有機金属化学(導入)

Similar documents
1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

03J_sources.key

36 th IChO : - 3 ( ) , G O O D L U C K final 1

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

PowerPoint プレゼンテーション

H1-H4

元素分析

RN201602_cs5_0122.indd

2_R_新技術説明会(佐々木)

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

RAA-05(201604)MRA対応製品ver6

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

01-表紙.ai


理工学部無機化学ノート

hv (%) (nm) 2

CRA3689A

希少金属資源 -新たな段階に入った資源問題-

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

物理化学I-第12回(13).ppt


K 吸収端 XAFS 用標準試料 Ti Ti-foil 金属箔 縦 1.3 cm 横 1.3 cm 厚さ 3 µm TiO2 anatase ペレット φ 7 mm 厚さ 0.5 mm 作製日 TiO2 rutile ペレット φ 7 mm 厚さ 0.5 mm 作製日 2017.


Yuzo Nakamura, Kagoshima Univ., Dept Mech Engr. perfect crystal imperfect crystal point defect vacancy self-interstitial atom substitutional impurity

スライド 1

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

Microsoft Word - Jmol リソースの使い方-2.doc

熊本県数学問題正解

( )

登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 神奈川県川崎市川崎区殿町三丁目

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

chno01.dvi

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

SIサイエンス株式会社 stable isotope metal

空き容量一覧表(154kV以上)

2/8 一次二次当該 42 AX 変圧器 なし 43 AY 変圧器 なし 44 BA 変圧器 なし 45 BB 変圧器 なし 46 BC 変圧器 なし

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)


入試の軌跡

untitled

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Stereoelectronic Effect

OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P

CPT2L1Z1J154.indd


名称未設定-2

( ) ( )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

apple ヲ0 09 apple ヲ apple0309apple076 56ヲ fl 0603apple6ヲ

β

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO

Nobelman 絵文字一覧

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Nuclear Magnetic Resonance 1 H NMR spectrum PPM

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Activation and Control of Electron-Transfer Reactions by Noncovalent Bond

linearal1.dvi

Al アルミニウム Cu 銅 Fe 鉄 Ni ニ

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

4 1 Ampère 4 2 Ampere 31



スライド 1

新規な金属抽出剤


1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

ii

高校生の就職への数学II

Basic Welding 1. welding processes and equipments

Part () () Γ Part ,

リサイクルデータブック2017

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


2012 A, N, Z, Q, R, C

i

untitled

Microsoft Word - 章末問題

リサイクルデータブック2016

untitled


, = = 7 6 = 42, =

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

O E ( ) A a A A(a) O ( ) (1) O O () 467

K E N Z OU

?


() () () () () 175 () Tel Fax

untitled

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l



24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Transcription:

-1 C C-

-2 i, gx, 3 B, 3 Al, 4 Si, 4 Sn, ZnX ard/soft () Ti, Cr, Ni, Pd, Pt, h, Cu, u, etc β-

1. Pauli und 2. SAB

(Atomic Orbital) z y z y z y z y x x x x s s p z p y p x p z y z y z x x y x x, y d xz d xy d yz d x 2-y2 d z 2 d

Density Density Density s 1s 2s 3s adial Distribution Function Distance adial Distribution Function Distance adial Distribution Function Distance y y y z z z x x x

Density Density Density p 2p adial Distribution Function 3p Distance adial Distribution Function z z y x y x y Distance 4p adial Distribution Function z z z y x y x y Distance

Density Density d 3d adial Distribution Function x 2 -y 2 z 2 Distance xy xz yz 4d adial Distribution Function x 2 -y 2 z 2 Distance xy xz yz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 e 2 i Be B C N O F Ne 3 Na g Al Si P S Ar 4 K Ca Sc Ti V Cr n Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 b Sr Y Zr Nb o Tc u h Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba a f Ta W e Os Ir Pt Au g Tl Pb Bi Po At n 7 Fr a Ac f Db Sg Bh s t Ds g Unb Unt Unq Unp Unh Uns Uno a Ce Pr Nd Pm Sm Eu Gd Tb Dy o Er Tm Yb u Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm d No r s- p- d- f-

