: /5 ( ) gnuplot x i x[i] () x(t) =, π < t t, < t < π (2) cos (3) sin (4) Fourier Shigeki Sagayama, FourierTrans26nov.tex

Size: px
Start display at page:

Download ": /5 ( ) gnuplot x i x[i] () x(t) =, π < t t, < t < π (2) cos (3) sin (4) Fourier Shigeki Sagayama, FourierTrans26nov.tex"

Transcription

1 sagayama/enshu2/fouriertrans26nov.pdf Shigeki Sagayama, FourierTrans26nov.tex, November 8, 26/

2 : /5 ( ) gnuplot x i x[i] () x(t) =, π < t t, < t < π (2) cos (3) sin (4) Fourier Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/2

3 2: Fourier /5 ( ) gnuplot x i x[i] () : (2) : (3) () (2) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/3

4 3: Fourier /5 ( ) gnuplot x i x[i] () δ(t) (2) U(t) πδ(ω) + jω (3) e at2 π 4a (4) n= a e ω2 δ(t nt ) 2π T n= δ(ω 2π T ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/4

5 4: /5 ( ) gnuplot x i x[i] () x(t)(t ) T {x i } x H (t) x L (t) (2) ( ) ( h H (t) h L (t)) h L (t) (3) x(t) X(ω)) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/5

6 5: /5 ( ) gnuplot x i x[i] () x(t), y(t)(t ) T {x i } {y i } z i z(t) = x(t) y(t) T (2) x(t) y(t) (3) Parseval Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/6

7 (Rademacher, Haar, Walsh) Gram-Schmidt Shigeki Sagayama, FourierTrans26nov.tex, November 8, 26/7

8 *? [ ][ ] ( (signal) (symbol) ) : x(t) : I(x, y) : I(x, y, t) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/8

9 * 2 (2 ) : ( ) : a = (a, a 2 ) : x = c a + c 2 b ( ) : a = a 2 + a2 2 (Euclid) : d(a, b) = a b = Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/9 d O (a b ) 2 + (a 2 b 2 ) 2 : a b = a b + a 2 b 2 = a b cos θ : a b =, (a, b ): x = c a + c 2 b = i.e., (θ = ±π/2) (x, a) (x, b) a + (a, a) (b, b) b b a c = (a, a ) 2

10 * n : v = (v, v 2,, v n ) : x = c u + c 2 v ( ) : v = n i= v2 i (Euclid) : d(u, v) = u v = : u v = n i= u iv i : u v =, i.e., (θ = ±π/2) (v i ): x = n i= c iv i = n i= x v i v i 2v i n (u i v i ) 2 i= Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/

11 * {u i }: u i u j =, i = j, i j x x = c u + c 2 u c n u n (m, m < n) x = m i= c iu i + ε ε 2 c i = x u i u i 2 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/

12 * t, t 2,, t n x(t) x = {x(t ), x(t 2 ), x(t 3 ),, x(t n )} = {x, x 2, x 3,, x n } n x = (x, x 2, x 3,, x n )... t n t t t 2 3 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/2

13 * ( ) : (x, y) = x(t )y(t ) + x(t 2 )y(t 2 ) + + x(t n )y(t n ) = n i= x(t i)y(t i ) (u i ): x = n i= c iu i = n i= (x, u i ) (u i, u i ) u i ( ) : d 2 (x, y) = n i= (x(t i) y(t i )) 2 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/3

14 * (Cf. Riemann ) ( ) Hilbert : (x(t), y(t)) = t 2 t x(t)y(t)dt Cf. ( f(t) > ) (x(t), y(t)) = t 2 t x(t) y(t) f(t)dt : = t 2 t x(t) y(t) df (t) (Stieltjes ) d 2 (x(t), y(t)) = t 2 t (x(t) y(t)) 2 dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/4

15 * (u i (t) ): x(t)? = i= c iu i (t) = n i= (x(t), u i (t)) (u i (t), u i (t)) u i(t) ( ) {u i (t)} (complete, ) Cf. Hilbert David Hibert: Euclid (99) F. Riesz: L 2 J. von Neumann: Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/5

16 * /2 ( 2 ) : (a, b) L 2 f(x), g(x) (f, g) = b a f(x) g(x)dx f = (f, f) /2 (f, g) = f, g ( Lebesgue ) : f = f {f i (x)}: (a, b) {f n (x)} 2 (orthogonal system) {f n } O(a, b) : f n (x) (orthonormal system, ON ) {f n } ON(a, b) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/6

