i 1 1 Super-Kamiokande

Similar documents
untitled

untitled

Mott散乱によるParity対称性の破れを検証

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Drift Chamber

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


TOP URL 1

nakajima_

main.dvi

[ ] [ ] [ ] [ ] [ ] [ ] ADC

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

25 3 4

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0



) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ,

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

untitled

Report10.dvi


総研大恒星進化概要.dvi

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

LLG-R8.Nisus.pdf

修士論文

LEPS


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

c 2009 i

Muon Muon Muon lif

,,..,. 1

nenmatsu5c19_web.key

TOP URL 1

PDF


9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Note.tex 2008/09/19( )

数学の基礎訓練I

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

0.1 I I : 0.2 I

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

I

0406_total.pdf

The Physics of Atmospheres CAPTER :

橡実験IIINMR.PDF

36 th IChO : - 3 ( ) , G O O D L U C K final 1

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

JPS2016_Aut_Takahashi_ver4

untitled

2011de.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

QMI_10.dvi

スーパーカミオカンデにおける超新星観測用DAQの開発と遠い超新星爆発探索の最適化

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

30

Microsoft Word - 章末問題

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 2 2 (Dielecrics) Maxwell ( ) D H


untitled

09_organal2

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Part () () Γ Part ,

untitled

thesis.dvi

2000年度『数学展望 I』講義録

( )


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

From Evans Application Notes

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

pdf

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


スーパーカミオカンデ実験

Canvas-tr01(title).cv3

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

Z: Q: R: C: sin 6 5 ζ a, b

Transcription:

41417122 27 3 9

i 1 1 Super-Kamiokande 2 1.1.......................................... 2 1.2........................................... 3 1.2.1 2............................... 4 1.3.................................... 5 1.3.1.................................. 5 1.3.2....................................... 7 1.3.3................................... 8 2 9 2.1............................... 9 2.2............................ 12 2.3 Super-Kamiokande...................... 14 2.4....................... 16 3 19 3.1......................................... 19 3.1.1................................. 19 3.1.2.................................... 21 3.1.3................................. 22 3.2.................................... 24 3.2.1 First Reduction................................... 24 3.2.2 Second Reduction................................. 25 3.2.3 SK-II......................... 28 3.3........................................ 29 3.4............................. 3 3.5........................... 32 3.6...................... 33 3.7................................... 38 4 43 A Super-Kamiokande 47

ii A.1............................ 47 A.2................................. 49 A.3............................... 5 A.4......................................... 54 A.4.1 A.4.2 A.4.3 NiCf......................... 54 LINAC............................... 56 2........................ 58 A.5.................................... 6 B 62 66 69 71

1 1987 2 23 4 35 11 1987A 5kpc 11 16 1996 1996 25 2 SK 3 3 4 PMT SK-III PMT A 1987A 2 16 11 27

2 1 Super-Kamiokande Super-Kamiokande(SK) 1, 5, SK 1996 1.1 1.1 1.1 n(λ) > 1 p µ 1 pµ 2 kµ p θ k p 1 2 4 p µ 1 = pµ 2 + kµ (1.1) cos θ ch = 1 n(λ)β (1.2) θ ch ( ) n = 1.33β = 1 42 cos θ ch 1 E n mass n2 1 (1.3)

1 Super-Kamiokande 3.767MeV 157.4MeV n dl λ 1 λ 2 dn dn dl = 2πα ( 1 1 ) ( 1 1 ) n λ 1 λ 2 n 2 β 2 (α 1/137 ) SK 3nm 6nm 1cm 34 1MeV cm SK 1, 1 1 18 / *1 *2 (1.4) 1.2 SK 1.2 1,m(2,7m w.e) 137.3 36.4 25.8 1 5 1.3 1mG LINAC room electronics hut control room 2" PMTs water system Mt. IKENOYAMA 1m 1.2 Super-Kamiokande *1 2.5V.3A 1.5V 1.5V 1.5.3 A =.27J/s 2.5 5nm 1 hc/λ = 6.6 1 34 Js 3. 1 8 m/s 5nm = 4. 1 19 J (.27J/s) (4. 1 19 J) 7 1 17 photons/s *2 SK 23Hz

1 Super-Kamiokande 4 1.3 SK 39.3m 41.4m 5, 32, 11,146 2 4% 1,885 8 21 22 25 5,2 FRP SK-I 25 12 SK-II 1.2.1 2 SK 2 1.4 Sb-K-Cs 1.5 28nm 66nm39nm 22% 1.6 2 1 (ADC ) 1 *3 2 1 1/4 p.e (-1mV) 3kHz *3 1

1 Super-Kamiokande 5 Quantum efficiency.2.1 3 4 5 6 7 Wave length (nm) 1.4 2 1.5 2 1.6 2 1 [1] 1.7 2 (T.T.S)[1] (T.T.S:Transit Time Spread) SK 1 T.T.S 2.2ns (1.7) 2 [1] 1.3 7m 4 1.3.1 1.8 ATM(Analog Timing Module) *4 *4 Super-Kamioka TKO(Tristan KEK Online)

1 Super-Kamiokande 6 2-inch PMT SCH ATM x 24 2-inch PMT x 2 ATM GONG SCH ATM x 2 interface Ultra Sparc x 24 ATM GONG SMP SMP SMP online CPU(slave) SMP SMP x 6 SMP Super Memory Partner 2-inch PMT VME SCH ATM Ultra Sparc x 2 online CPU(slave) x 24 ATM GONG TKO Analog Timing Module Ultra Sparc online CPU(slave) Ultra Sparc FDDI online CPU(host) Ultra sparc online CPU(slave) Ultra Sparc online CPU(slave) Ultra Sparc online CPU(slave) FDDI Ultra Sparc interface SMP SMP SMP online CPU(slave) Ultra Sparc online CPU(slave) online CPU (slave) Ultra Sparc SMP SMP SMP VME Super Memory Partner VME interface interrupt reg. 2-inch PMT TRG SCH ATM TRIGGER x 24 x 2 ATM GONG Analog Timing Module HIT INFORMATION TRIGGER PROCESSOR TKO PMT x 112 ATM x ~1 SMP x 48 online CPU(slave) x 9 1.8 SK TKO 1 (SCH) (GONG) 2 ATM

1 Super-Kamiokande 7 HITSUM ATM AD *5 AD SCH *6 SMP(Super Memory Partner) 1.3.2 Super-Kamiokande HITSUM HITSUM 2ns 15mV 1 2ns 1 HITSUM (1.9) Analog signal from PMT ATM threshold 4nsec width ADC gate start stop TDC start and stop 2nsec width HITSUM global trigger in ATM Sum of HITSUM Master threshold in center hut global trigger 1.9 HITSUM Super-Kamiokande HE(High Energy)LE(Low Energy) SLE(Super Low Energy) HE>LE>SLE *5 PMTSUM ATM FlashADC *6 Super Control Head SMP TKO SMP

1 Super-Kamiokande 8 *7 TRG VME TRG 3ns TRG GONG ATM TRG 2ns 1 28ns 1.3.3 8 1 1 1 MTL(Magnetic Tape Library) SK-I 12Tbyte MTL SK-I 4Gbte/day 2Tbyte ATM 5Ω ATM 5Ω *8 ATM 7m.2m/nsec 7m.2m/nsec 2 = 7nsec ATM 9nsec SK 15MeV 1 1kpc SK 1 4kHz 9nsec 9nsec 4kHz =.36.36% 9nsec *7 SK-I HE:-34mV(31hits)LE:-32mV(29hits)SLE:-186mV(17hits) SK-I HE:-18mV(17hits)LE:-152mV(1hits)SLE:-11mV(1hits) SLE SLE SLE *8 1kΩ ATM 1%

9 2 SK 2.1 2 I II Ia Ib ( ) Ic II II-P (P:Plateau) II-L (L:Linear) II 1. 2. Z 2 (Z: ) 3. 4.