-1 1s 1 e 1s 2 i [e]2s 1 Be [e]2s 2 B [e]2s 2 2p 1 C [e]2s 2 2p 2 N [e]2s 2 2p 3 O [e]2s 2 2p 4 F [e]2s 2 2p 5 Na [Ne]3s 1 g [Ne]3s 2 Al [Ne]3s 2 3p 1 Si [Ne]3s 2 3p 2 S [Ne]3s 2 3p 3 P [Ne]3s 2 3p 4 [Ne]3s 2 3p 5 Ar [Ne]3s 2 3p 6 K Ca Sc Ti V [Ar]4s 1 [Ar]4s 2 [Ar]4s 2 3d 1 [Ar]4s 2 3d 2 [Ar]4s 2 3d 3 Cr [Ar]4s 1 3d 5 n Fe Co [Ar]4s 2 3d 5 [Ar]4s 2 3d 6 [Ar]4s 2 3d 7 Ni [Ar]4s 2 3d 8 Cu [Ar]4s 1 3d 10 Ga Ge As Se Br Kr [Ar]4s 2 3d 10 4p 1 [Ar]4s 2 3d 10 4p 2 [Ar]4s 2 3d 10 4p 3 [Ar]4s 2 3d 10 4p 4 [Ar]4s 2 3d 10 4p 5 [Ar]4s 2 3d 10 4p 6 und Ne [e]2s 2 2p 6 Zn [Ar]4s 2 3d 10

Density Density (Zeff) -1 i 1s, 2s 1s, 2s Z 2s = 1; Z 1s = 3 Z 2s = 1.28; Z 1s = 2.69 adial Distribution Function adial Distribution Function 1s 2s Distance Distance

(Zeff) -2 1s 2s 2s 1s 2s 1s 2s s 1s 2s 1s Z > 1 1s Z = 1 Z Z

(Zeff) -3 30.0 4s 3s, 3p 3d 22.5 3d 4s 15.0 3s 3d 4s 4p 7.5 3p 0 K Ca Sc Ti 3s 3d 4p V Cr n Fe Co Ni Cu Zn Ga As Ge Se Br Kr 3p 4s

Pauli und -1 1. Pauli 2. 3. und

Pauli und -2 Cr [Ar]3d 5 4s 1 4s 3d n [Ar]3d 5 4s 2 4s 3d 3d 4s Cu [Ar]3d 10 4s 1 3d 3d

Pauli und -3 3 4 5 6 7 8 9 10 11 12 4 21Sc 3d 1 4s 2 22Ti 3d 2 4s 2 23V 3d 3 4s 2 24Cr 3d 5 4s 1 25n 3d 5 4s 2 26Fe 3d 6 4s 2 27Co 3d 7 4s 2 28Ni 3d 8 4s 2 29Cu 3d 10 4s 1 30Zn 3d 10 4s 2 5 39Y 4d 1 5s 2 40Zr 4d 2 5s 2 41Nb 4d 4 5s 1 42o 4d 5 5s 1 43Tc 4d 6 5s 1 44u 4d 7 5s 1 45h 4d 8 5s 1 46Pd 4d 10 47Ag 4d 10 5s 1 48Cd 4d 10 5s 2 6 72f 5d 2 6s 2 73Ta 5d 4 6s 2 74W 5d 4 6s 2 75e 5d 5 6s 2 76Os 5d 6 6s 2 77Ir 5d 7 6s 2 78Pt 5d 9 6s 1 79Au 5d 10 6s 1 80g 5d 10 6s 2 5 6

(Ip) I p = E(A +, g) E(A, g) A A + Vapor Phase r = First Ip of the elements in ev, to convert kjmol -1, multiply 96.485 13.6 i 5.32 Na 5.14 K 4.34 b 4.18 Cs 3.89 Be 9.32 g 7.64 Ca 6.11 Sr 5.69 Ba 5.21 B 8.30 Al 5.98 Ga 6.0 In 5.79 Tl 6.11 C 11.26 Si 8.15 Ge 7.90 Sn 7.34 Pb 7.42 N 14.53 P 10.48 As 9.81 Sb 8.64 Bi 7.29 O 13.62 S 10.36 Se 9.75 Te 9.01 Po 8.42 F 17.42 12.97 Br 11.81 I 10.45 At 9.64 e 24.59 Ne 21.56 Ar 15.76 Kr 14.00 Xe 12.13 n 10.74