17 * 2/2 ( 2 ) : R (a, b) {f n } (a, b) R {f n } {f n } (closed) : R (a, b) L 2 {f n } O(a, b) n (ϕ, f n ) = ϕ(x) R {f n } R (complete) ( R L 2 {f n } ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/7

18 * /2 f(t) v i (t)? f(t) = c v (t) + c 2 v 2 (t) + + c N v N (t) + e(t) = N n= c iv i (t) + e(t) ε = t 2 t e 2 (t)dt = t 2 t f(t) N {v i } c iv i (t) n= 2 dt ε = t 2 t f 2 (t)dt 2 N i= c i t2 t f(t)v i (t)dt + N i= c2 i t2 t v 2 i (t)dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/8

19 * 2/2 ε {c i }? ε = 2 t 2 t2 t c f(t)v i (t)dt + 2c i t vi 2 (t)dt = i t2 t c i = f(t)v i (t)dt t2 t vi 2 = (f, v i) (t)dt (v i, v i ) ε? min ε = t 2 t f 2 (t)dt N i= c2 i Bessel t2 t v 2 i (t)dt t2 t f 2 (t)dt N i= c2 t2 i t vi 2 (t)dt {v i } N Parseval t2 t f 2 (t)dt = i= c2 i t2 t v 2 i (t)dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/9

20 * : Rademacher (922) Hans Rademacher (Born: 3 April 892 in Wandsbeck, Schleswig-Holstein, Germany; Died: 7 Feb 969 in Haverford, Pennsylvania, USA) Rademacher (922): (, ) +, t > r n (t) = sign(sin 2 n πx), sign(t) =, t =, t < r (t) r 2 (t) r 3 (t) r 4 (t) r 5 (t) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/2

21 * : Haar (9) Alfréd Haar ( Born: Oct 885 in Budapest, Hungary; Died: 6 March 933 in Szeged, Hungary) Haar (9): (, ) χ () (t) =, 2 n, χ (k) n (t) = k 2 n < t < k /2 2 n 2 n, k /2 2 n < t < 2 k n, l 2 n < t < 2 l n, l k, l 2 n k 2 n, n, integer. χ () (t) χ () (t) χ () (t) χ (2) (t) χ () 2 (t) χ (2) 2 (t) χ (3) 2 (t) χ (4) 2 (t) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/2

22 * : Walsh (923) Walsh (923): (, ) Paley (932) : (r k (t) Rademacher ) n = m n k 2 k (n 2 ) k= w n (t) = m (r k+(t)) n k k= : Walsh Paley Hadamard w (t) = wal(, t) = cal(, t) - w (t) = wal(, t) = sal(, t) w 2 (t) = wal(3, t) = sal(2, t) w 3 (t) = wal(2, t) = cal(, t) w 4 (t) = wal(7, t) = sal(4, t) w 5 (t) = wal(6, t) = cal(3, t) w 6 (t) = wal(4, t) = cal(2, t) w 7 (t) = wal(5, t) = sal(3, t) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/22

23 * Gram-Schmidt {f i (x)} {φ i (x)} φ (x) = ψ (x)/ ψ (x), ψ (x) = f (x) φ 2 (x) = ψ 2 (x)/ ψ 2 (x), ψ 2 (x) = f 2 (x) (f 2, φ )φ (x) φ 3 (x) = ψ 3 (x)/ ψ 3 (x), ψ 3 (x) = f 3 (x) (f 3, φ )φ (x) (f 3, φ 2 )φ 2 (x) φ n (x) = ψ n (x)/ ψ n (x), ψ n (x) = f n (x) n n, φ i )φ i (x) i= {, x, x 2, x 3, x 4, } Gram-Schmidt (, ) Legendre (, ) e x Laguerre : z = e jω {, z, z 2, z 3, z 4, } Gram-Schmidt LPC ( ) [ 966] Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/23

