統計学のポイント整理

Similar documents
6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P.101

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

Part () () Γ Part ,

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

renshumondai-kaito.dvi

分散分析・2次元正規分布

tokei01.dvi

Microsoft Word - 表紙.docx

応用数学III-4.ppt

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

ii 2. F. ( ), ,,. 5. G., L., D. ( ) ( ), 2005.,. 6.,,. 7.,. 8. ( ), , (20 ). 1. (75% ) (25% ). 60.,. 2. =8 5, =8 4 (. 1.) 1.,,

st.dvi

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

201711grade1ouyou.pdf

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II 2 II

: , 2.0, 3.0, 2.0, (%) ( 2.


.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

xy n n n- n n n n n xn n n nn n O n n n n n n n n

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

2 1 Introduction

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

ユニセフ表紙_CS6_三.indd


II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

I [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X X n ): µ X N(µ, σ 2 /n) Z = X µ σ/ n N(, 1) < α < 1/2 Φ(z) =.5 α z α

³ÎΨÏÀ

Acrobat Distiller, Job 128

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Chap11.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... x ( ) 2

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n


数理統計学Iノート

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,, r + r

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

untitled


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

newmain.dvi

[ ] =. =3.5 3 =.3 =. =0.30 : (f i ) u i u i f i u i f i

30

ユニセフ表紙_CS6_三.indd

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

- II

waseda2010a-jukaiki1-main.dvi

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

読めば必ずわかる 分散分析の基礎 第2版

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

1. A0 A B A0 A : A1,...,A5 B : B1,...,B



(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

A

meiji_resume_1.PDF

ii

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

時系列解析

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

ohpmain.dvi

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

確率論と統計学の資料

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

untitled

untitled

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d


(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0


Transcription:

.. September 17, 2012 1 / 55

n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5! = 10 3!(5 3)! 2 / 55

1 6 X P (X = 1) = 1/6, P (X = 2) = 1/6,, P (X = 6) = 1/6 1 2 3 4 5 6 1/6 1/6 1/6 1/6 1/6 1/6 X x 3 / 55

X 1 6 6 1.5 2.5 X 1 2500g 3000g 2750g 2750g 2751g 2750.5g 1 4 / 55

P (X = x) P (x) X E(X) E(X) = x xp (x) (3) Var(X) = E[(X E(X)) 2 ] = E(X 2 ) [E(X)] 2 (4) X E(X) = 1 1 6 + 2 1 6 + + 6 1 6 = 3.5 V(X) = (1 3.5) 2 1 6 + (2 3.5)2 1 6 + + (6 3.5)2 1 6 = 17.5 6 5 / 55

f(x) a b Figure 1 : P (a < X < b) = b a f(x)dx (5) P (x) = 0 6 / 55

E(X) = xf(x)dx (6) Var(X) = E[(X E(X)) 2 ] = E(X 2 ) [E(X)] 2 (7) 0 1 1 f(x) = 1 (0 < x < 1) f(x) = 0 () Figure 2 : E(X) = E(X 2 ) = 1 0 1 0 [ ] x 2 1 xdx = = 1 2 0 2 [ ] x 2 x 3 1 dx = = 1 3 0 3 Var(X) = E(X 2 ) [E(X)] 2 = 1 3 ( 1 2 ) 2 = 1 12 7 / 55

X X θ θ X M(θ) = x e θx P (x) (8) e z = 1 + z + z2 + z3 + z4 + 2! 3! 4! M(θ) = ) (1 + θx + θ2 x 2 + θ3 x 3 + θ4 x 4 + P (x) 2! 3! 4! x = P (x) + θ xp (x) + θ2 x 2 P (x) + θ3 x 3 P (x) 2! 3! x x x x + θ4 x 4 P (x) + (9) 4! x 8 / 55

θ θ = 0 dm(θ) dθ = xp (x) = E(X) (10) θ=0 x θ 2 θ = 0 d 2 M(θ) dθ 2 = x 2 P (x) = E(X 2 ) (11) θ=0 x θ n θ = 0 X n M(θ) = e θx f(x)dx (12) 9 / 55

1 p n x P (x) = n C x p x (1 p) n x = 10 3 P (3) = 10 C 3 0.5 3 0.5 7 = 0.117 B(n, p) n! x!(n x)! px (1 p) n x (13) (p + q) n = n C 0 p n q 0 + n C 1 p n 1 q 1 + n C 2 p n 2 q 2 + = + n C k p n k q k + + n C n p 0 q n n nc k p n k q k (14) k=1 10 / 55

