(/6) MFeO M C C Mn-Zn Ni-Zn Mn-Zn MHz Ni-Zn MHz Mn-Zn to Ni-Zn to 8 J/kg K to W/m K. 6 /K to 7 N/m mm N/m. N/m - / 6 / j_.fm

Similar documents
(2/24) AV OA 288 / ferrite_mn-zn_material_characteristics_ja.fm

(2/1) T UU UI E EI EE EI DT PQ PM SP TDK P4 PE22 EE32x25x2 TV E 9 12 PQ8 1 UU9x129x31 UU9x129x31

(2/32) AV OA 1-1 / / ferrite_ni-zn_material_characteristics_ja.fm

(2/27) AV OA

FERRITES March 2014 Mn-Zn EPC

(2/12) AV OA

JIS Z803: (substitution method) 3 LCR LCR GPIB

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

c 2009 i

ELECTRONIC COMPONENTS & DEVICES

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) ± = 2018

(2/22) RoHS FK (Up to 50V) FK 28 C0G 1H 101 J (1) (2) (3) (4) (5) (6) (7) (1) (2) L L T (4) Edc 0J 6.3V 1A 10V 1C 16V 1E 25V 1H 50V F Fig.1 W ød (3) 1

目次 (CONTENTS) 設計及び取扱上の注意事項 (Precautions in Handling and Usage) 2 2 用語の説明 (Terms and Definitions) 4 3 デザインガイド (Design Guidelines) 8 4 材質基本特性 (Mn-Zn 系材料

(2/52) AV OA



j9c11_avr.fm

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

Microsoft Word - 11問題表紙(選択).docx

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

Microsoft Word - 章末問題

TOP URL 1

The Physics of Atmospheres CAPTER :

(1/18) OA ETC EMI TDK TDK 10m IP ICM IP-100BX IS-060 IP-130BX IS-SM050 ISIS-SM ETC IP-BX ISFE27F5 IR material ETC ETCISFE27F5 TDK IR

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

JFE(和文)No.4-12_下版Gのコピー




23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

PDF

untitled

センサ日本語.book(jb221_ntcg.fm)

Z: Q: R: C:

untitled

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


pdf

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Note.tex 2008/09/19( )

4 1 Ampère 4 2 Ampere 31

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

chap9.dvi

B

untitled


目次 ご使用上の注意点 3 設計上の注意事項 3 取扱い及び使用上の注意事項 4 用語と定義 5 標準材質特性 High-B 材 High-B 材標準材質特性 8 High- μ 材 High- μ 材標準材質特性 DIP タイプフェライトコア E 型フェライトコア FEI 型コア 2 FEE 型コ

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Jean Le Rond d Alembert, ( ) 2005


CD口頭目次.indd

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

4‐E ) キュリー温度を利用した消磁:熱消磁

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Part () () Γ Part ,

untitled

1

35

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

LLG-R8.Nisus.pdf

A

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

(2/6) ZCAT DT(-BK) ZCAT DT(-BK) ZCAT DT(-BK) web / clamp-filter_commercial_zcat_ja.fm

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

[ ] [ ] [ ] [ ] [ ] [ ] ADC

untitled

振動と波動

QMI_09.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

QMI_10.dvi

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

第10章 アイソパラメトリック要素

I 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

fj111_109

36 th IChO : - 3 ( ) , G O O D L U C K final 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

ohpr.dvi

pc123xnnsz_j

2008/02/18 08:40-10:10, 12:50-14:20 14:30-16:00, 16:10-17:40,


untitled

Transcription:

Issue date: June RoHS EU Directive /9/EC PBB PBDE

(/6) MFeO M C C Mn-Zn Ni-Zn Mn-Zn MHz Ni-Zn MHz Mn-Zn to Ni-Zn to 8 J/kg K to W/m K. 6 /K to 7 N/m mm 9.8 7 N/m. N/m - / 6 / j_.fm

(/6). i =lim μa H. a. m Fig.. app L μapp= L L = H L = H 6. Bs Fig. Gauss=.mT B ΔB θr 7. Brs Fig. 8. Hc Fig. θi Bsat H ΔH Fig. B Br. e L μe= Σ πn A μe= Σ A Σ μa HCB H H EX HA=9A/m Fig. 9. tan L N A Σ A : H : : mm : mm : C= mm : Rm tanδ= ωl = Reff Rw ωl Rm : : L : Reff : Rw : tanδ= μ μ A - / 6 / j_.fm

(/6). tan / i tanδ = μ (μ ) : : tanδ tanδ = μe Initial permeability() = Curie temperature max..8 max.. max.. B tanδh ηb= μbm tan h : : Bm : T. Q. Q Qe ωl Qe= Reff Reff : : f rad/s L : Fig. 6. F 6 αf= T T 7. Tc Fig. 8. D μ μ D= (%) μ D : % : :. Q Qapp Q Qe Q Q Qe Qapp= Q. i α= i : T i : T T T - / 6 / j_.fm

(/6) 9. DF Fig. 6 μ μ DF= (t>t) t μ log t : t : t HA Δ/(%) 6 8 Conventional material Disaccommodation time(minutes) Fig.. AL 9 HnH L AL= N L: H N:. v m IEC Publication 6- JIS C 6- - - / 6 / j_.fm