24 * Legendre.8.6 Legendre Prthogonal Polynomials Legendre(x) Legendre(x) Legendre2(x) Legendre3(x) Legendre4(x) Legendre5(x).4.2 P(x) x Legendre, m n P m (x)p n (x)dx = 2 2n+, m = n P (x) =, P (x) = x, P 2 (x) = (3x 2 )/2, P 3 (x) = (5x 3 3x)/2, P 4 (x) = (35x 4 3x 2 + 3)/8, P 5 (x) = (63x 5 7x 3 + 5x)/8, Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/24

25 * Legendre P n (x) (, +) Legendre P m n (x) (, +) Gegenbauer C ν n(x) (, +) ( x 2 ) ν 2 Tchebycheff T n (x) (, +) ( x 2 ) 2 Hermite H n (x) (, ) e x2 2 Jacobi G n (α, γ; x) (, ) x γ ( x) α γ Laguerre L (α) n (x) (, ) e x x α b a f m (x)f n (x)w(x)dx =, m n >, m = n Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/25

26 Amplitude time (sec) (a) /i/ ( ) Hamming 2 Spectrum Density (db) frequency (khz) (b) ( ) (LPC) ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/26

27 * 2 5 Spectrum Density (linear) frequency (khz) (c) ( ) CSM CSM ( ) 2 Spectrum Density (db) frequency (khz) (d) CSM (db)( ) Christoffel LPC ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/27

28 * CDMA/One : Walsh : [ 98] LPC( ) z PARCOR z LSP x = cos ω TwinVQ Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/28

29 Gibbs Dirichlet Shigeki Sagayama, FourierTrans26nov.tex, November 8, 26/29

30 Jean Baptiste Fourier Jean Baptiste Joseph Fourier (March 2, May 6, 83) Shigeki Sagayama, sagayama@hil.t.

31 : Fourier Jean Baptiste Joseph Fourier ( Born: 2 March 768 in Auxerre, Bourgogne, France; Died: 6 May 83 in Paris, France) 9 8 Auxerre 4 Bézout 9 22 Auxerre ( 795 ) Lagrange Laplace Lagrange 798 Isère Grenoble Fourier Lagrange, Laplace, Monge, Lacroix Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/3

32 * Marc-Antoine Parseval des Chênes (27 Apr 755 in Rosières-aux-Saline, France 6 Aug 836 Paris) 5 2 Parseval Hans Rademacher (Born: 3 April 892 in Wandsbeck, Schleswig-Holstein, Germany; Died: 7 Feb 969 in Haverford, Pennsylvania, USA) Alfréd Haar ( Born: Oct 885 in Budapest, Hungary; Died: 6 March 933 in Szeged, Hungary) Jacques Salomon Hadamard ( Born: 8 Dec 865 in Versailles, France; Died: 7 Oct 963 in Paris, France) Raymond Edward Alan Christopher Paley ( Born: 7 Jan 97 in England; Died: 7 April 933 in Banff, Alberta, Canada ) Adrien-Marie Legendre (Born: 8 Sept 752 in Paris, France; Died: Jan 833 in Paris, France) Edmond Nicolas Laguerre (Born: 9 April 834 in Bar-le-Duc, France; Died: 4 Aug 886 in Bar-le-Duc, France) Pafnuty Lvovich Chebyshev (Born: 6 May 82 in Okatovo, Russia; Died: 8 Dec 894 in St Petersburg, Russia) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/32

33 * Laplace - la place Lagrange - la grange Legendre - le gendre Laguerre - la guerre Rademacher - Rad ; Rade Haar - Haar Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/33

34 /2 : {cos kωt} ( ) e.g., : {sin kωt} ( ) e.g., : {, cos Ωt, sin Ωt, cos 2Ωt, sin 2Ωt, } Trigonometric Functions.5 cos(t) sin(t) cos(2*t) sin(2*t) cos(3*t) sin(3*t) cos(4*t) sin(4*t) Function Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/34 Time

35 2/2 f(t) (t, t + T ) ( ) Ω = 2π/T ( : ) f(t) = a + (a k cos kωt + b k sin kωt), t < t < t + T k= a k = b k = t +2π/Ω t t +2π/Ω t t +2π/Ω t t +2π/Ω t f(t) cos kωtdt cos 2 kωtdt f(t) sin kωtdt sin 2 kωtdt = 2 T = 2 T t +T t t +T t f(t) cos kωtdt f(t) sin kωtdt cos sin c k = f(t) = k= c k cos(kωt + φ k ) a 2 k + b2 k, φ k = tan (b k /a k ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/35