M(θ) = n e θx P (x) = x=0 = n x=0 n x=0 e θx n! x!(n x)! px (1 p) n x n! x!(n x)! (peθ ) x (1 p) n x = (pe θ + (1 p)) n (15) E(X) E(X 2 ) = dm(θ) dθ = d2 M(θ) dθ 2 θ=0 θ=0 = n(pe θ + (1 p)) n 1 pe θ θ=0 = np (16) = npe θ (pe θ + (1 p)) n 1 + npe θ (n 1)(pe θ + (1 p)) n 2 pe θ θ=0 = np + n(n 1)p 2 (17) Var(X) = E(X 2 ) [E(X)] 2 = np(1 p) (18) 11 / 55

[ f(x; µ, σ 2 ) = 1 exp 1 ( ) ] 2 x µ 2πσ 2 σ (19) Figure 3 : µ σ 2 X µ σ 2 X N(µ, σ 2 ) (20) 12 / 55

0 1 N(0, 1) f(z) = 1 2π e z2 2 (21) X N(µ, σ 2 ) X Z Z = X µ σ N(0, 1) (22) P (Z > z) = α z z α α 100% P (Z > z α ) = P (Z < z α ) = α 13 / 55

X x Y y P (X = x, Y = y) P (x, y) X, Y X\Y y 1 y 2 y m P (x) x 1 p 11 p 12 p 1m p 1 x 2 p 21 p 22 p 2m p 2 x n p n1 p n2 p nm p n P (y) p 1 p 2 p m 1 14 / 55

Y X x i P X(X = x i) X P X(X = x i) = m p ij = p i (23) j=1 Y n P Y (Y = y j ) = p ij = p j (24) i=1 15 / 55

Y = y j X X Y Y = y j X x i P (X = x i Y = y j ) P (X = x i Y = Y j ) = P (X = xi, Y = yj) P (Y = y j) (25) E(X Y = y j) = n i=1 x i P (x i, y j ) P (y j) (26) Var(X Y = y j) = E[(X E(X)) 2 Y = y j] = n [x i E(X Y = y j )] 2 P (x i, y j) P (y j) i=1 (27) Var(X Y = y j ) = E(X 2 Y = y j ) [E(X Y = y j )] 2 (28) 16 / 55

X Y P (x i, y j ) = P (x i )P (y j ) (29) X Y E(XY ) = i E(XY ) = E(X)E(Y ) (30) x i y j P (x i, y i ) j = i = i x i y i P (x i )P (y i ) j x ip (x i) y jp (y j) = E(X)E(Y ) j 17 / 55

X Y X Y Cov(X, Y ) = E[(X E(X))(Y E(X))] Corr(X, Y ) = = E(XY ) E(X)E(Y ) (31) Cov(X, Y ) Var(X) Var(Y ) (32) X Y Cov(X, Y ) = 0 X Y E(XY ) = E(X)E(Y ) Cov(X, Y ) = E(XY ) E(X)E(Y ) = 0 18 / 55

E(X + Y ) = E(X) + E(Y ) (33) Cov(X, Y ) = 0 Var(X + Y ) = Var(X) + Var(Y ) (34) Var(X Y ) = Var(X) + Var(Y ) 19 / 55

P (x, y) f(x, y) X Y X Y f(x, y) = 1 2πσ Xσ Y 1 ρ 2 XY [ ( 1 (x µx ) 2 exp 2(1 ρ 2 XY ) σx 2 + (y µ Y ) 2 σy 2 )] 2ρXY (x µx)(y µy ) σ Xσ Y (35) 20 / 55

X f X (x) f X(x) = f(x, y)dy [ 1 exp 1 ( ) ] 2 x µx 2πσX 2 σ X (36) µ X σ 2 X X E(X) = xf(x, y)dxdy xf X(x)dx = µ X (37) Var(X) = (x E(X)) 2 f(x, y)dxdy (x µ X ) 2 f X (x)dx = σ 2 X (38) Y µ Y, σ 2 Y 21 / 55

X Y Cov(X, Y ) (x E(X))(y E(Y ))f(x, y)dxdy = ρ XY σ Xσ Y (39) X Y ρ XY Figure 4 : 0 0.7 0.16 3 0.14 0.12 2 0.1 0.08 1 0.06 0.04 0 0.02 0-1 2 3 4-2 1 0-4 -3-1 -3-2 -1 0-2 1 2-3 3 4-4 -4-3 -2-1 0 1 2 3 4-4 4 0.2 3 0.18 0.16 2 0.14 0.12 0.1 1 0.08 0.06 0.04 0 0.02 0-1 2 3 4-2 1 0-4 -3-1 -3-2 -1 0-2 1 2-3 3 4-4 -4-3 -2-1 0 1 2 3 4-4 4 22 / 55

µ σ 2 2 2 23 / 55

θ ˆθ ˆθ θ E(ˆθ) = θ (40) ˆθ θ plim n ˆθ = θ (41) ˆθ θ Var(ˆθ) < Var( θ) (42) 24 / 55