2 1 2).46M 2 (> 8M ) ONeMg Fe ( ) IbIcII II Ib (Ic ) II-P II-L [5] II-L 12M II-P 1M II-P II-L Ib Ic Ia C+O 4 M < M < 8 M (2.1) a. (M <.8 M ) b. (.8 M < M <.46 M ) 1 2 M

2 11 2.1 [4] c. (.46 M < M < 4 M ) C+O 5 d. (4 M < M < 8 M ) C+O C+O 1.41M 1 9 K 1.41M 2 1 51 erg 4 1 5 erg e. (8 M < M < 12 M ) 24 Mg 24 Na 2 Ne 2 F e 16 O f. (12 M < M) 4 1 9 K

2 12.1 2.2 1 49 erg SK 4 e A(N, Z) ν e A(N + 1, Z 1) (2.1) e p ν e n (2.2) e + n ν e p (2.3) e e + ν e ν (2.4) ν A ν A (2.5) ν p ν p (2.6) ν n ν n (2.7) ν e ν e (2.8) 1. Fermi (2.1) ν e 1 51 erg 2. 3 1 1 g/cm 3 ν e (2.5) 3. (t = ) ν e 1 14 g/cm 3 4. (t 1msec)

2 13 (2.2) ν e ν e 1msec 1 53 erg/sec 1 51 erg 5. (1msec t 1sec) () (2.2) (2.3) (2.4) 6 1 53 erg 1msec 1sec 6. (1sec t 1sec) 1sec 1 53 erg 7. (t > ) 1 7 1 9 km 198 Wilson [6] (2.2) (2.3) delayed explosion Livermore group [7] 2.2 2.2 Livermore group ( ) (.1sec ν e ( ) ) 5msec

2 14 delayed explosion 1 25MeV ν µ ν µ ν τ ν τ ν e ν e 5msec delayed explosion 2.3 Super-Kamiokande SK 5 (i) ν e ν e (2.9) (ii) ν e p n e + (2.1) (iii) ν e 16 O e + 15 N (2.11) (iv) ν e 16 O e 16 F (2.12) (ii) O(1/M)(M ) [8] E e = E ν M 2 n M 2 p +m2 e 2M p 1 + E ν M p (1 v e cos θ) (2.13) E ν M n M p 1/M p e = Ee 2 m 2 e 1 v e = p e /E e E () e = E ν (2.14) = M p M n 1 [ E e (1) = E e () 1 E ] ν (1 v() e cos θ) y2 M M (2.15)

2 15 y = ( 2 m 2 e)/2 M *1 ( ) (1) dσ = σ [ { } (f 2 + 3g 2 ) + (f 2 g 2 )v ( d cos θ 2 e1) cos θ E e (1) p (1) e Γ ] M E() e p () e (2.16) σ = G2 F cos2 θ C (1 + R π inner) (2.17) G F Fermi θ C Cabibbo cos θ C =.974 R inner.24 [9] Γ [ Γ = 2(f + f 2 )g (2E e () + )(1 v e () [ ( (f 2 +3g 2 ) (E e () + ) 1 1 cos θ v e () ) cos θ) m2 e E () e ] +(f 2 g 2 ) ] [ + (f 2 + g 2 ) [ ( (E e () + ) (1 + v () e 1 1 cos θ v e () cos θ) + m2 e E e () ) ] ] + v e () cos θ (2.18) fg f = 1g = 1.26 f 2 f 2 = µ p µ n = 3.76 15MeV [8] 2.16 2.3 (i) dσ = G2 F m [ ] e m e T e A + B + C dt e 2π Eν 2 (2.19) [1] T e m e A B C A = (g V + g A ) 2, B = (g V g A ) 2, C = (ga 2 gv 2 ) (2.2) { gv = 2 sin 2 θ W + 1 2, g A = + 1 2 for ν e g V = 2 sin 2 θ W 1 2, g A = 1 (2.21) 2 for ν µ, ντ [1] θ W Weinberg (=.2317 [11]) 2.2 T e σ total = Tmax = G2 F m e 2π dσ dt e dt e [ A T max + B E ν 3 { 1 ( 1 T ) } ] 3 max m e Tmax 2 C E ν 2Eν 2 (2.22) T max T max = E ν 1 + m e 2E ν (2.23) 1MeV *1 O(1/M 2 )

2 16 a) ν e e ν e e σ νe e ν e e = 9.478 1 44 E ν(mev ) 1(MeV ) (cm 2 ) (2.24) b) ν e e ν e e σ νe e ν e e = 3.969 1 44 E ν(mev ) 1(MeV ) (cm 2 ) (2.25) c) ν µ,τ e ν µ,τ e σ νµ,τ e ν µ,τ e = 1.559 1 44 E ν(mev ) 1(MeV ) (cm 2 ) (2.26) d) ν µ,τ e ν µ,τ e σ νµ,τ e ν µ,τ e = 1.329 1 44 E ν(mev ) 1(MeV ) (cm 2 ) (2.27) 2.3 (ii) 1 1 6 N(ν e, p) : N(ν e, e ) : N(ν µ,τ, e ) 5 : 1 : 1 6 (2.28) (ii) (i) cos θ = 1 + m e E ν 1 + 2m e T e (2.29) cos θ > 1 m e T e (2.3) 115 2.3 [12, 13] Livermore group 1kpc SK ( (i) (ii) 2.4 2.4 [14] SN1987A Kamiokande 11 IMB 8 i). 1 ii). 3 1 53 ergiii). Kamiokande E = 7.5MeV IMB

2 17 σ (1-4 cm 2 ) 1 1 1-1 1-2 1-3 1-4 ν e+ 16 O ν e+p ν e + 16 O ν e +e - ν e+e - ν X +e - ν X+e - 1 2 3 4 5 6 Neutrino Energy (MeV) 2.3 Number of Events / 1 MeV 1 3 1 2 1 ν +e - νp e ν e + 16 O 1 ν e+ 16 O 1 2 3 4 5 6 Visible Energy (MeV) 2.4 SK 1kpc ( (1MeV ) )