(Ea) A, r = E a = E(A, g) E(A, g) Vapor Phase A Electron affinities of the elements in ev, to convert kjmol -1, multiply 96.485 0.754 i 0.618 Na 0.548 K 0.502 b 0.486 Be <0 g <0 Ca 0.02 Sr 0.05 B 0.277 Al 0.441 Ga 0.30 In 0.3 C 1.263 Si 1.385 Ge 1.20 Sn 1.20 N -0.07 P 0.747 As 0.81 Sb 1.07 O 1.461 S 2.077 Se 2.021 Te 1.971 F 3.399 3.617 Br 3.365 I 3.059 e -0.5 Ne -1.2 Ar -1.0 Kr -1.0 Xe -0.8

Frontier Ip, Ea Frontier I p E a E a I p E a I p e UO E a I p OO i I p = E a? I p > E a

-1 Pauling ΔE (A-B) = E (A-B) 1/2x[E (A-A) + E (B-B) ] = K[X P (A) X P (B)] A-B ülliken X (A) = 1/2 [I P (A) + E a (A)] I p E a Pauling ülliken X P 1.35 (X ) 1/2 1.37

-2 2.20 3.06 e 5.5 i 0.98 1.28 Be 1.57 1.99 B 2.04 1.83 C 2.55 2.67 N 3.04 3.08 O 3.44 3.22 F 3.98 4.43 Ne 4.60 Na 0.93 1.21 g 1.31 1.63 Al 1.61 1.37 Si 1.90 2.03 P 2.19 2.33 S 2.58 2.65 3.16 3.54 Ar 3.36 K 0.82 1.03 Ca 1.00 1.30 Ga 1.81 1.34 Ge 2.01 1.95 As 2.18 2.26 Se 2.55 2.51 Br 2.96 3.24 Kr 3.0 2.98 b 0.82 0.99 Sr 0.95 1.21 In 1.78 1.30 Sn 1.96 1.83 Sb 2.05 2.06 Te 2.10 2.34 I 2.66 2.88 Xe 2.6 2.59 Cs 0.79 Ba 0.89 Tl 2.04 Pb 2.33 Bi 2.02 Pauling (X P, Plain) and ülliken (X, Bold)

X X (A) = 1/2 [I P (A) + E a (A)] F X i X 2s X X I p E a I p E a

Frontier Ip, Ea, X E a I p X UO X I p and E a OO, UO OO X I p and E a OO, UO

Group Electronegativity Group Electronegativity [calcd. by F/6-31G(d)] Group X Group X Group X -C 3 2.55 -C 2 O 2.59 -N 2 3.12 -C 2 =C 2 2.58 -C(=O) 2.60 -N3 + 3.21 -C C 2.66 -C(=S) 2.52 -NO 2 3.22 -C 3 2.70 -COO 2.63 -O 3.55 -CF 3 2.71 -CO 2.66 -O + 2 3.57 -Ph 2.58 -CN 2.69 -B 2 1.92 Boyd,. J. and Boyd, S.. J. Am. Chem. Soc. 1992, 114, 1652-1655.

SAB -1 ard/soft +1 ard +1 Soft ard acids + i + g + 21 pm 76 pm 119 pm Soft acids ard bases F Br I 133 pm 196 pm 220 pm Soft bases

SAB -2 The classification of ewis acids and bases ard Borderline Soft Acids +, i +, Na +, K +, Be 2+, g 2+, Ca 2+, Cr 2+, Cr 3+, Al 3+, SO 3, BF 3 and etc Bases F, O, 2 O, N 3, CO 3 2, NO 3, O 2, SO 4 2, PO 4 3+, O 4, Fe 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+, Pb 2+, SO 2, BBr 3 and etc NO 2, SO 3 2, Br, N 3, N 2, C 6 5 N, SCN, Cu +, Ag +, Au +, Tl +, g +, Cd 2+, Pt 2+, g 2+, B 3 and etc,, CN, CO, I, SCN, P 3, C 6 6, S 2,

SAB -3 ard/soft ardness (η) = (I p E a )/2 Softness (σ) = 1/η η η A η B 6.4 i 2.4 Na 2.3 C 5.0 Si 3.4 N 7.3 P 4.9 O 6.1 S 4.1 F 7.0 4.7 + i + Na + Al 3+ Cu + 6.3 Cu 2+ Fe 2+ Fe 3+ g 2+ Pb 2+ Pd 2+ 35.1 21.1 45.8 8.3 7.3 13.1 7.7 8.5 6.8 F Br I C 3 N 2 O S CN 6.8 7.0 4.7 4.2 3.7 4.0 5.3 5.6 4.1 5.3 Parr,. G.; Pearson,. G. J. Am. Chem. Soc. 1983, 105, 7512.