X 1, X 2,, X n µ σ 2 n X = 1 n X i µ σ 2 /n n i=1 1 X 1, X 2,, X n N(µ, σ 2 ) n X = 1 n X i N(µ, σ 2 /n) n i=1 25 / 55

n N(µ, σ 2 /n) 1 n n Figure 5 : 26 / 55

S 2 S 2 = 1 n 1 n (X i X) 2 (43) i=1 X 1, X 2,, X n µ σ 2 n S 2 = 1 n (X i X) 2 σ 2 n 1 i=1 S 2 σ 2 3 3 1 n n i=1 (Xi X) 2 27 / 55

n (X i µ) 2 = i=1 = n [(X i X) + ( X µ)] 2 i=1 n n (X i X) 2 + n( X µ) 2 + 2( X µ) (X i X) i=1 = (n 1)S 2 + n( X µ) 2 [ n ] [ n ] E (X i µ) = nσ 2 E ( X µ) i=1 nσ 2 = (n 1)E(S 2 ) + σ 2 E(S) = σ 4 i=1 i=1 = σ2 n E(S 2 ) = σ 2 (44) 4 f(x) E[f(X)] = f[e(x)] f(x) 28 / 55

χ 2 Z 1, Z 2,, Z n U = Z1 2 + Z2 2 + + Zn 2 (45) n χ 2 U χ 2 (n) X 1, X 2,, X n N(µ, σ 2 ) n ( ) 2 Xi µ χ 2 (n) (46) i=1 σ S 2 (n 1)S 2 σ 2 = n ( ) 2 Xi X χ 2 (n 1) (47) i=1 σ 29 / 55

t t Z U k χ 2 Z U T = Z U/k (48) k t T t(k) 2 X 1, X 2,, X n µ σ 2 n X S 2 T = X µ S/ n t(n 1) (49) σ 2 σ S n 1 t 30 / 55

t T = X µ S/ n = X µ σ/ n S2 /σ 2 = X µ σ/ (n 1)S2 N(0, 1) n σ 2 T n 1 t X µ σ/ n (n 1)S 2 σ 2 /(n 1) χ 2 (n 1) (50) t 31 / 55

F F U m χ 2 V n χ 2 U V F = U/m V /n (51) m, n F F F (m, n) n 1, n 2 S 2 1, S 2 2 S 2 1 S 2 2 F (n 1 1, n 2 1) (52) 32 / 55

µ 10 9.5 10.5 9 11 8 12 50 90 99 1 α 1 α 33 / 55

σ 2 n X µ σ 2 /n Z = X µ σ/ n (53) 5 ( P z α/2 < X ) µ σ/ n < z α/2 = 1 α (54) 5 34 / 55

(54) ( ) σ σ P X z α/2 n < µ < X + z α/2 n = 1 α (55) X ± z α/2 σ n µ 1 α X x µ (1 α) 100% ( x z α/2 σ n, x + z α/2 σ n ) (56) Table 1 : α z α/2 0.01 2.576 0.05 1.960 0.10 1.645 35 / 55

σ 2 σ 2 S 2 S 2 = 1 n 1 (53) σ S n (X i X) 2 (57) i=1 T = X µ S/ n (58) n 1 t P ( t (n 1) α/2 < X ) µ S/ n < t(n 1) α/2 = 1 α (59) 36 / 55

(59) ( ) P X t (n 1) S α/2 < µ < X + t (n 1) S n α/2 = 1 α (60) n x s µ 95% ( ) x t (n 1) s α/2, x + t (n 1) s (61) n n α/2 t n t α/2 z α/2 n n 37 / 55

X 0 1 P (X = 1) = p P (X = 0) = 1 p q X 1, X 2,, X n n X i B(n, p) (62) i=1 n B(n, p) N(np, npq) X = 1 n X i N(p, pq/n) n i=1 Z = X p pq/n N(0, 1) (63) 38 / 55

P ( z α/2 < X p pq/n < z α/2 ) = 1 α (64) ( ) P X z α/2 pq/n < p < X + z α/2 pq/n = 1 α (65) p, q ˆp = x, ˆq = 1 x ( ) P X z α/2 ˆpˆq/n < p < X + z α/2 ˆpˆq/n = 1 α (66) p (1 α) 100% 6 ( x z α/2 ˆpˆq/n, x + zα/2 ˆpˆq/n ) (67) 6 (64) ( X p) 2 < z 2 α/2 p(1 p) n (n + z 2 α/2 )p2 (2n X + z 2 α/2 )p + n X 2 < 0 p p 39 / 55

