dominance Games, International Journal of Game Theory, 7, 51 61. Gale, D., Shapley, L. (1962): College Admissions and the Stability of Marriage, The American Mathematical Monthly, 69, 9 15. Gale, D., Sotomayor, M. A. O. (1985): Ms. Machiavelli and the Stable Matching Problem, The American Mathematical Monthly, 92, 261 268. Knuth, D. E. (1976): Mariages Stables, Montreal, Les Presses de l Universite de Montreal. Perea, A., Peters, H. Schulteis, T. Vermeulen, D. (2006): Stochastic Dominance Equilibria in Two-person Noncooperative Games, International Journal of Game Theory, 34, 457 473. Roth, A. E. (1982): The Economics of Matching Stability and Incentives, Mathematics of Operations Research, 7, 617 628. Roth, A. E. (1984): Misrepresentation and Stability in the Marriage Problem, Journal of Economic Theory, 34, 383 387. Roth, A. E. (1989): Two-Sided Matching with Incomplete Information about Others Preferences, Games and Economic Behavior, 1, 191 209. Roth, A. E. (1991): Incentives in Two-Sided Matching with Random Stable Mechanithms, Economic Theory, 1, 31 44. 33

Roth, A. E., Sotomayor, M. A. O. (1990): Two-sided Matching: A Study in game-theoretic modeling and analysis, Cambridge, Cambridge University Press. Roth, A. E., Vande Vate, J. H. (1990): Random Paths to Stability in Two-Sided Matching, Econometrica, 58, 1475 1480. 34