1.06μm帯高出力高寿命InGaAs歪量子井戸レーザ

Similar documents
untitled

PowerPoint Presentation

untitled

4_Laser.dvi


6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

untitled

Microsoft PowerPoint - 14.菅谷修正.pptx

PDF

SPring-8_seminar_

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

スライド 1

untitled

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

36 th IChO : - 3 ( ) , G O O D L U C K final 1

創光科学における高性能DUV-LEDの開発   “DUV-LED本格実用化元年を目前にして”

PE-CVD X PTO Sawyer-tower 3.1 PTO Sawyer-tower Sawyer-tower a c 25

I A-7 CNT 27 A A A A A B A,C,D A B C D ( ) I A-8 Ce:YIG 31 A A,B A B JST I A-9 Cr 2 O 3 35 I A-10 CuO 39 A B A A A B I A-11 Co BiCoO 3 43 A A,B A A A

研究室ガイダンス(H28)福山研.pdf

Microsoft Word - 章末問題

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

研究室ガイダンス(H29)福山研v2.pdf

スライド 1

03J_sources.key

untitled

卒 業 研 究 報 告

吸収分光.PDF

devicemondai

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

untitled

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

Microsoft PowerPoint - crystal1-1 [互換モード]

放射線化学, 97, 29 (2014)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (


vdw-df vdw-df vdw-df 2

untitled

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Program4.dvi

Donald Carl J. Choi, β ( )

Microsoft PowerPoint - 9.菅谷.pptx


untitled

1 2 2 (Dielecrics) Maxwell ( ) D H


1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5

2


ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

untitled

飽和分光

SPring8菅野印刷.PDF

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

2 3 4 q w e 1



,,., (,, SiO 2, Si-N, ),,,,,.,.,,, (Schottky). [ ].,..,.,., 1 m µm 10., 10 5, [ ] (6N-103)..,.,. [ ] 1. (,, ) :,.,,.., (HF),.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

160GHz

QMI_10.dvi

PowerPoint プレゼンテーション

I A-9 45 A,B, A,B, A,B, A,B, C, A, A, A A, B, C I A A,B, A,B, B,C, A, A A, B, C ( ) I A-11 LuFe 2 O 4 53, A,, B, C,, A, B, C I A-12 I A-13 Lumin

Frontier Simulation Software for Industrial Science

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

CdTe γ 02cb059e :

スライド 1

untitled

物理化学I-第12回(13).ppt

2001 Mg-Zn-Y LPSO(Long Period Stacking Order) Mg,,,. LPSO ( ), Mg, Zn,Y. Mg Zn, Y fcc( ) L1 2. LPSO Mg,., Mg L1 2, Zn,Y,, Y.,, Zn, Y Mg. Zn,Y., 926, 1

untitled

C: PC H19 A5 2.BUN Ohm s law

note4.dvi

B

PET PET

1 d 6 L S p p p p-d d 10Dq 1 ev p-d d 70 % 1: NiO [3] a b CI c [5] NiO Ni [ 1(a)] Ni 2+ d 8 d 7 d 8 + hν d 7 + e d 7 1(b) d 7 p Ni 2+ t 3 2g t3 2g e2

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件−

新技術説明会 様式例

main.dvi

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO

E-2 A, B, C A, A, B, A, C m-cresol (NEAT) Rh S m-cresol m-cresol m-cresol x x x ,Rh N N N N H H n Polyaniline emeraldine base E-3 II

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

単位、情報量、デジタルデータ、CPUと高速化 ~ICT用語集~

untitled

genron-3

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

JAJP

IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A

0.1 I I : 0.2 I

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

eto-vol1.dvi

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Microsoft PowerPoint - 提出北島

PowerPoint プレゼンテーション

untitled

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

Transcription:

rjtenmy@ipc.shizuoka.ac.jp

ZnO RPE-MOCVD UV- ZnO MQW LED/PD

& Energy harvesting LED ( ) PV & ZnO...

1970 1980 1990 2000 2010 SAW NTT ZnO LN, LT IC PbInAu/PbBi Nb PIN/FET LD/HBT 0.98-1.06m InGaAs QW-LD 2007 MOMBE MOVPE InGaAs/InP GaAs/AlGs MOVPE CNT InGaAs Q-dot for Qbit (CREST) Graphene/CNT UV- ZnO LED/PD Intel 4040 Pentium 1Kb DRAM RPE-MOCVD SiO 2 EDFA WDM GaAs DH CW LD LD LED DARPA UNIX TCP/IP WWW IT Google iphone ipad

ZnO Bandgap (ev) 8 7 6 5 4 3 2 1 AlN GaN 6H-SiC InN BN ZnO MgO C (diamond) 3C-SiC CdO CdTe ZnS MgS MgSe ZnSe ZnTe CdS GaP CdSe Si GaAs InP 0 2.0 3.0 4.0 5.0 6.0 7.0 Lattice constant (A) Ge ZnO (a=3.15 c=5.12) Eg=3.3eV Eg Mg 2+ 0.57Å Zn 2+ 0.60Å Cd 2+ 0.74Å MgZnO ZnO r B =1.8nm ZnCdO. GaN (a=3.25 c=5.21)3.4ev Al 3+ 0.39Å, Ga 3+ 0.47Å, In 3+ 0.80Å r B =2.2 nm 60 mev vs GaN 25meV

RPE-MOCVD ZnO L-MBE PLD), MBE, PA... MOCVD MOCVD 2 DH EL p (r )