Frontier Ip, Ea, X, η-1 E a I p X ard Energy Gap η igh UO and/or ow OO UO OO Soft Energy Gap ow UO and/or igh OO

(α, Polalizability) δ δ+ and/or ard O O Base pka > 50 O O E g (O) = 12.2 ev Base S S S S pka 31 and/or Soft E g (S) = 8.3 ev

VSEP -1 (Valens-Shell Electron Pair epulsion) (Shape) π CO 2 O 3 B 3 O C O O O O B AB 2 AB 2 E (A 3 E) AB 3 P

VSEP -2 N 3 2 O N O P Ph Ph Ph Sb Ph Ph AB 3 E AB 2 E 2 AB 5 F S F F F F F Br F F Xe F F F F Br F F F F Xe F F AB 4 E AB 3 E 2 AB 2 E 3 P eq AB 5 E AB 4 E 2 P ax

-1 Werner Werner 3 C C 3 3 C C 3 C O O Pt O O C 3 Py 3 C O N Pt O C eoc COe Pt(acac) 2 PtPy(acac) 2 Werner Werner N, O, X

1. X, ard or Soft, 2. ASB ard/soft 3. 4. 18

-1 X, X, F Br, (Alkyl), (Alkenyl), (Alkynyl), 2 N, O, O, CN, I, SO 3 2, NO 2, π, N 3, 2 O, O, O, P 3, CO, Alkene, Alkyne

-2 ASB ard ewis Base 2 O, O, N 3, N 2, O, F,, C 3 CO 2, SO 2 4, PO 3 4, O 4, NO 3, CO 3,..., etc (4 ) (4, 5 Soft ewis Base 2 S, S, I, CN,, (Alkyl), Alkene, Alkyne, S, P 3, CO, NC,..., etc (1, 2 ) (9 11 )

-1 Sc(d 1 s 2 ) Ti (d 2 s 2 ) V (d 3 s 2 ) Cr (d 5 s 1 ) +3(d 0 ) +4(d 0 ) +3(d 0 s 1 ) +4(d 1 ) +5(d 0 ), +3, +2 +3(d 3 ) +6(d 0 ), +2 d 0 n (d 5 s 2 ) +2(d 5 ) +7(d 0 ), +6, +4, +3, +2, -1 Fe (d 6 s 2 ) +3(d 5 ) +6 (s 2 ), +2, -2 d 5, d 10 Co (d 7 s 2 ) +2(d 7 or d 5 s 2 ) +3(d 5 s 1 ), -1 Ni (d 8 s 2 ) Cu (d 10 s 1 ) +2(d 8 or d 6 s 2 ) +2(d 9 or d 7 s 2 ) +3(d 5 s 2 ) +1(d 10 )

-2 /pm /pm V 5+ 54 V 2+ 79 Cr 6+ 26 Cr 3+ 61 n 7+ 25 n 2+ 83 Co 3+ 61 Co 2+ 75 ard Acid Soft Acid

-1 σ π

-2 A A d n A σ A=X C, F, CN, O, N 2 A= P 3, N 3, O 2, olefin

-3 X Cu I I ei Cu I e + ii ei e Cu I e i X Cu 1 Ni II 2 2PPh 3 Ph 3 P Ni II PPh 3 Ni 2

金属 配位子間結合-4 供与結合と逆供与結合 ホスフィン配位子 -1 空のd軌道 P 非共有電子対 P 充填されたd軌道 空の3d軌道 π-donor π-acceptor P 供与結合 σ-結合 P 逆供与結合 π-結合 逆供与結合は後期遷移金属 低原子価金属錯体の安定化に重要な働きをする

-5-2 P π- acidity Pe 3 P(N 2 ) 3 < PAr 3 < P(Oe) 3 < P(OAr) 3 < P 3 < PF 3 CO P- σ* Efficient Tunable igand

