untitled

Similar documents
2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

meiji_resume_1.PDF

Z: Q: R: C: sin 6 5 ζ a, b


SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Note.tex 2008/09/19( )

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

untitled

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


73

201711grade1ouyou.pdf

Part () () Γ Part ,

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

TOP URL 1

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

chap9.dvi


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

構造と連続体の力学基礎

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

数学Ⅱ演習(足助・09夏)

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

TOP URL 1


7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

SO(2)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

( )

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

i 18 2H 2 + O 2 2H 2 + ( ) 3K


TOP URL 1

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

Dynkin Serre Weyl

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

QMII_10.dvi

all.dvi

05Mar2001_tune.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

The Physics of Atmospheres CAPTER :

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

1

waseda2010a-jukaiki1-main.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

TOP URL 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

December 28, 2018

Z: Q: R: C: 3. Green Cauchy

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

prime number theorem

『共形場理論』

newmain.dvi

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

30

Z: Q: R: C:

量子力学 問題

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

untitled


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

Transcription:

Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker Bump, Stade,., Whittaker,. GL(n Whittaker. Whittaker A Q, π = vπ v GL(n, A, ϕ π. Q\A ψ, GL(n N =

N n = {(x ij x ii =,x ij =0(i>j}, ψ N(Q\N(A ψ(x =ψ(x + x 3 + + x n,, x =(x ij N(A. Whittaker W ϕ,ψ W ϕ,ψ (g = ψ(ngψ (ndn, g GL(n, A N(Q\N(A. W ϕ,ψ (ng =ψ(nw ϕ,ψ (g (n N(A. Shalika Fourier (( γ ϕ(g = W ϕ,ψ g γ N (Q\GL(,Q. W(π, ψ ={W ϕ,ψ ϕ π}, GL(n, A. W(π, ψ π Whittaker. GL(n, Q v π v Whittaker. Q v ψ v N(Q v, W(ψ v ={W : GL(n, Q v C smooth W (ng =ψ v (nw (g}, GL(n, Q v. π v W(ψ v W(π v,ψ v, π v Whittaker., ξ v π v, Ψ W(π v,ψ v, Ψ(ξ v =:W ξv ξ v Whittaker.., v =. G = SL(n, R. N = N n (R, A = {a = diag(a,...,a n a i > 0, a i =}, K = SO(n G = NAK. M = Z K (A = {diag(m,...,m n A m i {±}}, I {,,...,n}, M σ I σ I (m = i I m i (m = diag(m,...,m n M. σ I = σ I c (I c {,...,n} I h := (I [n/]. ν Lie(A C, ν i = ν(e ii E n /n, ν (ν,...,ν n C n ( i ν i =0. π I,ν = C -Ind G MAN(σ I exp(ν + ρ N. ρ., I =, π I,ν. Whittaker n!,., π I,ν K-type, n! Whittaker ( Whittaker, Whittaker ( Whittaker. R n, G R n K st, π I,ν K-type h st. R n i v i, nc h = {A = {a,...,a h } a <a < <a h n}, {ξ A A n C h } h st. Whittaker {W ξa A n C h }., G = NAK, Whittaker A (A-. A : diag(a,...,a n A, y i = a i /a i+, y =(y,...,y R+.

.3 Whittaker π,ν ξ 0 Whittaker W ξ0 W ξ0 (ngk = ψ (nw (g (n N,g G, k K. K. Whittaker Jacquet., a(wng ν+ρ ψ (ndn. N g = n(ga(gk(g (n(g N,a(g A, k(g K. w Weyl S n., Jacquet,. G = SL(, R. W ξ0 A (y = yk ν (πy, K-Bessel K ν (πy. (a y ν (x + y ν+/ exp(π x dx, (b (c 0 πi R exp{ πy(t + t }t ν dt t, i i ( s + ν Γ Γ ( s ν (πy s ds., (a Jacquet, (b K-Bessel, (c Mellin- Barnes. Mellin-Barnes., (b (c exp( axx s dx = a s Γ(s 0. (b, (c, n =3 Vinogradov-Takhtadzhyan [], Bump [], Stade [9], [0] SL(n, R SL(n, R. Jacquet,., Stade, Stade [4] SL(n, R SL(n, R. Theorem.. Wν n (y =y ρ W n ν (y W ν (y =K ν (πy, ( W ν n (y = W t (ν,...,ν y,...,y t R + exp { (πy i t i } t i t t n (πy i (n iν t nν ( i, W n ν (y SL(n, R Whittaker., ν =(ν + ν /(n,...,ν n + ν /(n., W n ν (y Mellin Vν n (s Vν n (s,...,s = R + 3 W ν n (y (πy i s i dy i y i dt i t i.