36 f(t)+f( t) + f(t) f( t) f(t) = 2 f(t) + f( t) f(t) f( t) = }{{}}{{} f e (t) f o (t) f e (t) = f e ( t) f o (t) = f o ( t) x(t) =, t < t, t Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/36

37 . f(x) = x 3 + 5x 2 2x 2 + x 7 f o (x) f e (x) f(x) = f o (x) + f e (x) 2. g(x) = 3 sin(x π 4 ) g o(x) g e (x) g(x) = g o (x)+ g e (x) 3. h(x) = e (x )2 h o (x) h e (x) h(x) = h o (x) + h e (x) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/37

38 f(t) ( T/2, T/2) (Ω = 2π/T ) f(t) = a + f(t) : f(t) = f( t) a k = = 2 T b k = k= (a k cos kωt + b k sin kωt) T/2 T/2 f(t) cos kωtdt = 4 T f(t) : f(t) = f( t) a k = b k = = 2 T T/2 T/2 f(t) sin kωtdt = 4 T (cos) T/2 f(t) cos kωtdt (sin) T/2 T/2 f(t) sin kωtdt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/38

39 ( ) Euler : e jωt = cos Ωt + j sin Ωt cos Ωt = ejωt + e jωt, sin Ωt = ejωt e jωt 2 2j f(t) = a + = a + 2 c = a c k = (a k jb k )/2 c k = (a k + jb k )/2 k= (a k cos Ωt + b k sin Ωt) k= {(a k jb k )e jkωt + (a k + jb k )e jkωt } ( : ) f(t) = c k = T k= c ke jkωt T 2 T 2 f(t)e jkωt dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/39

40 f(t) = c ke jkωt k= f(t) R c k = R c k I c k = I c k f(t) ( f(t) = f( t) ) c n f(t) ( f(t) = f( t) ) c n Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/4

41 Fourier Gibbs Phenomenon (Fourier approximation of a rectangular function) PartialFourier(t) PartialFourier3(t) PartialFourier7(t) PartialFourier23(t) PartialFourier(t).5 Amplitude Time * omega f(t) = (t π) (t =, t = ±π) ( π t ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/4

42 Fourier Gibbs Phenomenon (Fourier approximation of a rectangular function) PartialFourier(t) PartialFourier3(t) PartialFourier7(t) PartialFourier23(t) PartialFourier(t).5 Amplitude Time * omega c k = π 2π π sgn t ( j) sin ktdt = 2j π 2π sin ktdt = j π [cos kt/k]π (k = ) = 2j k (k = ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/42

43 Gibbs Gibbs Phenomenon (Fourier approximation of a rectangular function) PartialFourier(t) PartialFourier3(t) PartialFourier7(t) PartialFourier23(t) PartialFourier(t).5 Amplitude Time * omega ( ) (Gibbs = π 2 Si π) ( 9% ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/43

44 * Gibbs ( ) (Gibbs = 2 π Siπ) ( 9% ) 898 Michelson + Stratton : 8 Gibbs Josiah Willard Gibbs (839 93) Nature J. W. Gibbs: Fourier s series, Nature, Vol. 59, No. 2, pp. 66-, (96) ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/44

45 * (Dirichlet) 2π f(t) f n (t) = n c ke jωt = n k= n 2π k= n e jkt π π f(t)e jkτ dτ = π n 2π π k= n ejk(τ t) f(τ)e jkτ dτ = 2π = π π D n (τ t)f(τ)dτ D n (t) Dirichlet : D n (t) = 2π sin(n + 2 )t sin 2 t π π n k= n ejk(τ t) f(τ)dτ Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/45

46 * (Dirichlet) ( ) n Dirichlet D n (t)! Gibbs DirichletKernel(t,) DirichletKernel(t,2) DirichletKernel(t,3) DirichletKernel(t,5) DirichletKernel(t,) DirichletKernel(t,2) 4 function t Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/46

47 * : Dirichlet (Dirichlet ) (Hsu p. 8) f(t) () : t lim f(t e + e), lim f(t e e) (2) : f(t) f (t)) f (t) f (t + ), f (t ) * Fourier Dirichlet f(t) T/2 T/2 f(t) dt < Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/47

48 * (Lipót - Fejér) f(t) π < t < π t f(t ) f(t+) ( ) {f(t ) + f(t+)} 2 t f(t) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/48