O 2 cathode RPE-MOCVD PC DEZn, DMCd anode spectrometer quartz view window EtCp2Mg quartz guide tube jet zone matching circuit 13.56MHz substrate heater thermo couple 5 sccm 5 sccm RF0-50 W 0.01 Torr 300-800 O2 DEZn, DMCd + H2 TMIn, Cu(dibm) 2

a c ZnO c - c : 1.299 nm ZnO a x 4 : 1.300 nm - 0.08%, r a ZnO c SiC (p-4h-, 8off) ZnODH 4.9% a 3 c r a 2 a 1 a

Intensity (arb. units.) OH O 2 plasma/h 2 carrier O 2 plasma/n 2 carrier O OH Hα N 2 N 2 NO N 2 O 2 200 300 400 500 600 700 800 Wavelength (nm) H 2 Carrier gas O *, Hα * radicals N 2 Carrier gas O 2*, N * 2, NO *

PL 100 Mg 0.18 Zn 0.82 O RT Transmittance (%) 0 100 0 100 0 100 ZnO Zn 0.86 Cd 0.14 O Zn 0.70 Cd 0.30 O Normalized PL intensity 0 100 Zn 0.47 Cd 0.53 O 0 1.5 2.0 2.5 3.0 3.5 4.0 Photon energy (ev)

Zn(Mg,Cd)O 4.5 4.0 This work Review(Chen et al.) Wurtzite This work PLD(Makino et al.) E g 1.8-3.7 ev E ( x) = E (0)(1 x) + E (1) x bx(1 x) g g g Optical band gap (ev) 3.5 3.0 2.5 2.0 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Mg content, y Cd content, x E ( x ) = 3.28(1 x ) + 2.3 x 3.04 x (1 x ) g,zncdo E ( y ) = 3.28(1 y ) + 7.8 y 3.47 y (1 y ) g,mgzno E g α 2 b ZnCdSe 0.5 InGaN 2.5 ZnCdO 3.0 MgZnO 3.5

PL PL peak energy (ev) FWHM (mev) 3.5 3.0 2.5 2.0 1.5 200 100 0 20 K Normalized PL intensity 20 K 0.55 0.30 0.19 0.18 0.11 x=0 0.0 0.2 0.4 0.6 0.8 1.0 Cd content 1.5 2.0 2.5 3.0 3.5 Photon energy (ev) Experiment Calculation PL 240 mev (x=0.19) In 0.5 Ga 0.5 N 200 mev @15 K (Zimmermann ) ( ) ( ) ( ) deex x V0 x ( x) = 2 2ln2 x( 1 x) dx Vex x E ex (x): PL V 0 (x): ( ) 3 V ex (x): V ( x) = 8π r x r b (x): ex B

MQW ZnO 30 nm 10 MQWs ZnCdO : 2 ~ 21 nm ZnO : 10 nm ZnO 100 nm a XRD steady-state PL @ 20 K PL @ 8 K

PL L W = 2 nm ZnCdO 20K ZnO : He-Cd - 325 nm - 35 mw/cm 2 Normalized PL intensity 4 nm 8 nm 11 nm PL 21 nm Zn 0.85 Cd 0.15 O bulk 140nm 2.0 2.5 3.0 3.5 Photon energy (ev)

PL emission energy (ev) PL FWHM (mev) 3.00 2.95 2.90 2.85 2.80 2.75 300 250 200 150 100 50 0 0 5 10 15 20 25 bulk 140 Well width, L W (nm) 20 K Experiment Calculation L W < 4nm energy (ev) E c / E v = 64/36 E c E v E e E h L w ZnOZnCdOZnO h 4 nm (~ : 1.8 nm) - / e

PL lifetime, τ 1, τ 2 (ps) Oscillator strength, f 100 80 60 40 20 0 1.5 1.0 0.5 τ 2 τ 1 0.0 0 5 10 15 20 25 bulk 140 Well width, L w (nm) 8 K τ 2-55 ps (L W 2nm) ~ 70 ps (L W 8nm) ( ) 3 πε mc f 2 1 = ne % τ 0 0 2 2 ω τr R f = 1.3 (L W 2nm) ψ ( x) 2 f, (τ R = τ 2 ) J. Feldmann et al., Phys. Rev. Lett. 59, 2337 (1987).

LED(DH ) RGB-EL R n-mgzno n-zn 1-y Cd y O p-sic Cross section G B EL intensity FWHM=146meV34meV 400 500 600 700 800 Wavelength (nm) A. Nakamura et al., APL 90(2007) 093512 EL (2 )

SiO 2 /Si CVD Ni, Cu ( )C 2 H 2,- - -, SiC SiC SiC+O 2 SiO+C TEM... 532nm Graphene HOPG D G 2D

Ni ACVD Layer number of exfoliated graphene 1 23 4 68 over 10layers (a) (b1) segregated graphene I G /I 2D = 0.202 W 2D =31.3cm -1 2708cm -1 2D FWHM W 2D (cm -1 ) exfoliated graphene layer segregated graphene layer Intensity (arb.units.) (b2) exfoliated graphene I G /I 2D =0.223 W 2D = 35.2cm -1 2674cm -1 2D I G /I 2D Raman Shift (cm -1 ) (a) (b) (c) 3 layers 4 layers 5layers 0.34 TEM 3-5 multilayer >10 3nm 2nm

CVD a-sapphire (a) (b) 800D G 2D 0.34nm Intensity (arb.units) 850 900 950 (c) 4nm (d) 2nm 1000 4nm 10nm 1200 1400 1600 2600 2800 Raman Shift (cm -1 ) (a) 900, (b) ) a-sapphire (c) (d) 1000

Sheet Resistance on Transmittance

RPE-MOCVD ZnO OH O 1.8eV3.7eV LEDMQW LED, Schottky-PD / 2 2007

2009.3.21