2 18 E = 11.1MeV [15, 16] i).ii). iii). E νe 16MeV SuperKamiokande SN1987A Delayed explosion SK 1kpc SK 8 [17] θ 13 t m2 νl (2.31) 2cE ν L SN1987A ν e (ν e ) 6eV (@ 95%C.L.) [18]SK 1msec 2eV m e < 2.8eV

19 3 SK SK-I SK-II 26 3 3 3.1 SK [19] SK-I SK-II PMT SK-I SK-II 3.1.1 () ( PMT) 1. PMT PMT PMT a PMT

3 2 5 4 3 2 1 3.1 6 8 1 12 14 16 18 2 time(nsec) SK PMT 3.1 t 1 t 4 b 2nsec 2nsec window 3.1 t 2 t 3 window c window N BG t 3 t 2 (t 2 t 1 ) + (t 4 t 3 ) (N hit(t 1 t 2 ) + N hit (t 3 t 4 )) (3.1) d Significance Signif icance N hit (t 2 t 3 ) N BG t 3 t 2 (t 2 t 1 )+(t 4 t 3 ) Nhit (t 1 t 2 ) + N hit (t 3 t 4 ) 2nsec 3.1 PMT 2. 397.5cm 3.23.3 (goodness) goodness 1 N hit i=1 1 σ 2 N hit 1 ( σ 2 exp (t res,i t mean ) 2 2σ 2 i=1 σ PMT 5nsec t res,i t i PMT(i) ( x xi ) t res,i = t i 2 (3.4) c water x x i PMT(i) t mean t res,i goodness 1 PMT 1 goodness goodness ) (3.2) (3.3)

3 21 y coordinate(cm) 2 15 1 5-5 -1-15 -2-2-15-1 -5 5 1 15 2 x coordinate(cm) Z coordinate(cm) 2 15 1 5-5 -1-15 -2-2-15-1 -5 5 1 15 2 x or y coordinate(cm) 3.2 x y 3.3 z x( y) 3.1.2 PMTi d v θi i φ i SK tank relative probability 1.75.5.25-1 -.75 -.5 -.25.25.5.75 1 cosθ dir 3.4 3.5 Monte Carlo f accept (φ)[19] () β 1 42 PMT 2nsec 5nsec window PMT d = (d x, d y, d z ) L( d) = N hit5 i=1 log[f(φ i ( d))] cos θ i f accept (cos θ i ) (3.5) N hit5 5nsec PMT 3.4 φ i

3 22 d PMT v i θ i PMT PMT f accept (cos θ i ) f accept (cos θ i ) f accept =.25 +.524 cos θ i +.39 cos 2 θ i.132 cos 3 θ i (3.6) f accept (φ) Monte Carlo 3.1.2 3.5 d d init d init = N hit5 i=1 v i (3.7) 2 9 4 1.6 3.5 3.1.3 PMT PMT 1 1 PMT 5nsec window N hit5 N hit5 PMT N eff N eff N eff = N hit5 i=1 [ (X i ɛ dark + ɛ tail ) N all N alive R ( cover S(θ i, φ i ) exp ri ) ] G(i) λ X i : PMT 1 (3.8) X i log(1 x i) (3.9) x i x i PMT N i PMT n i x i = n i /N i PMT ɛ dark : SK-I PMT dark noise rate 1 3kHz PMT 11146 5nsec window PMT 2 dark noise ɛ dark ɛ dark N alive R noise 5nsec N hit5 (3.1)

3 23 N alive PMT R noise dark noise rate [hits/nsec] ɛ tail : SK-I 4% 5nsec window ɛ tail N hit1 N hit5 N hit5 ɛ dark (3.11) N hit1 1nsec window PMT ɛ tail > N all N alive : Bad PMT PMT N alive PMT N all Bad PMT R cover S(θ i,φ i ) : R cover SK-I.4SK-II.19 PMT 3.6 S(θ, φ) θ φ PMT 1.8.6 θ 8 6 Θ 4 2 8 6 4 φ.4 2 3.6 S(θ, φ)[19] 3.7 S(θ, φ) θφ φ exp ( r i ) λ : PMT exp ( r i ) λ r i PMT λ G(i): SK-I PMT 375 PMT PMT PMT ( ) [3]

3 24 3 25 Energy(MeV) 2 15 1 5 25 5 75 1 125 15 175 2 225 25 Neff(corrected) 3.8 N eff PMT G(i) = {.833 for the 375 PMTs 1. for the other PMTs (3.12) *1 N eff 4 Monte Carlo N eff 3.8 3.2 3.2.1 First Reduction 1 1MeV *1 SK-II G(i) PMT

3 25 γ 2cm 22.5kt DAQ 1 5µsec (ODOuter Detector) PMT 19 OD First noise cut.5 PMT N noise N total R noise = N noise /N total.4 Second noise cut ATM 1 ATM 95% PMT Goodness Goodness Goodness.4 3.2.2 Second Reduction First Reduction Fit stability goodness goodness goodness goodness 3 goodness goodness G G R grid 3.9 R grid Monte Carlo R grid R grid >.8 Spallation SK 2 3Hz (spallation)

3 26 Number of events 1 6 1 5 1 4 1 3.1.2.3.4.5.6.7.8.9 1 Rgrid 3.9 R grid MC R grid.8 [19] X µ + 16 O µ + X (3.13) X 3.1.1 14sec 5 2 MeV Spallation Spallation 3 L: T : Q res : Q res = Q total Q unit L Q total Q unit L Spallation Spallation [19] 3.1 ( L T Q res 3 T Q res 2 ) 2 1 Spallation SK-II 2 goodness 1

3 27 Isotope τ 1 (sec) decay mode Kinetic Energy (MeV) 2 8 2He.119 β 9.67 +.98(γ) β n 16% 8 3Li.838 β 13 8 3B.77 β + 13.9 9 3Li.178 β 13.6 (5.5 % ) β n ( 5 % ) 9 6C.127 β + n 3 15 11 3 Li.85 β 16 2 ( 5 % ) β n 16 ( 5 % ) 11 4 Be 13.8 β 11.51 ( 54.7 % ) 9.41 + 2.1 (γ) ( 31.4 % ) 11 4 Be.236 β 11.71 12 5 B.22 β 13.37 12 7 N.11 β + 16.32 13 5 B.174 β 13.44 13 8 O.86 β + 13.2 16.7 14 5 B.138 β 14.55+6.9 (γ) 15 6 C 2.449 β 9.77 ( 36.8 % ) 4.47+5.3 (γ) 16 6 C.747 β n 4 16 7 N 7.13 β 1.42 ( 28.% ) 4.29+6.13 (γ) (66.2% ) 3.1 SK Spallation (spallation product)[19] 5 4 CUT 1 4 1 3 CUT 3 1 2 2 1 1-4 -2 2 4 6 Spallation likelihood 1-4 -2 2 4 6 Spallation likelihood 3.1 () ()Spallation [19] Monte Carlo