49 : 4 3 Fourier Expansion of a Saw Waveform SawWave(t) Fourier(t) Fourier3(t) Fourier(t) 2 function t 2π Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/49

50 ( ) 2π : f(t) = t ( π < t < π), f(t + 2π) = f(t) Fourier (k ): c k = 2π π π te jkt dt d dt [te jkt ] = e jkt jkte jkt c k = 2jkπ te jkt jk e jkt π π = f(t) = ( ) k j e jkt = 2 k= k k= sin 2t sin 3t = 2(sin t jkπ 2π( )k = ( )k j k ( ) k sin kt k sin 4t + ) 4 ( ) : sin sin Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/5

51 ( ) 4 3 Fourier Expansion of a Saw Waveform SawWave(t) Fourier(t) Fourier3(t) Fourier(t) 2 function t f(t) = ( ) k e jkt = 2 ( ) k sin kt ( ) k= jk k= k sin 2t sin 3t sin 4t sin 5t = 2(sin t + + ) ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/5

52 Fourier Coefficients of a Saw Waveform 2 SawWaveSpectrum(omega).5 Imaginary part of coefficient k (Fourier coefficient number) ( ) ( =, =( ) k /k) : f(t) = c ke jkωt k= ( ) kω c k Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/52

53 Shigeki Sagayama, FourierTrans26nov.tex, November 8, 26/53

54 ( /T, /T ) f(t) ( ) f(t) = k= c k e jkωt, Ω = 2π T f(t) ( T t T ) (T f(t) ( < t < ) ) {c k } ( ) c k = T T/2 T/2 f(t)e jkωt dt f(t) ( 2 ) f(t) = k= T T/2 T/2 f(τ)e jkωτ dτ e jkωt T? Fourier ( f(t) ) Ω = 2π ω ω T Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/54

55 Fourier Fourier f(t) = 2π f(τ)e jω(t τ) dτdω 2 c k f(t) f(t) f(t) = T/2 T/2 k= T f(τ)e jk ωτ dτ e jk ωt, = [ T/2 T/2 2π f(τ)ejk ω(t τ) dτ ] ω k= T (k ω ω, ω dω) f(t) = 2π f(τ)ejω(t τ) dτdω ω = 2π T QED Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/55

56 * Fourier f(t) = 2π f(τ)e jω(t τ) dτdω = 2π e jωt F (ω) f(τ)e jωτ dτ dω = 2π e jωt F (ω)dω F (ω) = f(τ)e jωτ dτ f(t) ( < t < ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/56

57 ( ) f(t) Fourier F (ω) = F [ f(t) ] = f(t)e jωt dt ( ) F (ω) Fourier f(t) = F [ F (ω) ] = 2π F (ω)e jωt dω ( ) ω dω F (ω)e jωt dω ( ) ( ) f(t) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/57

58 * Fourier ( ) f(t) F (ω) (t) (ω) Cf. Laplace ( ) f(t) F (s) (t) (s) Laplace Fourier? Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/58

59 Fourier ( ) X(ω) = x(t)e jωt dt, x(t) = 2π X(ω)ejωt dω T T 2π X(ω) = 2π x(t)e jωt dt, x(t) = X(ω)ejωt dω X(ω) ( ) X(ω) x()( τ = ) X(ω) = 2π x(t)e jωt dt, x(t) = 2π X(ω)ejωt dω f X(f) = x(t)e j2πft dt, x(t) = X(f)ej2πft df ω Hz Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/59

60 sinc : ( ) f(t) = /2, t <, t > sinc F (ω) = f(t)e jωt dt = 2 Waveform Rectangular Pulse -2-2 Time e jωt dt = 2 [je jωt ] = sin ω ω RectPulse(t) = sinc ω SincFunction(omega).8.6 Fourier Transform Frequency (* pi) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/6

61 F [ f(t) ] = F (ω) = f(t)e jωt dt < e jωt = f(t) < t < f(t) f(t) dt < f(t + ) + f(t ) 2 = F { F (ω) } Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/6

62 (/3) F (ω) = F [ f(t) ], F (ω) = F [ f (t) ], F 2 (ω) = F [ f 2 (t) ] a, a, a 2 (linearity) F [ a f (t) + a 2 f 2 (t) ] = a F (ω) + a 2 F 2 (ω) (scaling) F [ f(at) ] = a F ω a (time inversion) (time shift) F [ f( t) ] = F ( ω) F [ f(t t ) ] = F (ω)e jωt (frequency shift) F f(t)e jωt = F (ω Ω) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/62