, V n ν (s = n (πi n ( si z i Γ z,...,z n V ν (z,...,z n + (n iν ( si z i Γ iν (n (n n dz i. (., z i σ i i σ i + i, σ i R., Whittaker W ξ0 gl(n, C, W ξ0 (ngk =ψ (nw ξ0 (g, W ξ0 (y. Hashizume [] Harish-Chandra K, y =0 (= Whittaker., SL(n, R. m =(m,,m N C n m(ν C C n 0 (ν =, n m i m i m i+ + { ν i ν } i+ m i Cm n (ν = Cm e n i (ν (. (, e i R i., ν C n., Mν n (y =y ν+ρ Cm(ν n (πy i m i m N, {M n wν(y w S n }., Weyl S n ν C n. Whittaker Whittaker Wν n (y = [ ( νi + ν j w Γ w S n i<j n ] Mν n (y (.3. ( (., Bump, Stade,, [4] Theorem. compatible. Theorem.. C n m(ν = {k,...,k n } C (k,...,k n (ν,...,ν {(m i k i! (ν i ν n + mi k i }., (a n =Γ(a + n/γ(a (Pochhammer, {k,...,k n } 0 k i m i. C k (ν =/k!(ν + k. 4

, (. n. k i, n =3, n =4 4 F 3 (. Theorem., Stade Jacquet SL(n, R SL(n, R, Whittaker : Theorem. Wν, t,., Theorem., Mwν n (y., W ν n..4 Whittaker Whittaker,. Whittaker {W ξa A n C h }. Casimir, Whittaker K-type (Dirac-Schmid., Theorem. Whittaker, Whittaker,. n =3,n =4, [5]. Theorem.3. I = {i,...,i h } n C h, I 0 = {i,...,i h } C h. {W n,i A,ν (y =yρ W n,i A,ν (y A = {a,...,a h } n C h }, h =0, W n,,ν (y =W ν n (y (= Whittaker, ( W n,i A,ν (y = W,I 0 t t B<A R B, ν y,...,y t + t n exp { (πy p t p } t p p= (πy p n p p= ν i +α(p n ( t ν i + (α(p β(p p (n, h., A = {a,...,a h }, B<A B = {b,...,b h } C h ( a b <a <a b <a n ( n., α, β, h t= [b t,a t ], h t= [a t,b t ]., W ξa = P i I a iw n,i A,ν. p= dt p t p..5 GL(n GL(m (n m L. π, π GL(n, A, GL(m, A, ϕ i π i (i =, 5

. n>m Z(s, ϕ,ϕ = GL(m,Q\GL(m,A (Pϕ ( g 0 ϕ (g det(g s / dg. 0 n m, P GL(m + Pϕ (h = det(h (m n+/ X n,m (Q\X n,m (A ϕ (x ( h n m ψ (x dx., X n,m (m+,,..., GL(n. Z(s, ϕ,ϕ = Z( s, ϕ,ϕ. ϕ i (g =ϕ i ( t g = ϕ(g ι πi (, ( g 0 Z(s, ϕ,ϕ = ( Pϕ ϕ (g det(g s / dg. 0 n m GL(m,Q\GL(m,A P = ι P ι. Shalika Fourier unfold, Basic idenity: ( g 0 Z(s, ϕ,ϕ = W ϕ W ϕ (g det(g s (n m/ dg 0 n m N m (A\GL(m,A. ϕ i = v ξ i,v (decomposable, Whittaker, Whittaker Whittaker, Euler Z(s, ϕ,ϕ = v Z v (s, W ξ,v,w ξ,v, Z(s, ϕ,ϕ = v Z v (s, W ξ,v,w ξ,v., Z v (s, W,W = Z v (s, W,W = N m (Q v \GL m (Q v M n m,m (Q v W ( g 0 W W (g det(g s (n m/ dg, 0 n m N m (Q v \GL m (Q v g x n m W (g det g s (n m/ dxdg., L L v (s, π,v,π,v ε ε(s, π,v,π,v,ψ v, Z v ( s, W,W L v ( s, π,v,π,v = ε(s, π,v,π,v,ψ v Zv(s, W,W L v (s, π,v,π,v 6