X 1, X 2,, X n N(µ, σ 2 ) P (χ 21 α/2(n 1) < (n 1)S 2 σ 2 χ 2 (n 1) (68) ) (n 1)σ2 S 2 < χ 2 α/2(n 1) = 1 α (69) ( (n 1)S 2 P χ 2 α/2 (n 1) < σ2 < ) (n 1)S2 (n 1) χ 2 1 α/2 (70) (1 α) 100% 7 7 χ 2 α/2% 40 / 55

µ 6 6 20 5 45 µ = 6.0 µ < 6.0 µ = 6.0 X 5.75 41 / 55

Step 1 H 0 H 1 H 0 : µ = 6.0 H 1 : µ < 6.0 6 6 42 / 55

Step 2 α α α 0.05 5% 0.10 10% 0.01 1% 43 / 55

Step 3 0.5 2 X N(6, 0.5 2 /20) Z = X 6 0.5/ Z 20 X x = 5.75 Z z z = 5.75 6 0.5/ 20 = 2.236 44 / 55

Step 4. P (Z < 1.645) = 0.05 Z 1.645 5% Figure 6 : z 1.645 5% z 1.645 z = 2.236 6 45 / 55

Figure 7 : H 0 : µ = µ o H 1 : µ < µ o H 1 : µ > µ o H 1 : µ µ o 46 / 55

σ 2 σ 2 σ 2 H 0 : µ = 6.0 H 1 : µ < 6.0 20 x = 5.75 s 2 = 0.75 2 T = X µ S/ n 1 t n 47 / 55

t 19 0.05 = 1.729 1.729 5% t = 5.75 6 0.75/ 20 = 1.49 6 t n 48 / 55

N(µ 1, σ 2 1) N(µ 2, σ 2 2) µ 1 µ 2 H 0 : µ 1 = µ 2 H 1 : (1)µ 1 > µ 2, (2)µ 2 > µ 1, (3)µ 1 µ 2 n 1, n 2 X 1 X 2 σ 2 1, σ 2 2 X 1 X 2 X 1 N(µ 1, σ 2 1/n) X 2 N(µ 2, σ 2 2/n) (71) 49 / 55

X 1 X 2 E( X 1 X 2 ) = E( X 1 ) E( X 2 ) = µ 1 µ 2 (72) Var( X 1 X 2 ) = Var( X 1 ) + Var( X 2 ) = σ 2 1 + σ 2 2 (73) 8 X 1 X 2 N(µ 1 µ 2, σ 2 1/n 1 + σ 2 2/n 2 ) (74) ( X 1 X 2) (µ 1 µ 2) σ 2 1 /n 1 + σ 2 2/n 2 N(0, 1) (75) µ 1 µ 2 = 0 Z = ( X 1 X 2) σ 2 1 /n 1 + σ 2 2/n 2 N(0, 1) (76) 8 50 / 55

α (1)Z > z α, (2)Z < z α, (3) Z > z α/2 σ 2 1, σ 2 2 S 2 1, S 2 2 Z = ( X 1 X 2 ) S 2 1 /n 1 + S 2 2/n 2 (77) n 1, n 2 51 / 55

p 1, p 2 H 0 : p 1 = p 2 H 1 : (1)p 1 > p 2, (2)p 2 > p 1, (3)p 1 p 2 n 1, n 2 X 1 X 2 X 1 p 1 p 1 (1 p 1 )/n 1 X 2 p 2 p 2 (1 p 2 )/n 2 ˆp 1 ˆp 2 E( X 1 X 2 ) = p 1 p 2 (78) Var( X 1 X 2 ) = p 1(1 p 1 ) + p 2(1 p 2 ) n 1 n 2 (79) 52 / 55

n 1, n 2 X 1 X 2 ˆp 1 ˆp 2 p 1 = p 2 p Z = p(1 p) X 1 X 2 ( 1 n 1 + 1 n 2 ) N(0, 1) (80) p ˆp = n1 i=1 X 1i + n 2 i=1 X 2i n 1 + n 2 α (1)Z > z α, (2)Z < z α, (3) Z > z α/2 53 / 55

N(µ 1, σ 2 1) N(µ 2, σ 2 2) σ 2 1 σ 2 2 H 0 : σ 1 = σ 2 H 1 : σ 1 > σ 2 n 1, n 2 X 1 X 2 n 1 ( ) 2 X1i X 1 (81) i=1 n 2 σ 1 ( ) 2 X2i X 2 (82) i=1 σ 2 n 1 n 2 χ 2 54 / 55

n 1 n 2 F 1 n 1 ( ) 2 X1i X 1 F = n 1 1 σ 1 i=1 1 n 2 ( ) 2 X2i X 2 n 2 1 F (n 1, n 2 ) (83) i=1 σ 2 F = F > F (n 1 1,n 2 1) α 1 n 1 1 1 n 2 1 n 1 (X 1i X 1) 2 i=1 n 2 (84) (X 2i X 2 ) 2 i=1 55 / 55