フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

Similar documents
まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

PowerPoint Presentation

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft Word - thesis.doc

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

工業数学F2-04(ウェブ用).pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx

<4D F736F F D A CF95AA B B82CC90CF95AA8CF68EAE2E646F63>

Microsoft PowerPoint - H21生物計算化学2.ppt

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 10.pptx

DVIOUT-SS_Ma

DVIOUT

曲線 = f () は を媒介変数とする自然な媒介変数表示 =,= f () をもつので, これを利用して説明する 以下,f () は定義域で連続であると仮定する 例えば, 直線 =c が曲線 = f () の漸近線になるとする 曲線 = f () 上の点 P(,f ()) が直線 =c に近づくこ

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

解析力学B - 第11回: 正準変換

Microsoft PowerPoint - 複素数.pptx

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

Microsoft Word - NumericalComputation.docx

ディジタル信号処理

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

DVIOUT

1/10 平成 29 年 3 月 24 日午後 1 時 37 分第 5 章ローレンツ変換と回転 第 5 章ローレンツ変換と回転 Ⅰ. 回転 第 3 章光速度不変の原理とローレンツ変換 では 時間の遅れをローレンツ変換 ct 移動 v相対 v相対 ct - x x - ct = c, x c 2 移動

喨微勃挹稉弑

2011年度 大阪大・理系数学

パソコンシミュレータの現状

Microsoft Word - 第2章 ブロック線図.doc

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

微分方程式による現象記述と解きかた

DVIOUT

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

微分方程式補足.moc

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

DVIOUT-SS_Ma

数学の世界

DVIOUT

PowerPoint Presentation

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Chap2

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

2011年度 筑波大・理系数学

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

Chap2.key

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

Microsoft Word - Chap11

Microsoft PowerPoint - 応用数学8回目.pptx

2018年度 2次数学セレクション(微分と積分)

線積分.indd

"éı”ç·ıå½¢ 微勃挹稉弑

学習指導要領

<4D F736F F D B4389F D985F F4B89DB91E88250>

memo

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

Microsoft Word - kogi10ex_main.docx

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

vecrot

Laplace2.rtf

大気環境シミュレーション

横浜市環境科学研究所

Microsoft PowerPoint - 10.pptx

NumericalProg09

Microsoft Word - Chap17

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - フーリエ変換.ppt

計算機シミュレーション

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

PowerPoint プレゼンテーション

スライド 1

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

多次元レーザー分光で探る凝縮分子系の超高速動力学

Microsoft Word - 1B2011.doc

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

2014年度 千葉大・医系数学

Microsoft PowerPoint - dm1_5.pptx

数学 Ⅲ 無限等比級数の問題解答 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は ( 答 ) であるから 初項 < 公比 となっている よって 収束し その和は よって

Microsoft PowerPoint - NA03-09black.ppt

             論文の内容の要旨

Microsoft Word - 201hyouka-tangen-1.doc

オートマトン 形式言語及び演習 1. 有限オートマトンとは 酒井正彦 形式言語 言語とは : 文字列の集合例 : 偶数個の 1 の後に 0 を持つ列からなる集合 {0, 110, 11110,

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - mathtext8.doc

<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>

Microsoft Word - K-ピタゴラス数.doc

<4D F736F F D FCD B90DB93AE96402E646F63>

Microsoft Word - 付録1誘導機の2軸理論.doc

Microsoft PowerPoint - H22制御工学I-10回.ppt

チェビシェフ多項式の2変数への拡張と公開鍵暗号(ElGamal暗号)への応用

Transcription:

フーリエ変換 ラプラス変換

フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

フーリエ変換 ラプラス変換 - Prvl の等式 ovoluo 定理 フーリエ変換が G で, の逆フーリエ変換が, である時 F plc 変換と逆変換 F F ラプラス変換 ラプラス逆変換

フーリエ変換 ラプラス変換 - 4 plc 変換表 ラプラス空間 実空間, u co coh h X X 4

フーリエ変換 ラプラス変換 - 5 Fourr 級数展開 周期関数 の増加に伴って周期的な値を取る関数 は一般にどの様に表せるか考えてみた い まずは周期が の関数は一般にどの様に表せるか考えてみよう つまり = の時の値と =の時の値が同じである という関数 を探すクイズである でも実は答えは簡単に見つかってしまう 答えはいくつかあって などがそうである 5