金属 配位子間結合-6 供与結合と逆供与結合 アルケン配位子 -1 結合性π軌道 空のd軌道 反結合性π*軌道 充填された d軌道 供与結合 逆供与結合

-7-2 C C d = 1.34 Å π π C C d = 1.40 ~ 1.47 Å Nu E ex) oechst-wacker

金属 配位子間結合-8 供与結合と逆供与結合 一酸化炭素 -1 O C 非共有電子対 空のd軌道 O C 反結合性軌道 充填された d軌道 O C 供与結合 O C 逆供与結合

-9-2 O C O C CO CO C δ+ π* O δ δ+ C O C O C O C O C O : : Zr (IV), d 0 complex Cp* 2 Zr(κ 2 -S 2 )(CO): ν(co) = 2057 cm -1 Ti(-II), d 4 complex [Ti(CO) 6 ] 2 : ν(co) = 1820 cm -1 C-O C-O

金属 配位子間結合-10 供与結合と逆供与結合 カルベン -1 Carbene Complex Fisher Type C n C 炭素ー金属二重結合を持つ C 供与結合 Singlet Carbene Schrock Type C C Triplet Carbene C C 逆供与結合 C 共有結合 x 2

-11-2 Fisher Carbene Schrock Carbene (OC) 5 W O C e Cp 2 Ta C Carbene Carbene π-acceptor CO π-donor -Oe, -N 2 δ+ Electrophylic π-acceptor, Cp, Alkyl π-donor Alkyl, δ Nucleophylic

金属 配位子間結合-12 π供与性結合 高酸化状態の前遷移周期金属に特有 Ti(O-iPr)4 O σ結合 全て空軌道 O O π結合 結合性相互作用 x 2 非共有電子対 後遷移周期 低原子価金属の場合 例 Pd(Oe)2は安定に存在するか 空軌道 O 非共有電子対 反発 充填された軌道 O 非共有電子対

-13 σ * d σ* d σ*

-1 18-1 8 (2s 2 + 2p 6 ) 18 ns 2 + np 6 + nd 10 Octet 18 18 Ni(II), Pd(II), Pt(II) 16 Cu, Ag, Au 14, 12 18 18 18

-2 18-2 -1 Ph 3 P Pd PPh 3 Ph 3 P PPh 3 10 10 2 x 4 = 8 18

-3 18-3 -2 3 N N Pt 3 Fe 10 2 8 2 x 2 + 2 x 2 = 8 N 3 8 2 6 2 x 2 + 2 x 4 = 12 16 18 σ X π

-4-1 iner (s, dz2) Trigonal (s, px, py) Tetrahedral (s, dxy, dyz, dxz) Square planar (s, px, py, dx2-y2) Square bipyramidal (s, px, py, pz, dz2) Trigonal bipyramidal (s, px, py, pz, dz2) Octahedral (s, px, py, pz, dz2, dx2-y2)

-5-2 inear ( 2 [Ag I (CN) 2 ] [Au I 2 ] d 10 Trigonal ( 3 gi 3 Fe 3, Pt 2 PPh 3 4 Fe Fe Ph 3 P Pt Pt PPh 3

-6-3 Trigonal bipyramidal( 5) Square bipyramidal ( 5) O 3 C O V O C 3 3 C O O C 3 VO(acac) 2

-6-4 Tetrahedral ( 4 Ti 4, no 4, Fe 4, CoBr 4, eo 4 Square Planar ( 4 Ni II, Pd II, Pt II, h I, Ir I d 8 Octahedral ( 6) Ti III, Cr III, n II, Fe II, Fe III, Co II, Co III, Ni II, Cu II, etc

-7

-8-1 z y (1) () x (2) () d y z z y z y x x y x x d xy d xz d yz d x2-y2 d z2 d d

-9-2 3d x 2-y2, 3d z 2 d 5 6 Dq 4 Dq 3d xy, 3d xz, 3d yz 10 Dq(Δo): Δ 0 (100 ~ 400 kj mol -1 ) I < Br < < F < O < 2 O < Py < N 3 < PPh 3 < CO < NO 2 < CN ow Δ 0 igh Δ 0 π- Donor π-acceptor / Strong σ-donor