(/6) HA HB HC HC i +% % 7±% ±% ±% tan / i 6 <.(khz) <(khz) <6.(kHz) <7.(kHz) <7.(kHz) ir 6 to C to + C to 7 C. to.. to. to.8 to.8. to.. to.. to.. to. [H=9A/m] Bs mt C 6 Br mt C 9 Hc A/m C 8..6 7.. Tc C > > > > B 6 mt <.8 <. <. <. DF 6 < < < < db kg/m.8.9.9.9 v m... HC HP DNW DN7 i ±% 9( C) ±% ±% 7±% tan / i 6 C, khz <8(kHz) <. <. <. ir 6 to C ±.% to + C. to. to 7 C ±.%. to. [H=9A/m] Bs mt C 8 9 Br mt C 6 Hc A/m C. 7. 6.. Tc C > > > > B 6 mt <.8 <. <.8 <. DF 6 < < < <. db kg/m.9.8.8. v m...6. - / 6 / j_.fm

(6/6) PC7 PC9 PC9 i ±% ±% ±% C 6 68 ( ) Pcv kw/m khz 6 C 7 sine wave C 9 [B=mT] C 6 6 [H=9A/m] Bs mt Br mt Hc A/m C 6 C 8 8 C C 9 8 C 8 7 8 6 C 9 7 C 6 6 6 C 6 6 C 9. 6 C 9 9 7. C 6 6. 6. C 7 7 6. Tc C > > > db kg/m.9.9.9 v m.. 6. HS7 HS HS i 7±% ±% ±% (min. at khz) (at khz) tan / i 6 (khz) (khz) (khz) [H=9A/m] Bs mt C 8 Br mt C 8 8 Hc A/m C 6 6 Tc C > > > db kg/m.9.9.9 v m... - / 6 / j_.fm

(7/6) i Mn-Zn tan / i Mn-Zn HC Initial permeability HC HA Relative loss factor tanδ/ 6 HC HC HA Frequency(kHz) Frequency(kHz) Initial permeability HC HC HB HP Relative loss factor tanδ/ 6 HC HC HB HP Frequency(kHz) Frequency(kHz) i tan / i HA 9 8 7 6 tanδ/ khz khz khz 8 6 9 8 7 6 tanδ/ - / 6 / j_.fm

(8/6) i HB HC HC 8 6 8 6 8 8 8 HP 9 8 7 6 8 PC7 PC9 PC9 7 7 7 6 6 6 8 6 8 6 8 8 6 - / 6 / j_.fm

(9/6) B-H HA HB HC Flux density B(mT) C C 8 C Test core: Toroidal OD=mm ID=9mm TH=8mm 8 6 Magnetic field H(A/m) Flux density B(mT) C 7 C Test core: Toroidal OD=6mm ID=mm TH=.mm 8 6 Magnetic field H(A/m) Flux density B(mT) C 6 C Test core: Toroidal OD=mm ID=9mm TH=8mm 8 6 Magnetic field H(A/m) HC Flux density B(mT) C 6 C Test core: Toroidal OD=mm ID=9mm TH=8mm Magnetic field H(A/m) HP Flux density B(mT) C C 7 C Test core: Toroidal OD=6mm ID=mm TH=.mm 8 6 Magnetic field H(A/m) PC7 PC9 PC9 Flux density B(mT) C 6 C 8 C C C Flux density B(mT) C 6 C C C Flux density B(mT) C 6 C C C 6 Magnetic field H(A/m) 6 Magnetic field H(A/m) 8 6 Magnetic field H(A/m) - / 6 / j_.fm

(/6) FDM HA HC HC HS7 PC7 PC9 T EP EPC EE EER P FDM PCM HP HB HA HC HC PC7 HS7 HS PC7 PC9 HS7 HS HS HP HA HB HC HC HA HC PC7 T EP EE EPC RM EER P T EP EPC EE EER RM T EE UU EE EI EER P - / 6 / j_.fm

(/6). - E - RME TDK - : Σ A =C (mm ) μe= L Σ π N A N I H= e (A/m) E B= π f N Ae 9 (mt) B= μe E I f Ve (mt) e : L : H N : Ts I : Ar.m.s. E : Vr.m.s. f : Hz H : A/m B : mt IEC Pub. : e mm : Ae mm : Ve mm - / 6 / j_.fm

(/6). - Fig. AL AL AL AL TDKAL HAP/-H ΔL/L(%) 6 7 8 A6 A A A A6 A A6 HAP6/6-H ΔL/L(%) 6 7 8 A6 A A A A6 A A6.... Fig. A6 A A6 A A. (mm) h A A6 h A6 A A6 A A A A6. (mm) h h - khz Fig. Apparent increment inductance ratio Le/L..9.8.7.6..... Le: Apparent inductance(h) L: True inductance(h) f: Test frequency(hz) f: Self-resonance frequency(hz) I = (Hz) π LC C: Distributed capacity (capacitance) (F)..... The ratio of test frequency and self-resonance frequency Fig. - / 6 / j_.fm

(/6) - --a. AL --b. DF DF ΔL L =DF μelog t t (t>t) HA P8/Z-B HA DF: 6 max. P8/Z e: 8 t t No. 89 8 9 8X 8 Y= Z= t t t t ΔL L = 6 8 log =..% : ΔL : t t L DF : e : i t : t : - / 6 / j_.fm

(/6) - AL Fig. AL HA P/9 AL-value(nH/N ) Temperature: C N IDC(AT) Fig. N IDC=DC magnetic field(at) N=number of turns IDC=DC current(a) AL AL B-H B-H B-H B-H - AL - AL Fig. AL AL 6AT Fig. 6A C - / 6 / j_.fm

(/6). - --a. --b. AW8 HV998 AW8 g HV998 g C 8 8 C : AW8 HV998 : C --b. --a Fig. Coilformer Core Adhesive Fig. : --c. Fig. --b.n/ mm 8 8 C - --a. Mounting accessory Core Adhesive Adhesive Core Fig. Fig.6 - / 6 / j_.fm

(6/6) - - 7 C 8 - / 6 / j_.fm