フーリエ変換 ラプラス変換 - 6 もっと複雑な形を考えて 一般解を見つけよう なども解になるので とできる が負の場合を考えないのは という性質があるためである さらに co についても同様の議論を行え る ので co も解である これらを統合して b co さらに に関係のない定数がくっついていても の要求を満たすので c b co = の時は がいかなる値でも b co b という定数になるのでシグマの外に出して c と合併する の時は の値によって変動するのでΣの外に出せな い c b b co co これが一般解であり フーリエ級数展開と呼ばれている ここから得られる大事な結論は いかなる周期 の関数も と co と定数の和で表現できるということである 6

フーリエ変換 ラプラス変換 - 7 [Q] b co の,, b を求めよ 両辺を一周期の区間で積分すると b b co co 両辺に m をかけて積分すると m m m b co m m 同様に com をかけて積分すると b co m com の積分は が奇関数 co が遇関数なのでゼロになる m, cocom の積分は 積和変換で co になるためゼロだが =m の時だけは co の 倍角に帰着するため値が残る いずれも計算してみればわかる 7

フーリエ変換 ラプラス変換 - 8 [Q] 下図の波をフーリエ級数展開せよ 周期 の関数なので 以下の様に展開できる b co b co もちろんこの式に代入して計算しても良いのだが 計算量を減らす工夫をしよう は の振動中心を決める定数である この問題における は y= を中心に振動して いるので = である また は奇関数であるからフーリエ展開も奇関数の だけ で構成されているはずである 以上より 8

フーリエ変換 ラプラス変換 - 9 を計算してみよう co co が奇数の時 が偶数の時 以上より が連続な関数である時にはフーリエ級数展開で完璧に展開することが出来るが が 不連続な関数であるときは 不連続点付近で近似の精度が落ちる これは不連続関数を連 続関数の重ね合わせで表現しようとすることに無理があるからである この現象を Gbb 現象という これについては江端氏がまとめているのでそちらを参照のこと 9

フーリエ変換 ラプラス変換 - Fourr 級数展開の拡張 フーリエ級数展開 b co は周期が の関数にしか 適用できなかった これを拡張し 以外の周期の関数も扱えるようにしよう つまり を満たす関数を見つけるという問題である この関数は,, で同じ値を持つことが分かる よってこれは要求を満たしている の を / にしたと考えても良いだろう この について先 程と同様の議論を進めてゆけば b co, b co

フーリエ変換 ラプラス変換 - [Q] 下図の波をフーリエ級数展開せよ A A 周期 の関数なので 以下の様に展開できる co b, b co は の振動中心を決める定数である この問題における は y= を中心に振動しているので = である また は奇関数であるからフーリエ展開も奇関数の だけで構成されているはずである 以上より b

フーリエ変換 ラプラス変換 - を計算してみよう が偶数の時 が奇数の時 A A A A A A A A A A A A A A co co co co co co co co co co 以上より A

フーリエ変換 ラプラス変換 - Fourr 級数展開の拡張 フーリエ級数展開 co b には と co が含まれているので これらを何とか指数関数で表したい なぜなら指数関数のほうが取り扱い 微分など が簡単だからである オイラーの公式 co を用いると co B A b b b b b ここで b co, に注目すると A と B の関係が見えてくる, b を指数関数に変換してから A, B の標識に代入してみよう

フーリエ変換 ラプラス変換 - 4 4 b co b 4 カッコ内は積分なので いかに が変動しても最終的にただの数値になってしまう そこで定数 として表すことにした が添えてあるのは は一つの数字ではなく,,, という値を取るので 変数ではないにしろ気にしておきたいからである 同様にして b 4 の添え字を - にしたのは で の代わりに - を代入すると同じ値になるからである

フーリエ変換 ラプラス変換 - 5 5 ここで = + b + 定数だったので は と表せないのではと思うかもしれないが 定数部を, b に吸収させたと考えれば それでよい事が分かる 以上より これがフーリエ級数展開の指数関数 複素数 表示である の表式で を に変えたのは これだと微少長さ が変動することになってしまう そういう意味ではないので 違う文字でおいて誤解を避けることにした