-10-3 d 1 d 2 d 3 d 8 d 9 d 10 d 4 d 5 d 6 d 7

-11-4 d 4 Δ0 (und ) < n III (CN) 6 3+ Fe III (CN) 6 3+ d 4 (und ) > n III (acac) 3 Fe III (O 2 ) 6 3+

-12-5 z d xy, d yz, d xz 4 Dq x 6 Dq y y d x2-y2, d z2 x

-13-6 z y z d z2 : d xz, d yz ) x x, y d x2-y2 : d xy d x2-y2 d xy d z2 d yz, d xz d 8 Ni II, Pd II, Pt II d x2-y2 d 8

-7-14 12.28 d z2 10.28 9.14 6.0 7.07-5.46 d xz, d yz 1.14 1.78 0.86 2.28 d xy d x2-y2-6.28-0.82-2.67-2.72-4.00-0.86-4.57-3.21-3.86-4.28-5.14 inear Tetrahedral Octahedral Trigonal bipyramid Square pyramid Trigonal Square planar

-15 4p t1u 4s a1g 3d t2g & eg t1u* a1g* eg* dx2-y2 & dz2 dxy, dyz & dxz eg σ a1g, eg & t1u d xy, d yz, d xz (a 1g, t 1u, e g ) t1u a1g t 2g, e g* d

-1 Wacker Process (J. Smidt of Wacker Chemie, 1950s) Pd 2, Cu 2, O 2 O Pd 2 2 O 3 C 1 Wacker C3CO Pd(II) 2Cu(II) 1/2 O 2 C 2 4 Pd(0) 2Cu(I) 2 O

-2 Pd II 2 2 2 C C 2 Pd 2 Pd 2 O 2 O 2 O Pd O 2 O Pd Pd β O 2 O C 3 CO Pd Pd 2 O O 2 O 1,2- β 2 O Pd Pd 0 2 O 2 O Cu II Pd O Cu 0 Pd II

-1 n + S n-1 S + S: (16e ) S N 2 (18e) S N 1

-2 T X Y T Y X Y T X T Y Square Planar Square Planar Trigonal bipyramid Y (16e ) Y Y T X T X Tetrahedral Square Planar -24.56 Dq Tetrahedral -3.56 Dq d 8, 16e Square Planar -8

-3 Square Planar Pt 2- - N 3 N 3 Pt N 3 N Pt 3 N 3 3 N N 2+ Pt 3 3 N N 3 3 N N Pt 3 3 N + N Pt 3 3 N

-4 (Trans Influence ) t ' X - t - Y -X -Y O < 2O, N3 < < I, Br < CO, C24, < I < CN, P3 < C65, 3C, one Pair π-acceptor dπ

-5 t X 16e Y t X 18e t t Y Y X X Y t X t Y Y X t TBP sp 3 dz2 dxy, dyz, dxz, dx2-y2 dxy, dyz, dxz, dx2-y2 dπ dxy dx2-y2 xy equatrial π-acidic

-6 T X X T Square Pyramidal a Y b T Distorted trigonal bipyramidal a b T T Y et. X ate = k 1 [T 4 X] (18e) Y Inv. T Square Pyramidal T π Donor Distorted trigonal bipyramidal

-1 n + A B (Oxidative Addition) (eductive Elimination) n A B +2 +2 (1) (2) A-B A--B

-2 1. Concerted Addition 2. S N 2 Type Addition 3. adical echanism 4. Ionic echanism

-3 Concerted Addition (-, C-, Si-, C-C ) n + A B n A B n B A cis 16e, 0 18e, 0 18e, II CO Ph 3 P Ir PPh 3 Square planar 16e, Ir I 2 CO Ph 3 P Ir PPh 3 Ph 3 P Ir Trig. bipyramidal Octahedral 18e, Ir I 18e, Ir III CO PPh 3

-4 C-C, C-,, Pt 2 Py Py Pt Pt 2 n Py PPh 3 PPh 3 Ir PPh eat 2 Ir PPh 3 Ph 3 P Ph 3 P PPh 3 Ph 3 P Ir PPh 2

-5 S N 2 Type Addition (X, allyl-x, Benzyl-X, COX ) n C X n C X n C X Ni(P 3 ) 4 > Ni(PAr 3 ) 4 > Ni(PAr 3 ) 2 (alkene) > Ni(cod) 2 e-i > Et-I > i-pr-i -OTs > -I > -Br > -