,, L(s, π,π =ε(s, π,π L( s, π,π., L(s, π,π := v L v(s, π,v,π,v, ε(s, π,π := v ε(s, π,v,π,v,ψ v., n = m, ϕ, ϕ GL(n Eisenstein GL(n, Q\GL(n, A, Eisenstein., A π,v GL(n, C, A π,v GL(m, C π i,v Satake, Shintani [8], L L v (s, π,v,π,v := det( A π,v A π,v qv s., v = R, π i,. π, = π,ν=(ν,...,ν n, π, = π,µ=(µ,...,µ m. ξ 0,i π i, Whittaker (= Whittaker W i, Iν,µ n,m (s := Z (s, W,W m n>m W ν n (y,...,y m,,..., W µ m (y,...,y m yi is dy i, y i n = m R m + m Γ R (ms W ν n (y,...,y m W µ m (y,...,y m y is dy i i. R m y + i Γ R (s =π s/ Γ(s/. Stade [0], []. Theorem.4. m = n, n, I n,m ν,µ (s =L (s, π,,π, := i n, j m Γ R (s + ν i + µ j m = n, n, Z (s, W,W, ε =. Stade GL(n, R GL(n, R Whittaker Mellin-Barnes, (.,,. Mellin-Barnes Key Lemma Barnes (=Iν,µ(s, : πi i i Γ(a + sγ(b + sγ(c sγ(d s ds = Γ(a + cγ(a + dγ(b + cγ(b + d Γ(a + b + c + d. (. Barnes. Lemma.5. z 0 =0, z,...,z,λ C, ( ( js sj z j js sj z j + λ Γ Γ V n (πi ν (s,...,s ds j s,...,s j= n = j= Γ( s+ν j+λ V Γ( ns z +λ ν n (s z, s z,...,(n s z. 7 j=

, I n,n ν,µ (s = Γ( ns n ( s + µ + ν j Γ j= ( (n s Iν,µ n, ν (s =Γ ( I n, ν, µ s ( s + ν + µ j Γ j= µ (n ( I, ν,µ s ν (n. µ =(µ,...,µ m, µ =(µ + µ /(m,...,µ m + µ /(m., GL(n GL(m (m = n, n, GL( GL(. Remark. n m>, L. m = n,, Iν,µ n,n (s = n Γ R (s + ν i + µ j Γ(w + ν i i n j n i πi i n j= Γ(s + w µ j π(n s/ w dw. Z (s, W,W unipotet (x,, m = n,,. Remark.,. K-type, Whittaker. Whittaker,,.. SO(n +, R =SO(n +,n,r SL(n, R Jacquet, Whittaker,. ν =(ν,...,ν n C n, y =(y,...,y n R n + Whittaker M n ν (y M n ν (y =y ν+ρ m=(m,...,m n N n C n m(ν n (πy i m i 8

, C n m (ν C 0(ν = m i + m n m i m i+ + (ν i ν i+ m i + ν n m n }Cm(ν n { = Cm e n i (ν+ Cn m e n (ν,. Theorem.. ν =(ν,...,ν C, n C n m(ν = {l,...,l } {k,...,k } C (k,...,k ( ν (m i l i! (m n k! (l i k i! n (ν i + ν n + mi l i (ν i ν n + li k i., {k i,l i } 0 k i l i m i ( i n, 0 k m n, k 0 = l 0 =0. Theorem.. Wν n (y =y ρ W n ν (y W ν (y =K ν (πy, n W ν n (y = exp { (πy i t i } t i R n + = c R + R + W ν {( n ( y t u y i ( { exp (πy i u i tn u,...,y,y n t u t u n } νn n dt i du i ti u i t n t i u i n ( (+ui ( K νn πy i +u W ν i t u t i t i+ ( u un du i y,...,y,y n u. u u u i, W n ν (y SO(n +, R Whittaker. u i }. Sp(n, R, SO(n, R Ginzburg, Rallis, Soudry A 0 (SO(n A 0 (Sp(n A 0 (SO(n+ Fourier-Whittaker., Sp(n, R SO(n, R Whittaker. (ν,...,ν n C n Sp(n, R, SO(n, R, (ν,...,ν n+ C n+ SO(n +, R, a = (a,...,a n R n +, b = 9

