河川中・下流域の河道地形

Similar documents
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

総研大恒星進化概要.dvi

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

本文/目次(裏白)

( ) ,

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

3/4/8:9 { } { } β β β α β α β β

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

untitled

[T11391]砂防学会誌64‐2/P3‐14 論文 竹林ほか

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

gr09.dvi

LLG-R8.Nisus.pdf

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

untitled

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

液晶の物理1:連続体理論(弾性,粘性)


_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

untitled

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

Mott散乱によるParity対称性の破れを検証

研修コーナー

修士論文

パーキンソン病治療ガイドライン2002

I II

The Physics of Atmospheres CAPTER :

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

untitled

I II III IV V

, COMPUTATION OF SHALLOW WATER EQUATION WITH HIERARCHICAL QUADTREE GRID SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO

K E N Z OU

( ) ( )

基礎数学I

all.dvi

untitled

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Note.tex 2008/09/19( )

Microsoft Word - 11問題表紙(選択).docx

OHP.dvi

201711grade1ouyou.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

pdf

: 1g99p038-8

~nabe/lecture/index.html 2

untitled

河川上流域の河道地形

第5章 偏微分方程式の境界値問題

untitled

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

TOP URL 1


meiji_resume_1.PDF

NETES No.CG V

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

成長機構

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

TOP URL 1

金融政策の波及経路と政策手段

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

1 2 2 (Dielecrics) Maxwell ( ) D H

arxiv: v1(astro-ph.co)

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

数学の基礎訓練I

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

7


23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i


知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Transcription:

7 * River Configuraion in Middle-Lower Reach of River Bain Hirohi TAKEBAYASHI, Facul of Engineering, Univeri of Tokuhima 1 1 (a (b 1 4 3 1 *770-8506 -1 E-mail: akeh@ce.okuhima-u.ac.jp

5 3 6 km 7 km 8.1 9 9 3 8

Ug =ξ ug +ξ vg, Vg =η ug +η vg (5 u g v g Λ. 9 z z b Λ = 1z z b Λ = λ z b λ 8 10 J = 1 (1 ξ η η ξ hu hu hu + ( ξ + U + ( η + V ξ = J η, η = J ξ, ξ = J η, η = J ξ ( J ξ J η J hu ξ ξ ξ + ( ξ + U + ( η + V J ξ η ξη hv ξ ξ ξ + ( ξ + U + ( η + V J ξ η ξ +ξ z ξη +ξη z = gh + ξ = ξ 10 J J ξ η (6 τbξ Fvξ ξ ξη + ( hσ + ( hσ ρj ρj J ξ J η ξη ξξ + ( hτ + ( hτ J η J ξ ξη ξξ + ( hτ + ( hτ J η J ξ ξ 1 + ( hσ + ξη ( hσ J ξ J η 11 hv hv hv z h h + ( ξ + U + ( η + V Λ + ( ξ + U + ( η + V J ξ J η J J ξ J η J (3 hu η η η hg hg + ( ξ + U + ( η + V + ( ξ + Ug + ( η + Vg = 0 J ξ η ξ J η J hv η η η + ( ξ + U + ( η + V z J ξ η (7 h, h g U V ξ ξη +ξη z η +η z = gh + η J J ξ η τbη Fvη ηξ η + U =ξ u+ξ v, V =η u+η v (4 ( hσ + ( hσ ρj ρj J ξ J η u v ηξ ηη + ( hτ + ( hτ U g V g ξη J ξ J η

30 8 ηξ ηη + ( hτ + ( hτ J ξ J η u v σ = ν k, σ = ν k (17 3 3 ηξ η + ( hσ + ( hσ J ξ J η v u τ =τ =ν + (18 g ρ τ bξ τ bη ξη ν= ( κ 6 uh * (19 k =.07u* (0 τ bξ =ξτ b +ξτ b, τ bη =ητ b +ητ b (8 ν κ k τ τ 15 ub vb τ =τb, τ =τb (9 ub + vb ub + vb τ b =ρu * (10 16 F vξ F vη ξη ng m u + v u* = 1 3 ( u + v or u* = (11 R ( 6+.5ln( hk F u * n m =ξ v F +ξ v F, ξ v Fvη =η Fv +η Fv (1 R k F v F v (11 u v F v = Fv, F v = Fv ( u + v u + v u b v b Fv 1 = Cdvλ v ( u + v h (3 ρ C dv 1.0 ub = ubcoα vbin α (1 λ v (3 vb = ubin α + vbcoα (13 ub = 8.5u* (14 h 17 vb = N* ub (15 r Darc α = arcan ( vu, N * 1 7.0 13 zb zb ug = kg ξ +η (4 r ξ η 14 zb zb v u v u vg = kg ξ +η (5 u u v + v u v ξ η 1 = (16 r ( u + v 3 k g k g σ σ τ τ