3 28 3.2.3 SK-II SK-II PMT 5182 SK-I 1MeV 11cm21% (SK-I 87cm14% ) SK-II 2cm Energy < 7.5 MeV 3cm 7.5 MeV Energy < 8.MeV 2cm 3cm Energy 8.MeV 2cm goodness ( goodness 1 ) goodness ovaq (Quality factor of orientaion and vertex accuracy) ovaq = Goodness 2 vertex Goodness 2 orientation (3.14) 1MeV ovaq <.25 ovaq <.2 PMT 3.11 d wall Monte Carlo Energy < 7.5 MeV : d eff = 11cm 7.5 MeV Energy < 8.MeV : d eff = 1cm 8. MeV Energy < 8.5MeV : d eff = 8cm 8.5 MeV Energy < 9.MeV : d eff = 7cm 9. MeV Energy < 1MeV : d eff = 5cm 1 MeV Energy < 3MeV : d eff = 4cm 3.11 d eff

3 29 livetime efficiency 1..9.8.7.6.5.4 SK-I SK-II.3.2.1. 1996 1997 1998 1999 2 21 22 23 24 25 3.12 SK LINAC 23 Year 3.3 SK-I 1996 5 31 21 7 15 173.9 SK-II 22 12 24 25 1 5 885.4 3.12 9% 1997 1 1998 12 1999 6 21 5 23 3 25 9 LINAC 23 SK-I SK-II 3.2 SK-II PMT SK 2.2 2.4 2MeV

3 3 SK-I SK-II ( ) 11,146 5,182 (with FRP+ ) 173.9 885.3 4% 19% (1MeV) 14% 21% (1MeV) 87cm 11cm (1MeV) 26 28 6. p.e/mev 2.8 p.e/mev 4.1 MeV (Sep 22) 5.5 MeV 5/31/19965/28/1997 : 6.5MeV 12/22/227/14/23 : 8MeV 5/29/19977/15/21 : 4.5MeV 179.6 / 7/15/231/5/25 : 7MeV 164.3 / 3.2 SK-I SK-II 3.4 2 11MeV 25MeV SK 1kpc 1, ( 9, ) ( / ) ν e + p n + e + (88%/89%), (3.15) ν e + e ν e + e (1.5%/1.5%), (3.16) ν e + e ν e + e (< 1%/ < 1%), (3.17) ν x + e ν x + e (1%/1%), (3.18) ν e + 16 O e + 17 F (2.5%/1%), (3.19) ν e + 16 O e + + 15 N (1.5%/ < 1%), (3.2) ν x + 16 O ν x + O /N + γ (5%/6%), (3.21) ν x ν µ ν τ *2 Time-window Time *2 [17] Livermore [2] [17] 3.13

3 31 1. time-window 2. time-window (Multiplcity) 1. (3.13 ) 3. 3 time-window 3. 2 1 3.2.2 Spallation 1 PMT PMT Flasher R mean = N multi 1 i=1 N multi j=i+1 r i r j N multi C 2. (3.22) N multi Multiplicity r i i N multi C 2 2 R mean R mean 3.14 Monte Calro R mean R rmean 18cm R rmean Multiplicity 2 75cm Multiplicity 1cm 3.3 Probability.225.2.175.15.125.1.75.5.25 5 1 15 2 25 3 35 Rmean Multiplicity R mean 2 > 75 cm.94 3 > 1 cm.96 4 > 1 cm.99 8 > 1 cm 1. 3.3 R mean 3.14 R mean

3 32 3.5 [21] 1Mpc SK II 22 25 9 3 [22]SK SK 1kpc 8 7kpc 2 1.6 time-window 2 time-window 2 2events/2sec (3.23) time-window 2 3.15 R 1 time-window ( T ) (Muiltiplicity :M thr -1) (RT live : T live ) N bg = RT e R T [R T ] live (i 1)! i=m thr i 1 (3.24) 3.15 1 Monte Calro 3.16 7531kpc BG (3.17) SK-I SK-II 17MeV SK-I.762 / SK-II 1.3 / R mean 3.18 SK-I R mean 3 PMT SK-ISK-II

Detection Probability of SN Detection Probability of SN # of Expected Background in 885.2 days 3 33 # of Expected Background in 173.9 days 1 5 1 4 1 3 1 2 1 1 1-1 8 1 1214 1618 2 2224 26 Energy threshold [MeV] 1 4 1 3 1 2 1 1 1-1 1-2 8 1 12 14 16 18 2 22 24 26 Energy threshold [MeV] 3.15 SK-I SK-II 1 1 1-1 1-1 1-2 SN@1kpc SN@3kpc SN@5kpc SN@7kpc 8 1 12 14 1618 2 22 24 26 Energy threshold [MeV] 1-2 SN@1kpc SN@3kpc SN@5kpc SN@7kpc 8 1 12 14 16 18 2 22 24 26 Energy threshold [MeV] 3.16 SK-I SK-II 3.6 2.4 SN1987A SK IMB 19 SK-I 6.5MeV SK-II 7MeV (3.2) *3 *3 SK-I 5/29/1997 4.5MeV SK-I 6.5MeV

3 34 Detection Probability / # of Expected BG 1 1 1-1 1-2 1-3 SN@1kpc SN@3kpc SN@5kpc SN@7kpc 8 1 12 14 16 18 2 22 24 26 Energy threshold [MeV] Detection Probability / # of Expected BG 1 1 1-1 1-2 1-3 SN@1kpc SN@3kpc SN@5kpc SN@7kpc 8 1 12 14 1618 2 22 24 26 Energy threshold [MeV] 3.17 SK-I SK-II BG 3.16 17MeV BG Rmean 25 225 2 175 15 125 1 75 5 25 1 2 3 4 5 6 7 8 9 1 3.18 Multiplicity R mean SK-I SK-II time-window multiplicity 3events/.5sec, or 4events/2.sec, or 8events/1sec. (3.25) 3 1 3.4 3.19 SK-ISK-II R mean multiplicity 2 2

3 35 BG SK-I SK-II 3 events/.5 sec.71 9.99 1 2 4 events/2. sec.511 4.72 1 3 8 events/ 1 sec.433 8.42 1 7 3.4 Rmean [cm] 25 225 2 175 SK-I SK-II 15 125 1 75 5 25 1 1 1 2 1 3 Multiplicity 3.19 Multiplicity R mean SK-I SK-II 2 Multiplicity R mean SK-I 121 SK-II 53 Rmean > 1cm SK-I 3 SK-II 2 R mean > 1cm 819cm( A) 874cm( B) R mean Flasher Spallation Flasher PMT Spallation 3.2 first reduction ovaq R mean AB ovaq ovaq A Flasher ovaq B Spallatio

# of Events 3 36 1 3 Cut for Energy<1MeV 1 2 Cut for Energy>1MeV 1 1 -.4 -.2.2.4.6.8 ovaq 3.2 First reduction ovaq ( Energy < 1MeV Energy > 1MeV ovaq ) A B 3 ovaq 3.21 A 3 Flasher (3.22) A 1 First reduction 3.23 FlasherPMT A 3 A Flasher B B (First reduction ) 3.25 B 3 ( ) 15 (3.24 ) (3.26) 793, PMT *4 2 *4 goodness.46