(b,...,b n+ R n+ +, t = (t,...,t n R n + Sp(n, R. (a =a ρ W SO n ν (a Whit- Theorem.3. W Sp n ν taker, (t =t ρ W Sp n ν W Sp n (ν,...,ν n (t = W SO n+ (ν,...,ν n,0 (b = (t, W SO n ν R n + R n + SO(n, R, SO(n +, R, W SO n (ν,...,ν n (a LC n D n (a, t W Sp n (ν,...,ν n (t LD n+ C n (t, b n n da i a i, (. dt i t i. (., [ {( L C n t ( D n (a, t = exp π + a t ( + + + a t }] + n + t a t a t n a na n, n [ { L D n+ b ( C n (t, b = exp π t ( + + b t ( + + + b n t }] + n + b t b t b n t n b n+ t n. n+ Remark 3. SO(n +, R, Whittaker,., (. n = Niwa [7] (., (., W SO n+ (ν,...,ν n+ (b W Sp n (ν,...,ν n (t., W SO n+ (ν,...,ν n+ (b W SO n (ν,...,ν n (a, Whittaker..3 G (R G (R Whittaker M G ν=(ν,ν (y =yν+ρ, C G (m,m (ν (m,m N C G (m,m (ν(πy m (πy m (m +3m 3m m + ν m + ν m C G m,m (ν =C G m,m (ν+3c G m,m (ν... Theorem.4. ([3] C G (m,m (ν = 0 n +n m 0 n 4 n 3 n m (m n n! (m n! n!(n n 3! (n 3 n 4! n 4! (ν + ν + m n 3 (ν + m n (ν + n n 4. (ν +ν + n (ν +3ν + n3 (ν +3ν + n4 0

, M G (ν,ν (y SL(3, R Whittaker. M G (ν,ν (y =y4 y k,k =0 (π 3 y y (k +k +ν +3ν /3 C SL 3 (k,k (ν + ν,ν, ν ν M SL 3 ((k +k +ν +3ν /3, ( k +k ν /3, (k k ν 3ν /3 (y., Whittaker,. Theorem.5. ([3] W G ν (y =yy 5 W 3 G ν (y, W SL 3 SL ν (y =y y W 3 ν (y Whittaker, { W G (ν,ν (y = exp (πy t (πy t (πy t 3 t } 0 0 0 t t t 3 t ( W SL 3 t dt dt dt 3 (ν +ν,ν, ν ν y y t t 3,y. t 3 t t t 3.4 SO(n + GL(m L SO(n + GL(m L Gelbart, Piatetski-Shapiro. GL(n GL(m, unipotent n = m, m., SO I n (s = W n+ (ν,...,ν n (y,...,y n W SL n (µ,...,µ n (y,...,y (y y yn n s (R n SO J n (s = W n+ (ν,...,ν n (y,...,y n W SL n+ (µ,...,µ n+ (y,...,y n (y y yn n s (R n. Conjecture.6. n n dy i y i, dy i y i. I n (s = J n (s = n n j= Γ R(s + ν i + µ j Γ R (s ν i + µ j i<j n Γ, R(s + µ i + µ j n n+ j= Γ R(s + ν i + µ j Γ R (s ν i + µ j i<j n+ Γ. R(s + µ i + µ j Remark 4. (., Lemma.5 I n (s J (s. I n, n = (Niwa [7], 3, 4, 5, J n, n =,3,4.

[] D. Bump, Automorphic forms on GL(3, R, Lect. Note Math. 083, Springer-Verlag, 984. [] M. Hashizume, Whittaker functions on semisimple Lie groups, Hiroshima Math. J. (98, 59 93. [3] T. Ishii, Whittaker functions on real semisimple Lie groups of rank two, Canad. J. Math. (to appear. [4] T. Ishii and E. Stade, New formulas for Whittaker functions on GL(n, R, J. Funct. Anal. 44 (007, 89 34. [5] T. Ishii and T. Oda, Calculus on principal sereis Whittaker functions on SL(n, R, preprint. [6] H. Manabe, T. Ishii and T. Oda, Principal series Whittaker functions on SL(3, R, Japan. J. Math. 30 (004, 83 6. [7] S. Niwa, Commutation relations of differential operators and Whittaker functions on Sp (R, Proc. Japan Acad. 7 Ser A.(995, 89 9. [8] T. Shintani, On an explicit formula for class- Whittaker functions on GL n over P -adic fields, Proc. Japan Acad. 5 (976, no. 4, 80 8. [9] E. Stade, On explicit integral formulas for GL(n, R-Whittaker functions, Duke Math. J. 60 (990, no., 33 36 [0] E. Stade, Mellin transforms of GL(n, R Whittaker functions, Amer. J. Math. 3 (00, 6. [] E. Stade, Archimedean L-factors on GL(n GL(n and generalized Barnes integrals, Israel J. Math. 7 (00, 0 0. [] I. Vinogradov and L. Tahtajan, Theory of the Eisenstein series for the group SL(3, R and its application to a binary problem, J. of Soviet Math. 8 (98, 93 34. Faculty of Science and Technology, Seikei University, 3-3- Kichijoji-Kitamachi, Musashino, Tokyo, 80-8633, Japan E-mail address: ishii@st.seikei.ac.jp