18 f bk c b E b 19 E d1 1 f d1k 1-λ 4 4 交換層と第 1 堆積層 Ebe 1 = τ の粒径階ごとの質量保存則は, 以下のようである 0 co ( an an * m (8 dm cb θ φ θ ce b bfbk zb + ( 1 λ Fbk J J ce q b bf bk bk ξ ce q b bf bk bηk + ξ + + η + ξ J J J J η 1 + wk( cbek cbk = 0 J E f E = J J d1 d1k d1 Fdk 0 F, 0 bk = fd1 k zb Fbk = fbk, zb 0 (6 31 ここで,d m φ τ *m 交換層厚さ E b は, 河床に十分土砂が存在し, 且つ, 全粒径の土砂が移動する条件では, 平衡交換層厚さと等しくなるが, 粗粒分などが限界掃流力以下の時は, 平衡交換層厚さよりも薄くなる. q bξk q bηk ξη k qbξ k =ξ qbk +ξ qbk, qbη k =η qbk +η qbk (9 q bk q k 19, 1, 4, 0 Fdk = fd1 k zb (7 qbk = qbk coβ k Fdk = fbk, zb 0, qbk = qbk inβ k (30 3 17ρu * e u * ck u * ck E b 交換層厚さ,f bk qbk = 1 Kc 1 Kc fbk (31 ( ρ ρ g k f dmk m u* u* k, c b ρ u *e 上面に設定 するため, 土砂濃度 c b は静止堆積濃度 が想定され, 河床の空隙率 1-λが用いられる. さらに, 交換層厚さ E b は, 交換層内の土砂の 90% 粒径程度 の値が用いられている 1. また, 取り扱う現象のスケ ールによっては, 砂河床に対して砂堆の波高を交換 19 層厚 E b として用いられる. つまり, 交換層上面を 河床面と考えた場合, 交換層厚さの物理的意味は u + v 薄れ, 粒度を適切に予測できるように無理のない値 u* e = (3 h を交換層厚さと考えて用いられているようである. 一 6+.5ln dm( 1 * m + τ 方, 河床面を交換層下面に設定した場合, 交換層は掃流砂層となり, c b u *ck k 平衡交換層厚さ E be は, Egahira and Ahida 3 19, 5 bk

3 log1019 d 8 k u* ck = u* cm dk dm 0.4 (33 log10 ( 19dk dm d 36ν 36ν m wfk = + gd 3 3 k (43 3 gdk gd u* ck = 0.85u* cm dk dm 0.4 (34 k k 6 c bek 9 0.05 Lane and Kaline 30 1.61 1 u w * fk cbek = 5.55 ep fbk ( :ppm(44 wfk u * 7 1, 4 K c 5% 9 ρ + 1coαan θ + in αan θ ρ ρ Kc = 1+ (35 µ k c θ θ k c bk 31 zb z b θ = arcan ξ +η (36 c ( w bk ξ η c = ( 1 e β fkh, β = (45 β D zb z b D θ = arcan ξ +η (37 h ξ η µ k α α= arcan( v b u b (38 hc k J β k hc hc + ( ξ + U + ( η + V ξ J η J in α ΠΘ( u* ck u* an θ anβ k = (39 1 coα ΠΘ( u* ck u* an θ = w fk ( cbek cbk J Π= K ld + 1 µ (40 Dξ + Dξ c (46 + h ξ J Θ = 1 ( 1+ an θ + an θ (41 ξ D ξη + Dξη c Θ =Θ +ρ ( ρ ρ co θ (4 + h ξ J η K ld (0.85 Dξη + Dξη c w fk Rube + h η J ξ h

33 (m 6000 5000 4000 3000 (m 000-3000 -1000 1000 3000 5000 7000 9000 11000 13000 5 33 Dη + Dη c 7000 + h η J η 6000 5000 D D 4000 3000 000 1000 6 0 0 5 10 15 0 5 30 (hr ce b b zb + ( 1 λ 6 J J 9.5 n q n ξce b b bk ξ η q ce b b bηk + + + + J k= 1 J (47 Cae 1 ξ η J k= 1 J 9 n Cae 1 + wk ( cbek cbk = 0 8.5 k = 1 J 8 n 7.5 7 6.5 3 (m 3 / (m 6 3 5.5 0 1000 000 3000 4000 5000 6000 7000 3.1 (m 3 / 7-5 7 31 49km 1999 7 8km.1km 1999