3 37 NUM 27 RUN 24585 EVENT 12632779 DATE 4-Oct-23 TIME 18:34:58 TOT PE: 83.5 MAX PE: 5.9 NMHIT : 63 ANT-PE: 4.6 ANT-MX: 2.9 NMHITA: 39 RunMODE:NORMAL TRG ID :111 T diff.: 318. us :.318 ms FSCC: 827F9 TDC: 8894.8 Q thr. :. BAD ch.: no mask SUB EV : / 3 2.5 2 1.5 1.5 2 1.75 1.5 1.25 1.75.5.25 8 1 12 14 16 18 1 2 3 4 5 NUM 77 RUN 24585 EVENT 1263313 DATE 4-Oct-23 TIME 18:34:59 TOT PE: 259.8 MAX PE: 72.5 NMHIT : 159 ANT-PE: 38.4 ANT-MX: 4.5 NMHITA: 39 12 1 8 6 4 2 6 8 1 12 14 16 RunMODE:NORMAL TRG ID :111 T diff.:.378e+4us : 3.78 ms FSCC: 827F9 TDC: 8892.8 Q thr. :. BAD ch.: no mask SUB EV : / 14 12 1 8 6 4 2 1 2 3 4 5 6 7 NUM 134 RUN 24585 EVENT 12633575 DATE 4-Oct-23 TIME 18:34:59 TOT PE: 118.3 MAX PE: 12.7 NMHIT : 85 ANT-PE: 35.3 ANT-MX: 2. NMHITA: 4 RunMODE:NORMAL TRG ID :111 T diff.: 79.6 us :.796E-1ms FSCC: 827F9 TDC: 896. Q thr. :. BAD ch.: no mask SUB EV : / 7 6 5 4 3 2 1 6 8 1 12 14 16 18 7 6 5 4 3 2 1 2 4 6 8 1 12 3.21 A 3 SK PMT PMT PMT (t) (q) nsec (p.e)

3 38 NUM 23 RUN 24585 EVENT 12632775 DATE 4-Oct-23 TIME 18:34:58 TOT PE: 431.3 MAX PE: 13.9 NMHIT : 332 ANT-PE: 61.5 ANT-MX: 9.9 NMHITA: 58 NUM 46 RUN 24585 EVENT 12632823 DATE 4-Oct-23 TIME 18:34:58 TOT PE: 313.8 MAX PE: 1. NMHIT : 237 ANT-PE: 29.2 ANT-MX: 2.5 NMHITA: 32 RunMODE:NORMAL TRG ID :111 T diff.: 311. us :.311 ms FSCC: 827F9 TDC: 893.5 Q thr. :. BAD ch.: no mask SUB EV : / RunMODE:NORMAL TRG ID :11 T diff.: 4.16 us :.416E-2ms FSCC: 865F9 TDC: 1393.8 Q thr. :. BAD ch.: no mask SUB EV : / NUM 64 RUN 24585 EVENT 12633111 DATE 4-Oct-23 TIME 18:34:59 TOT PE: 142.2 MAX PE: 6.2 NMHIT : 121 ANT-PE: 48.7 ANT-MX: 4.1 NMHITA: 47 NUM 12 RUN 24585 EVENT 12633539 DATE 4-Oct-23 TIME 18:34:59 TOT PE: 123.9 MAX PE: 9.8 NMHIT : 93 ANT-PE: 44.6 ANT-MX: 11. NMHITA: 35 RunMODE:NORMAL TRG ID :111 T diff.:.132e+5us : 13.2 ms FSCC: 827F9 TDC: 8893.8 Q thr. :. BAD ch.: no mask SUB EV : / RunMODE:NORMAL TRG ID :11 T diff.: 16.6 us :.166E-1ms FSCC: 827F9 TDC: 8894. Q thr. :. BAD ch.: no mask SUB EV : / 3.22 A Flasher FlasherPMT 3.7 time-window multiplicity e + p n + ν e 1msec 2 1 51 erg 1kpc

第3章 39 超新星爆発ニュートリノバースト探索の解析 2 15 15 1 Z position [cm] Y position [cm] 1 5-5 5-5 -1-1 -15-15 -15-1 -5 5-2 1 15-15 -1-5 X position [cm] 図 3.23 5 1 15 X position [cm] 事象群 A の前後 1 秒以内に観測された有効体積カット抜きの first recduction を行った後 の事象の発生点分布 右はタンクを上から見たときの x-y 平面 左は横から見たときの z-x 平面での 発生点分布をしめす 実線は内水槽 点線は壁から 2cm の有効体積を示す 赤星は事象群 A の 3 事象の発生点で青丸はその前後 1 秒間に観測された first reduction 後に残った事象の発生点である が 図 3.22 の Flasher PMT のある位置に事象発生点が集中していることがわかる NUM 374 RUN 21979 EVENT 2968923 DATE 3-Apr7 TIME :23:56 TOT PE:792839.1 MAX PE: 411. NMHIT : 7367 ANT-PE: 25291.7 ANT-MX: 68.8 NMHITA: 129 3 25 2 15 1 5 Entrance point 2 4 6 8 1 12 14 16 18 35 3 RunMODE:NORMAL TRG ID :111 T diff.:.513e+5us : 51.3 ms FSCC: E827F9 TDC: 891. Q thr. :. BAD ch.: no mask SUB EV : / Exit point 25 2 Saturated PMTs 15 1 5 5 1 15 2 25 3 35 4 図 3.24 右は事象群 B の約 3 秒前に飛来したミュー粒子のイベントディスプレイ はミュー粒子 がタンクに入った点を示し はタンクを出た点を示す 左は光を受け取った PMT の時間 [nsec] と荷 電情報 [p.e] のヒストグラムを示し 22p.e 付近のピークはサチュレーションを起こした PMT を示 している トリノ事象はニュートリノ振動のモデルにもよるが およそ 1 から 6 事象である [17] したがって 多く の統計はあまり期待できないにしろ 超新星爆発機構の詳細を理解するためには重要な解析であるといえ る また 銀河系内超新星爆発がデータ取得期間内に起こらなかったとしても例えばブラックホールの形 成などで核の爆発途中で途絶えてしまったときその前におこる中性子化バーストのみが観測される可能性 があるということも付け加えておくべきであろう*5 図 3.27 は Livermore group モデルによる超新星爆発の SK における観測事象数時間発展を示してあ *5 たとえブラックホールが形成されても通常の超新星爆発とほぼ同数のニュートリノが観測されると主張している文献もある [23]

# of events /.5 sec 3 4 6 5 4 3 2 1-8 -6-4 -2 2 4 6 8 1 12 Time [sec] 3.25 B first reduction ( B sec 3.24 15 2 15 15 1 1 Y position [cm] 5-5 Z position [cm] 5-5 -1-1 -15-15 -15-1 -5 5 1 15 X position [cm] -2-15 -1-5 5 1 15 X position [cm] 3.26 B 3.25 first recduction x-y z-x 2cm B 3 3.25 first reduction 3.24