63 F [ f(t τ i ) ] = F (ω)e jωτ i m i (t) = s(t) + n(t + τ i ) M i (ω) = S(ω) + N(ω)e jωτ i target signal s(t) n(t) noise signal τ2 τ3 time delays m (t) m 2(t) m 3(t) m (t) 4 τ4. 2. CSCC [ 22] Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/63

64 (2/3) (symmetry) (differentiation) F [ F (t) ] = 2πf( ω) F [ f (t) ] = jωf (ω) = jωf [ f(t) ] (integration) f(t)dt = F () = F (differentiation) t f(τ)dτ = jω F (ω) = jω F [ f(t) ] F ( jt) k f(t) d k = dωkf (ω) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/64

65 (3/3) (convolution theorem) F [ f (t) f 2 (t) ] = F (ω)f 2 (ω) (, convolution)... f (t) f 2 (t) = f (τ)f 2 (t τ)dτ (commutative law) (associative law) δ f (t) f 2 (t) = f 2 (t) f (t) (f (t) f 2 (t)) f 3 (t) = f (t) (f 2 (t) f 3 (t)) f(t) δ(t) = f(t) f(t) δ(t τ) = f(t τ) (δ δ ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/65

66 F {F (ω) F 2 (ω)} = 2πf (t)f 2 (t) F [ f (t)f 2 (t) ] = 2π F (ω) F 2 (ω) : Lag Window LPC LPC LPC F (ω) : f (t) : F 2 (ω) : f 2 (t) : F (ω) F 2 (ω) : 2πf (t)f 2 (t) : Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/66

67 : sinc : sinc? Sinc Function sinc t sinc t =? Sinc Function SincFunction(omega) SincFunction(omega).8.8 Fourier Transform * Fourier Transform =? Frequency (* pi) Frequency (* pi) (?) sinc sinc at sinc bt =? Sinc Function SincFunction(omega) SincFunction(omega/2).8 Fourier Transform Frequency (* pi) / Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/67

68 : sinc : sinc? ( ) Squared Rectangular Function Sinc Function RectWave(t) SincFunction(omega) Waveform Fourier Transform * Time Squared Rectangular Function Frequency (* pi) Sinc Function RectWave(t) SincFunction(omega) Waveform Fourier Transform Time -2 Frequency (* pi) π π Squared Rectangular Function Sinc Function RectWave(t) SincFunction(omega) Waveform Fourier Transform Time Frequency (* pi) sinc ω sinc ω = 2πF [ rect (t)/2 rect (t)/2 ] = πf [ rect (t)/2 ] = sinc ω Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/68

69 : :? ( ) Trianglar Sinusoid TriangSin(t).5 Waveform Time Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/69

70 Squared Rectangular Function RectWave(t) Time Squared Rectangular Function Time Trianglar Sinusoid RectWave(t) Time Sinusoid Triang(t) Time Trianglar Sinusoid cos(2*pi*t) TriangSin(t) Time Sinc Function SincFunction(omega) Frequency (* pi) Sinc Function SincFunction(omega) Frequency (* pi) Squared Sinc Function SincFunction(omega)** Frequency (* pi) Spectrum of Sinusoidal Signal Frequency (* pi) Squared Sinc Function SinSpec(omega) TriangSinSpec(omega) Frequency (* pi) ( ) : :? ( ) Trianglar Sinusoid Squared Sinc Function TriangSin(t) TriangSinSpec(omega) Waveform.5 Fourier Transform Time Frequency (* pi) ( ) Waveform Waveform Waveform * Fourier Transform Fourier Transform Fourier Transform ( ) Waveform Waveform * Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/7 Fourier Transform Fourier Transform

71 Dirac ( ) φ(t)δ(t)dt = φ(), (t ) δ(t) =, (t = ) δ(t)dt = ɛ ɛ δ(t)dt =, (ɛ > ) (distribution) (δ() = ) φ(t) ( ) : t φ() = : Heaviside d u(t) = δ(t) dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/7