フーリエ変換 ラプラス変換 - 6 6 Fourr 級数展開の拡張 フーリエ級数展開, は周期が である関数について成り立つものであった では 周期が の時はどのようになるか考えてみよう 周期が の関数と言うのは を - から + まで変化させても 周期分しかない よって周期関数でない関数ということになる まずは で と置いてみる いま を考えているので は超微少な値になる しかし については Σ があるので この超微少な値の 倍を入れた時 + 倍を入れた時 と - 倍から 倍まを足し合わせる これはまさに = の積分である

フーリエ変換 ラプラス変換 - 7 まとめると以下の様になる この 周期の無い関数にも適応できるフーリエ級数展開をフーリエ変換と呼ぶ フーリエ変換は が収束するものにしか行えない 収束しないと が不定か発散 になってしまうからである この条件を ノルム有界と言う でも があるためどんな 関数も収束するのでは? と思うかもしれないが これは複素数であるため押さえにならない 7

フーリエ変換 ラプラス変換 - 8 8 [Q4] のフーリエ変換を求めよ フーリエ変換の式に代入すると F b b b

フーリエ変換 ラプラス変換 - 9 9 [Q5] + の特解を求めよ フーリエ逆変換を用いて + - +

フーリエ変換 ラプラス変換 - この をフーリエ変換の式に代入して あとは複素積分を行えば という解 特解 が求まる

フーリエ変換 ラプラス変換 - [Q6] + の特解を求めよ フーリエ逆変換を用いて + + + -

フーリエ変換 ラプラス変換 - この をフーリエ変換の式に代入して co co co co φ 以上より φ と解 特解 が求まる

フーリエ変換 ラプラス変換 - Fourr 変換の世界 フーリエ変換には 単に関数を や で展開できるという以上の意味がある 一見関係ないようだが まずはここから考えてゆこう 任意の点 P は直行座標でかならず 表す事が出来る P by cz このとき y z の間には内積がゼロ 例えば y が成り立っているため 軸は直交しおり これらが張る三次元空間で全ての関数を表すことができる ところで フーリエ級数展開 b +c は全 ての関数について行えるので 任意の点 P, P, は以下の様に表せる P P P b b b c c c するとこれは を直交軸とする無限次元空間で全ての関数を表す 事が出来る ということになるだろう また本当に直交しているかを確かめる式は P のとき と の内積は P のとき と と確かめるため m を計算すればよいだろう =m の時だけ値があればよい

フーリエ変換 ラプラス変換 - 4 まとめると 任意の点 P を色々な座標でみることができる 座標にはいくつか種類があり 直交座標 三次元 極座標 三次元 円筒座標 三次元 フーリエ空間 無限次元 などが存在する ということである これは P をどの様な物差しで測るかということで P 自体は何も変わっていない P P P, y, z r,, r,, z,,, P 4

フーリエ変換 ラプラス変換 - 5 5 Prvl の等式いま 関数 の値 を計算をしてみよう * * * * * 積分の順序は自由であること またデルタ関数の定義 y y にも注目すると * * * この結果は当然である なぜなら実空間とフーリエ空間は ある関数 をどの座標でみているかという違いなので 実空間での値とフーリエ空間での値が変わってはならない これを パーセバルの等式 と呼ぶ

フーリエ変換 ラプラス変換 - 6 音波を使ってパーセバルの等式を直感的に説明してみよう スピーカーから音が出ており その音量が b の音量で聞こえた フーリエ変換するとスピーカーからの音は Hz と Hz と Hz で構成されてい ることが分かった スピーカーからその つの波が別々に出ているとして それらの音量 の和を求めたとしても それは b でなければならない 低音 高音 カーステレオなどに付いているアレ 6

フーリエ変換 ラプラス変換 - 7 7 ovoluo 定理 畳み込み積分 フーリエ変換が G である時 もとの関数 F は の逆フーリエ変換と の逆フーリエ変換の積になるのでは と思う もしそうなら計算が随分楽になる これが本当に成り立つのか一般的にチェックしてみよう G ここで +=y と置くと y y y F y y F y F y G y y y y y y y y y y y y