3 41 # of events at SK(32kt) / 2msec 4 3.5 3 2.5 2 1.5 1.5 ν e +e, ν e+p ν e+e ν e+p Probability.25.2.15.1.5.36.38.4.42.44.46.48.5 Time [sec] -1 -.8 -.6 -.4 -.2.2.4.6.8 1 cosθsn 3.27 Livermore 3.28 (1kpc) SK ν e.5sec 1msec time-window SK 2.9 2.4 SK-I 5/29/19977/15/21 4.5MeV Second reduction 1496 [19] SK-II time-window 1msec1msec1msec 3 multiplicity 2 2events/1msec, or 2events/1msec, or 2events/1msec. (3.26) 1 (3.28) N multi dir i i=1 Sumdir = (3.27) N multi N multi multiplicitydir i Sumdir 1 3.29 Sumdir Sumdir >.75.84

3 42.25.2.15.1.5.1.2.3.4.5.6.7.8.9 1 Sumdir 3.29 MC MC Sumdir SK-I BG SK-II 2events/1msec 1 2.1.125 2events/1msec 19 19.1 1.25 2events/1msec 194 191 1 12.5 BG 3events/1msec 9.9 1 6 1.65 1 7 3events/1msec 9.78 1 4 1.65 1 5 3events/1msec 9.78 1 2 1.65 1 3 3.5 BG 3.5 R mean Sumdir 3events/1msec, or 3events/1msec, or 3events/1msec. (3.28) 3.5

43 4 Monte Carlo SK-I SK-II 1. 2events/2sec, and Energy 17M ev (4.1) 2. 3events/.5sec, or 4events/2.sec, or 8events/1sec. (4.2) 3. 2events/1msec, or 2events/1msec, or 2events/1msec. (4.3) 3 1996 4 25 1 2589.2 (3 2381.3 ) 2589.2 12 SK *1 1Mpc SK *2 first reducitonsecond reduction Monte Calro 12 4.1 15kpc Second reduction *1 3 *2 Livermore group

4 44 4 3 2 1 4 3 2 1 4 3 2 1 4.1 SK 15kpc reduction ( ) 5 1

4 45 1.2 1.8.6.4.2 1 2 3 4 5 6 7 8 9 1 4.2 SK Spallation (4.1 ) 2sec 17MeV 2.5 4 12 4.2 SK-II SK-I SK-I SK-II 4.2 12 1kpc 1% (LMCSMC ) 9% 2.3 (@9%C.L.) = 2.3/( ) <.32 SN/year 9% C.L. (SK only) (4.4) 1985 12 1992 8 4.26 [24] <.2 SN/year 9% C.L. (SK + Kamiokande) (4.5) 2 7kpc 1 7.5% 1 1987A

46 A Super-Kamiokande Super-Kamiokande 26 7 SK-III A.1 PMT PMT PMT ATM PMT A.1 ATM A.1 time-walk (time-walk) + PMT 1 ATM 25 time-walk A.2 PMT 2 PMT ATM TDC stop 1 PMT ( ) A.3 AMT TDC 2 PMT stop 2 PMT T PMT

A Super-Kamiokande 47 T of *1 1 1 1nsec ( :T) ( :Q) TQmap ATM TQmap ATM 1 PMT 2 A,B PMT 2 TQmap TQmap A.3 7 T Qmap(Q) T Q T isk T isk T Qmap(Q) T + 1nsec (A.1) 1nsec A.1 T isk T T isk PMT T + T of T isk T of T [ns] 99 98 97 96 95 94 93 92 91 9 89 Q [p.e.] A.2 SK A.3 TQmap (p.e.) nsec *1 T of; Time Of Flight

A Super-Kamiokande 48 A.2 / LSI(Laser Science Ins.) (VSL-337) (DML-12) 337nm 4nsec 12Hz A.1 1cm 1 3 8nm A.4 367nm PMT 3942nm PBBO 396nm A.2 A.4 VSL-337 3 7 mm 337.1nm.1nm 2Hz ( ) 4ns 4 % 2. 1 7 Flash A.1 DML-12 2 3 mm 396nm.3nm 2Hz ( ) 4ns A.2 6 %

A Super-Kamiokande 49 1 PMT 1 25.1%99% ND 4µm 3mm 6mm (A.5) Optical fiber stainless sleeve φmmmm MgO 1 ppm 5mm MgO 15ppm 2.3mm φmm A.5 SK 23 1cm 5cm 5.8µm 15ppm 1cm 1ppm A.3 TQmap time-walk

A Super-Kamiokande 5 time-walk A.3 14 Qbin(1 14) Qbin Qbin {.2pC, for 1 Qbin 5 (pc Q 1pC) Qbin (A.2) 1 Qbin 5 1 Qbin 1 5, for 51 Qbin 14 (1pC Q 63.95pC) A.6 1 5151 ( PMT : T + T of ) T + T of 5 1 8nsec 14 ( ) A.6 SK-ISK-II A.6 PMT 5 151 T + T of Qbin T + T of PMT PMT A.7 PMT T + T of PMT T + T of PMT Qbin T + T of PMT

A Super-Kamiokande 51 # of entry # of entry A.7 PMT PMT 1 T + T of A.6 SK-III T + T of A.6 A.8 i H(i) S(i) Nbin [ ] 1 S(i) = H(j) exp (i j)2 j=1 2πσ 2 2σ 2 (A.3) A.8 σ Qbin A.9 *2 A.1 TQmap 7 SK-I SK-II 8 SK-III A.11 7 5 *2

A Super-Kamiokande 52 A.9 A.7 PMT 1 T +T of Qbin A.1 TQmap( ) T +T of A.11 () 7 () TQmap TQmap 1-1 1-1 2 4 6 8 1 12 2 4 6 8 1 12.5nsec T + T of PMT A.12 PMT.5nsec PMT (4nsec) SK-ISK-II a. PMT

A Super-Kamiokande 53 97 965 96 955 95 945 94 935 93 925 A.12 92 2 4 6 8 1 12 2 4 6 8 1 12 A.7 PMT TQmap TQmap [nsec] b. 15 A.4 SK-III TQmap SK-ISK-II TQmap a. NiCf b. SK PMT A.4.1 NiCf A.14 NiCf 252 Cf µsec Ni Ni(n, γ)ni A.3 9MeV SK 2m Ni PMT T isk T of *3 *3 A.1 Tisk T of

A Super-Kamiokande 54 Ni wire & water SK tank 252 Cf φ A.13 Ni-Cf (%) (barns) γ (MeV) 58 Ni(n, γ) 59 Ni 67.88 4.4 9. 6 Ni(n, γ) 61 Ni 26.23 2.6 7.82 62 Ni(n, γ) 63 Ni 3.66 15 6.84 64 Ni(n, γ) 65 Ni 1.8 1.52 6.1 A.3 Ni A.14 PMT 99% 1 1 PMT Ni PMT 1 1 A.14 T isk T of T PMT T T isk T of T PMT PMT T T of T T isk T of T = PMT A.15 MC Ni TQmap TQmap PMT T isk T of T PMT Z MC PMT time-walk TQmap MC TQmap TQmap Z TQmap MC A.16 Z PMT T isk T of T MC