-6 e Ph 3 Pd C X 2 XPd + eo O C 3 Pd e Ph C e Ph C eo + e - Ph X 2 XPd C 2 XPd O C e Ph C CO CO Ph 3 P Ir PPh 3 e-i e CO Ph 3 P Ir PPh 3 I e CO Ph 3 P Ir PPh 3 I

-7 adical echanisms (Pt, Ni ) PPh 3 Pt(PPh 3 ) 3 Pt(PPh 3 ) 2 16e, d 10 14e, d 10 SET Pt(PPh 3 ) 2 + X [Pt(PPh 3 ) 2 ] + [X] 14e, d 10 13e, d 9 [PtX(PPh 3 ) 2 ] + PtX(PPh 3 ) 2 16e, d 8 [PtX(PPh 3 ) 2 ] 15e, d 9 + e I > Br > >>OTs

-8 Ionic echanism( ) Ionic echanism( ) Pt(PPh 3 ) 4 18e, d 10, tetrahedral + PPh 3 Pt(PPh 3 ) 2 16e, d 8, Square Planar [Ir(cod) 2 ] + + [Ir(cod) 2 ] + + PPh 3 Pt(PPh 3 ) 3 16e, d 10, tetrahedral + c Fast PPh 3 [Pt(PPh 3 ) 3 ] + 16e, d 8, Square Planar Ir(cod) 2 18e, d 8, Trignalbipyramid

-9 A (eductive Elimination) n n + A B B d 8 : Ni II, Pd II, Au III d 6 : Pt IV, Pd IV, Ir III, h III 2 2 n n CO O C n ' ' n CO ' O C '

-10 Octahedtral -1 h - h h h 18e, d 6 Octahedral ilstein s Complex =Pe 3, =C 2 COe 16e, d 6 Trigonal bipyramid 16e, d 6 distorted TBP h 16e, d 8 Square Planar + h 14e, d 8 T shaped 3 coordinate

-11 Octahedtral P P e e Pt e I P = PPh 2 P P e e Pt e I P P I e e Pt e Pt IV, 18e, d 6 Octahedral Goldberg s complex e e e I P P Pt e I P P Pt e I P P Pt e e 16e, d 8 Square Planar 16e, d 8 Square Planar

-12 Square Planar X X X X 1. Dissociative echanism 2. Associative echanism 3. Nondissociative echanism

-13 Dissociative echanism Pd II, Au III X X X + Associative echanism Ni II X + X 3 + X X

-14 Nondissociative echanism 2 + + X X X X X X X X

-15 σ-bond ethathesis d 0 (Zr, W, etc) Cp 2 Zr + 2 Cp 2 Zr + Cp 2 Zr2 Zr Zr IV, 16e, d 0 Cp 2 Zr + 2 Cp 2 Zr + σ-bond ethathesis Cp 2 Zr Cp 2 Zr

-16 Oxidative Coupling & eductive Fragmentation Alkene π complex Oxidative Coupling eductive Fragmentation etalacycle ±2 ±0 cf. ±2 ±2 Cyclotrimerization of Alkynes C C 2 [OC] C C C C n n n C C [OC] [F] n C C n

-1 1,1-igratory Insertion 1,2-igratory Insertion O C 1,1- η 1 O C ±0 1 X C 2 C 2 1,2- β- 2 C η 2 X C 2 ydrogenation 1 3 1 3-2 4 Pd, h, 2 Ir, etc 4 ydroformylation 1 3-1 3 O CO C 2 4 h, Co, 2 etc 4

-2 e OC CO n CO CO CO CO or e CO n OC CO CO? CO O * CO e CO n OC CO CO CO O * CO e n CO CO CO O * CO e CO n OC CO e or CO shifts CO shifts e shifts OC e OC OC * CO n CO A * CO n e B CO CO CO CO A, B e shifts

-3 Pd II O 2 Pd O Pd II O 1,2-igratory Insertion Pd O D Pd II D O 2 CO Pd D O D O D O O D

-4 Na CO C 2 e CO2 e Soft Anion D Pd II D i e ard Anion Pd Ph D + ei Pd II (acac) 2 Ph e D β- elimination Ph 1,2-igratory D Insertion Ph D Pd e Pd e Ph Pd e D