フーリエ変換 ラプラス変換 - 8 F F y y y y F F y y y y y y 以上より G で G,, の個々の逆フーリエ変換が F,, である時 F は成り立たず F となる これをコンボリューション定理と呼ぶ 8

フーリエ変換 ラプラス変換 - 9 plc 変換 フーリエ変換は ノルム有界な関数についてしか行えなかった これを何とか改良して どんな関数でも行えるようにしたい いま ノルム有界を満たさない関数 があるとする これを無理矢理収束させるには 一見解決できたかに見えるが これでは + の時は収束しても - の時が収束しない これで解決する しかしフーリエ変換の定義は - から + なので なんとか積分領域を伸ばしたい そこで ステップ関数 θ< で < で をかける θ これで積分領域を保ちつつ収束させることに成功した ではフーリエ変換してみよう θ θ 9

フーリエ変換 ラプラス変換 - ここで += と置き換えると F これをラプラス変換と呼ぶ フーリエ逆変換は F F F F F θ これがラプラス逆変換である

フーリエ変換 ラプラス変換 - 微分方程式の plc 変換による解法 ラプラス変換の値を覚えておくと 非常に鮮やかに微分方程式を解くことが出来る 物理問題で現れやすいラプラス変換を書き出しておくと ラプラス空間 実空間, u co coh h これらはもちろん定義に従って計算すれば求まるのだが これらを暗記するかもしくは割 り切って公式集を見るのがミソである これから続く問題を見てみればそれがわかるだろ う

フーリエ変換 ラプラス変換 - [Q7] のラプラス変換を求めよ X X X X X X X

フーリエ変換 ラプラス変換 - [Q8] E を解け 両辺をラプラス変換して E E E E E ラプラス変換表と見比べれば E

フーリエ変換 ラプラス変換 - 4 4 [Q9] 5, 4 を解け 両辺をラプラス変換して 4 4 4 9 5 4 X X X X X X X 4 7 4 4 4 4 X ラプラス変換表と見比べれば 4 4 7 もちろんラプラス逆変換を真面目に計算してもよいのだが そうすると複素積分が出てくるために計算が大変で 普通に解くのと労力が変わらなくなってしまう

フーリエ変換 ラプラス変換 - 5 5 [Q], 5 を解け 両辺をラプラス変換して 5 5 5 X X X X X X X 4 5 5 X ラプラス変換表と見比べれば

フーリエ変換 ラプラス変換 - 6 6 [Q], 4 y y y y y でを解け 初期条件に気を付けつつ 式の両辺をラプラス変換すると 4 Y X Y X Y X Y X 簡単な連立方程式になったので X と Y についてまとめる Y X ラプラス逆変換を用いれば 解が求まる co co y

フーリエ変換 ラプラス変換 - 7 Fourr / plc 変換まとめ フーリエ変換は初期条件を考慮せずに用いることができ 方程式の特別解を得ることが出来る ラプラス変換は初期条件無しに用いることはできず 方程式の一般解を得ることが出来る 両変換の数学的な有用性は 微分方程式を代数方程式に変換することによって計算を簡単にでき ることにあるが 物理的な有用性はどう説明されるのだろうか? フーリエ変換は初期条件によらない解を導くが これは与えられた系の初期条件によらない状態 定常状態 が得られているということである 一方でラプラス変換は初期値による解 つまり定常的でない状態が得られる 二つの変換は異なるコンセプトで用いるもので 決して フーリエ変換を便利にしたのがラプラス変換 では無いのである 物理問題は大別して 定常状態を探る問題 と 初期値問題 の つに分けられる よって 与 えられた問題がどちらを聞いているのかを見極める力があれば 自ずとどちらの変換を使うべき かが見えてくるのである 7

フーリエ変換 ラプラス変換 - 8 [ 参考文献 ] マグロウヒル大学演習シリーズ フーリエ解析 Murry. Spl 著中野寛訳オーム社 マグロウヒル大学演習シリーズ ラプラス変換 Murry. Spl 著中野寛訳オーム社 使える数学フーリエ変換 ラプラス変換 楠田信 平居孝之 福田亮治著 共立出版株式会社 物理数学 のテキストとノート 物理数学演習のテキストとノート 江端修一郎氏のまとめノート Th ou hp://www.prblu. 8