A Super-Kamiokande 55 NUM 46 RUN 31443 EVENT 117558 DATE 6-Oct-1 TIME 16:27:52 TOT PE: 235.8 MAX PE: 1.4 NMHIT : 13 ANT-PE:. ANT-MX:. NMHITA: RunMODE:Jan TRG ID :111 T diff.: 18.8 us :.188E-1ms FSCC: TDC: 1491. Q thr. :. BAD ch.: no mask SUB EV : / 2 17.5 15 12.5 1 7.5 5 2.5 6 5 4 3 2 1 6 8 1 12 14 16 18 2 4 6 8 1 A.14 NiCf T isk T of PMT PMT -3-2 -1 1 2 3-3 -2-1 1 2 3-3 -2-1 1 2 3 Tisk-Tof-T [nsec] Tisk-Tof-T [nsec] Tisk-Tof-T [nsec] A.15 PMT T isk T of T ( ) PMT Z ( ) MC TQmap TQmap ( ) TQmap 1.1nsec TQmap.6nsec A.4.2 LINAC A.17 ( LINAC) 5 15MeV [19] SK-III 13.6MeV (338.9cm, 7.7cm, 1197cm) PMT 1 3 PMT T isk T of T T isk T of T A.19 PMT 1.1.1 T isk T of T

A Super-Kamiokande 56 A.16-3 -2-1 1 2 3-3 -2-1 1 2 3 Z PMT A.14 T isk T of T MC LINAC D1 MAGNET D2 MAGNET TOWER FOR INSERTING BEAM PIPE D3 MAGNET 13 cm +12m E C A BEAM PIPE m F D B 42 cm -12m H I G Z -12m -8m -4m 4 cm Y X A.17 (LINAC) A H A 3 3 A.19 A.2 TQmap 1 3 2.nsec 1.2nsec A.11 TQmap 7

A Super-Kamiokande 57 NUM 192 RUN 3171 EVENT 1413 DATE 6-Sep- 1 TIME 15:53:53 TOT PE: 258.6 MAX PE: 15.5 NMHIT : 177 ANT-PE:. ANT-MX:. NMHITA: 4 35 3 25 2 15 1 5 6 8 1 12 14 16 18 1 RunMODE:LINAC TRG ID :111 T diff.:.217e+5us : 21.7 ms FSCC: TDC: 1491. Q thr. :. BAD ch.: no mask SUB EV : / 8 6 4 2 2 4 6 8 1 12 14 A.18 LINAC T isk T of PMT 7 A.19 1. 1.1 3 3 A.4.3 2 TQmap 2inchPMT Qbin T cor T cor = T T Qmap + T of + T Qmap (P MT =1,ch=A) T T of PMT T of PMT 1 A TQmap A.21 1 (A.4)

A Super-Kamiokande 58 Tisk-Tof-T [nsec] 3 2 1-1 -2-3 TQmap TQmap.5 1 1.5 2 2.5 3 A.2 3 1 ( ) PMT A.22 1 3nsec1.7nsec A.6

A Super-Kamiokande 59 σ T - TQmap + Tof +Tpmt=1,ch=a [nsec] A.21 A.22 SK-III 2inchPMT 1 3nsec Qbin=1 1.75nsec A.23 A.5 PMT A.23 PMT (.1nsec ) PMT PMT :.2nsec( ) TDC A.24 *4 A.23 PMT RMS *4 :KEC1( ) :.2nsec :15µJ

# of entry # of entry A Super-Kamiokande 6 25 ID Entries Mean 11 1255.5179E-2 12 ID Entries Mean 11 1318.4856E-2 RMS.4179 RMS.9296 2 UDFLW. OVFLW. 32.2 / 11 Constant 237.1 1 UDFLW. OVFLW. 26.7 / 24 Constant 111.3 15 Mean.57E-2 Sigma.4117 8 Mean -.7377E-2 Sigma.9293 6 1 4 5 2-3 -2-1 1 2 3 T - T -3-2 -1 1 2 3 T - T A.24 TDC(RPC-17: 1nsec, 4psec) PMT(HAMAMATSU:H2431-5,RiseTime:.7n,T.T.S:.37ns) 2 PMT 1 PMT.9nsec RMS.4nsec PMT 1nsec *5.2nsec SK PMT TQmap TQmap PMT T + T of TQmap *5 [25] 4.2nsec

61 B Super-Kamiokande [26] n(= ɛ) nβ > 1 θ c = cos 1 1/nβ B.1 1 ( 1 2 p 1 ) (k) (p 2 ) B.1 n = ɛ k µ = (ω, k) Maxwell ω = k n p 1 p 2 k p 2 1 = (p 2 + k) 2 m 2 e = m 2 e + k 2 + 2(ωE 2 k p 2 cos θ) = = m 2 e + (1 n 2 )ω 2 + 2ωE 2 (1 nβ cos θ) = nβω cos θ (1 n2 )ω 2 p θ k p (B.1) (B.2) 2E 2 ω (B.3) cos θ = 1 [ 1 + ω ] (n 2 1) < 1 (B.4) nβ 2E 2 ( ) (n = 1 )β 1

B 62 B.1 S fi = i d 4 x H int (B.5) H int H int = j µ A µ = e ψγ µ ψa µ (B.6) me ψ = E i V u(p, λ i) exp( ip i x) (i = 1, 2) (B.7) E i u(p.λ i ) p µ i λ i V 1 Maxwell ɛ i k, ɛ i 2 = 1 (B.8) 2 ɛ i A µ = 1 1 n 2ωV ɛ µ exp( ik x) ɛ µ = (, ɛ) (B.9) B.5 me me S fi = i E 1 V E 2 V 1 2ωn 2 V M (2π)4 δ (4) (p 1 p 2 k) (B.1) me /EV M = eū(p 2, λ 2 )γ µ u(p 1, λ 1 )ɛ µ (B.11) B.1 T = t t w fi = 1 T V d 3 p 2 (2π) 3 V d 3 k (2π) 3 S fi 2 (B.12) M 2 M 2 = 1 2 λ 2 λ 1 [ū(p 2, λ 2 )γ µ u(p 1, λ 1 )ɛ µ ] [ū(p 2, λ 2 )γ ν u(p 1, λ 1 )ɛ ν ] (B.13) γ ν γ = γ γ ν 2 [ u (p 2, λ 2 )γ γ ν u(p 1, λ 1 )ɛ ν ] = [ u (p 1, λ 1 )γ ν γ u(p 2, λ 2 )ɛ ν ] (B.14) = [ū(p 1, λ 1 )γ ν u(p 2, λ 2 )ɛ ν ] (B.15)