34 (m 5000 4800 10m/ 4600 4400 400 4000 (m 500 1500 500 3500 4500 5500 6500 (m 0h (56 m3/ 5000 4800 10m/ 4600 4400 400 4000 (m 500 1500 500 3500 4500 5500 6500 14h (6011 m3/ (m 5000 Cae1 4800 10m/ 4600 4400 400 4000 (m 500 1500 500 3500 4500 5500 6500 14h (6011 m3/ Cae 8 49km 49km 9.8km 15.6km 001 3. 7 Cae 1 Cae - 9.8km 15.6km 3cm 10 49mm Cae 1-6 1999 9 17 8 49km Cae 1 Cae (31 Cae 1 Cae 1 Cae Cae Cae 1 1999 9 Cae 1 Cae

35 10 0.45 植生域 基準点からの高さ (m 8 6 4 0 Cae 1 ( Cae ( 0.4 0.35 0.3 0.5 0. - -4-6 Cae 1 ( Cae ( -8 0 0 50 100 150 00 50 300 350 400 左岸からの距離 (m 9 8.km 30 8.km Cae Cae 1 Cae 1 160m 1 Ohmori, H.: Eroion rae and heir relaion o Cae vegeaion from viewpoin of world-wide diribuion, Bullein of he Deparmen of Geograph, Univeri of Toko, 15 (1983 4 77-91,. 8 (1997 3 Blue Back (1994. 4 5 :, Vol. 677 No.II-55 (001 75-86. 6 Okabe, T. and Takebaahi, H.: Numerical eimaion of counermeaure again edimenaion in Maaki Dam Reervoir, Japan, Environmenal Hdraulic and Suainable Waer Managemen, Lee & Lam 0.15 0.1 0.05 河床材料の平均粒径 (m

36 (ed, (004 153-159. 0 Takebaahi, H., Egahira, S. and Okabe, T.: 7 Braided ream formed on bed wih non-uniform edimen, Proc. 3nd IAHR 55 (1976. 8 Nagaa, N., Hooda, T. and Muramoo, Y.: Numerical anali of river channel procee wih bank eroion, Journal of Hdraulic Engineering, ASCE, Vol.16, 4 (000 43-5. Smpoium on River, Coaal and Euarine Morphodnamic, (003 787-798. 1 35 (1991383-390. 9 (1985. 10 (1994. 11 Takebaahi, H., Egahira, S. and Okabe, T.: 467/II-3 (1993 9-38. 3 Egahira, S. and Ahida K.: Unified view of he Numerical anali of ream abili proce mechanic of debri flow and bed-load, on bed wih non-uniform edimen, Journal of Advance in Micromechanic of Granular Hdrocience and Hdraulic Engineering, Maerial, (Edied b H.H.Shen e al. Elevier, Vol., (004 37-46. 1 Zimmermann, C.: Roughne effec on he flow direcion near curved ream bed, Journal of Hdraulic Reearch 15 No.1 (1977. 13 Engelund, F.: Flow and bed opograph in channel bend, Jour. of H. Div. ASCE, Vol. 100, No. HY11 (1974. 14 Shimizu,Y. and Iakura,T.: Calculaion of flow (199 391-400. 4 Kovac, A. and Parker, G.: A new vecorial bedload formulaion and i applicaion o he ime evoluion of raigh river channel. J. Fluid Mech. Vol. 67, pp. 153-183, 1994. 5 Egiazaroff, I. V.: Calculaion of Nonuniform Sedimen Concenraion, Proc. ASCE, Vol. 91, No. HY4 (1965 5-47. 6 and bed deformaion wih a general 41 (1956 1-1. non-orhogonal coordinae em, Proc. of XXIV IAHR Congre, Madrid, Spain, C- (1991 41-48. 15 Nezu, I. and Nakagawa, H.: Turbulence in open channel flow, IAHR Monograph, Balkema, Roerdam, The Neherland, (1993 53-56. 7 316 (1981. 8 Rube, W. W.: Seling velociie of gravel, and and il paricle, American J. of Science, 5 (1933 35-338. 16 9 Iakura, T. and Kihi, T.: Open Channel 39 (1995 Flow wih Supended Sedimen, Proc. ASCE, 513-518. Vol. 106, No. HY8 (1980 135-1343. 17 30 Lane, E. W. and Kaline, A. A.: Engineering calculaion of upended edimen, Tran. (1998 143-153. A.G.U., (1941. 18 31 Roue, H.: Modern Concepion of he Mechanic, of Turblence, Tran. ASCE, 10 (1937 463-543. (1999 3 51-76. 40 19 (1996 887-89. 33 06 (197 59-69.