B 63 *1 B.13 M 2 = 1 2 λ 2 λ 1 [ū(p 2, λ 2 )γ µ u(p 1, λ 1 )ɛ µ ] [ū(p 1, λ 1 )γ ν u(p 2, λ 2 )ɛ ν ] (B.16) ad ( ) M 2 = 1 ū(p 2, λ 2 ) a γ µ ab 2 ɛ µ u(p 1, λ 1 ) b ū(p 1, λ 1 ) c γcdu(p ν 2, λ 2 ) d ɛ ν λ 2 λ 1 = 1 u(p 2, λ 2 ) d ū(p 2, λ 2 ) a γ µ ab 2 ɛ µ u(p 1, λ 1 ) b ū(p 1, λ 1 ) c γcdɛ ν ν (B.17) λ 2 λ 1 u(p, λ)ū(p, λ) = /p + m 2m λ M 2 = 1 [ ] [ ] /p2 + m e /p1 + m e ɛ/ ab ɛ/ cd 2 2m e da 2m e bc = 1 ( 2 T r /p2 + m e ɛ/ /p ) 1 + m e ɛ/ 2m e 2m e = 1 T r ( /p 2 ɛ//p 1 ɛ/ + m e /p 2 ɛ/ɛ/ + m e /p 1 ɛ/ɛ/ + m 2 eɛ/ɛ/ ) 8m 2 e *2 M 2 = 4 [ 2(p1 8m 2 ɛ)(p 2 ɛ) + p 1 p 2 m 2 e] e (B.18) (B.19) (B.2) = 1 m 2 e (p ɛ) 2 (p 1 = p2 = p) ɛ B.2 z p k ɛ1 x-z (y ɛ 2 ) p ɛ = p ɛ B.2 = p e z (cos θ e x + e y sin θ e z ) = p sin θ (B.21) M 2 = p 2 m 2 e sin 2 θ c (B.22) y ε2 B.2 ε 1 θ x k θ p // z *1 ψ ψ ψ ψ γ /p *2 T r(/ab/) = 4a b, T r(odd number of γ µ ) =, T r(/ab/c//d) = 4[(a b)(c d) (a c)(b d) + (a d)(b c)]

B 64 B.12 w fi = d 3 p 2 d 3 k e 2 (2π) 3 (2π) 3 2E 2 ωn 2 p 2 sin 2 θ(2π) 4 δ 4 (p 1 p 2 k) (B.23) *3 p d 3 p 2 w fi = (2π) 3 = d 3 k e 2 (2π) 3 2E 2 ωn 2 p 2 sin 2 θ(2π) 4 δ 4 (p 1 p 2 k) d 3 k e 2 2E 2 ωn 2 p 2 1 (2π) 2 sin2 θδ(e 1 E 2 ω) = d(cos θ)d k k 2 e 2 1 2π 2E 2 ωn 2 p 2 (2π) 2 sin2 θ δ (nβω cos θ ω) ( B.3 ) = dωn 3 ω 2 e 2 1 1 2π 2E 2 ωn 2 p 2 (2π) 2 sin2 θ c (B.24) nβω ω dw fi dω = αβ sin2 θ c (B.25) α = e2 4π ω = k n = 2π (B.26) nλ d 2 w fi dλdl = 2πα nλ 2 sin2 θ c = 2πα nλ 2 ( 1 1 n 2 β 2 ) (B.27) *3 Z δ(e E ) 2 1 T /2 2 = lim e i(e E )t dt T 2π T /2 = lim sin[(e E )T/2] 2 T π(e E ) 4 = T 2π δ(e E ) δ 4 (p p ) 2 = V T (2π) 4 δ4 (p p )

65 [1] A. Suzuki et al. Nucl. Instr. and Meth. A 329 (1993) 299 [2] T. Nishino, Master Thesis, University of Tokyo (26) [3] S. Fukuda et al. Nucl. Instr. and Meth. A 51 (23) 418 [4], 7, (1979) [5] M. Turatto arxiv:astro-ph/3117 (23) [6] J. R. Wilson et al. Astrophys. J. 295 (1985) 14 [7] T. Totani et al. Astrophys. J. 496 (1998) 216 [8] P. Vogel et al. arxiv:hep-ph/993554 (1999) [9] D. H. Wilkinson, Z.Phys.A 348 (1994) 129 [1] thooft, G. Phys.Rev.Lett. B37 (1971) 195 [11] J. N. Bahcall et al. Phys.Rev B 51 (1995) 6146 [12] R. Tomas et al. Phys.Rev D 68 (23) 9313 [13] E. Kolbe et al. Phys.Rev D 66 (22) 137 [14] G. G. Raffelt Nucl.Phys B (Proc.Suppl.) 11 (22) 254 [15] K. S. Hirata et al. Phys.Rev D 38 (1988) 448 [16] R. M. Binota et al. Phys.Rev.Lett. 58 (1987) 1494 [17] K. Takahashi et al. Phys.Rev D 64 (21) 934 [18] T. J. Loredo et al. arxiv:astro-ph/1726 (21) [19] J. Hosaka et al. Phys. Rev. D 73 (26) 1121 [2] K. Langanke et al. Phys. Rev. Lett. 76 (1996) 2629 [21] http://www.cfa.harvard.edu/cfa/ps/lists/supernovae.html http://www.rochesterastronomy.org/snimages/ [22] S. Ando et al. Phys.Rev.Lett. 95 (25) 17111 [23] K. Sumiyoshi et al. Phys.Rev.Lett. 97 (26) 9111 [24] Y. Suzuki, in Proc.of the International Symposium on Neutrino Astrophysics: Frontiers of Neutrino Astrophysics, edited by Y.Suzuki and K.Nakamura, (Universal Academy Press Inc., Tokyo,1993), number 5 in Frontier Science Series, p.61. [25] Y. Kobayashi, Master Thesis, University of Tokyo (1999) [26] V. L. Ginzburg, J.Phys.USSR 2, 441 (194)

66 4 22 SK TA 6 1 M1 M1 4 NuInt SK

B 67 MC ATM SK-II M. Vagins M. B. Smy LINAC J. P. Cravens B. S. Yang PMT SK C. K. Jung R. Terri

B 68 I. S. Jeong Lowe group Calib group member 3 M2 12 1 2

B 69

7 ATM, 5 delayed explosion, 13 d wall cut (gamma cut), 28 First reduction, 24 Fit stability test (GRINGO), 25 Flasher, 31 GONG, 8 goodness, 2 HE, 7 HITSUM, 7 IMB, 16 Kamiokande, 16 LE, 7 Livermore group, 13 Multiplicity, 31 N eff, 22 ovaq cut, 28 PBBO, 48 PMTSUM, 7 R mean, 31 SCH, 7 significance, 2 SK, 3, 29, 29, 29, 29 SLE, 7 SMP, 7 spallation product, 27 spallation (SPACUT), 25 Sumdir, 41 time-walk, 46 TKO, 5 TQmap, 47 TRG, 8, 4 I, 9, 25, 47, 1, 4, 2, 4, 29, 1, 48, 49, 29, 9, 29, 19, 21, 19, 11, 1, 1, 2, 61, 3, 48, 49, 32, 1, 12, 38, 11, 13, 12, 1, 1, 4 II, 9, 12, 4, 12, 13, 1, 24, 4, 22