72 * Gaussian δ(t) = (sinc ) δ(t) = lim e πt2 τ τ τ 2 lim t, τ τ τ t τ, t > τ Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/72 δ(t) = lim e t τ τ 2τ sin(kt) δ(t) = lim k πt 2 (sinc 2 ) k sin 2 (t) δ(t) = lim k π t 2 k = lim k π sinc(kt) k = lim k π sinc2 (t)

73 (/3) F [ δ(t) ] = e jωt δ(t)dt = A( ) : R τ (t) = (τ < /2) or (τ > /2) F [ A ] = τ lim F [ A R τ (t) ] = τ lim Aτ sinc ωτ 2 signum : sgn(t) = ( ) τ/2 = 2πA τ lim π sinc ωτ = 2πAδ(ω) 2, t >, t < F [ sgn(t) ] = 2 jω Heaviside [ sgn(t) = 2 u(t) = lim e at ()(t) e at ()( t) ] a F [ sgn(t) ] = lim a [ e at e jωt dt e at e jωt ] dt = lim 2jω a a 2 + ω 2 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/73 = 2 jω

74 (2/3) Heaviside ( ) u(t) u(t) = 2 { + sgn(t)} = {F [ ] + F [ sgn(t) ]} 2 F [ u() ] = πδ(ω) + jω cos(ωt), sin(ωt) ( ) F [ cos(ωt) ] = π[δ(ω Ω) + δ(ω + Ω)] F [ sin(ωt) ] = jπ[δ(ω Ω) δ(ω + Ω)] F [ cos(ωt) ] = lim = lim τ τ = τ lim 2 e j(ω Ω)t τ τ/2 τ/2 2j(ω Ω) + 2j(ω + Ω) sin(ω Ω)τ/2 (ω Ω)τ/2 e j(ω Ω)t + e j(ω+ω)t dt 2 e j(ω+ω)t τ/2 τ/2 + sin(ω + Ω)τ/2 (ω + Ω)τ/2 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/74 sin(ω Ω)τ/2 sin(ω + Ω)τ/2 = τ lim + (ω Ω) (ω + Ω) = lim τ τ 2 sinc (ω Ω)τ + τ 2 2 sinc (ω + Ω)τ 2

75 (3/3) e jωt ( < t < ) F e jωt = 2πδ(ω Ω) ( ) = F [ cos(ωt) + j sin(ωt) ] = π [δ(ω Ω) + δ(ω + Ω) δ(ω + Ω) + δ(ω Ω)] f(t) ( F k ) f(t) = F ke jkωt k= F [ f(t) ] = F kf e jkωt = 2π F kδ(ω kω) k= k= Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/75

76 : ( ) δ(t) T :.2 Sampling of a Signal Sampling(t) δ T (t) = k= δ(t kt ) Time Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/76

77 ( ) δ(t) T :.2 Sampling of a Signal Sampling(t) δ T (t) = k= δ(t kt ) Ω = 2π/T δ T (t) = c k e jkωt, c k = k= T F [ δ T (t) ] = T/2 T/2 = T k= T ejkωt e jωt dt = T k= F [ ] (ω kω) = T Time T/2 T/2 δ T(t)e jkωt dt = T k= k= T/2 T/2 e j(ω kω)t dt 2πδ(ω kω) = Ω Signal Spectrum Sampling Sampling(omega) k= δ(ω kω) = Ωδ Ω (ω) Frequency Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/77

78 ( ) t( ) ω( ) δ(t) Dirac 2πδ(ω) t 2 ω 2 cos Ωt π[δ(ω Ω) + δ(ω + Ω)] sin Ωt jπ[δ(ω Ω) δ(ω + Ω)] W 2π sincw 2 t, ω < W/2, ω > W/2 sinc Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/78

79 (t > ) t( ) ω( ), t < τ/2, t > τ/2 t τ, t < τ, t > τ e a t τsinc τ 2 ω τsinc 2τ 2 ω 2a a 2 + ω 2 (= ) e t2 2σ 2 σ 2πe σ2 ω 2 2 δ T (t) Ωδ Ω (ω) (Ω = 2π T ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/79

80 (t > ) t( ) ω( ) u(t) πδ(ω) + jω u(t) e at a + jω u(t) te at (a + jω) 2 u(t) cos Ωt u(t) sin Ωt u(t) e at sin Ωt π [δ(ω Ω) + δ(ω + Ω)] + jω 2j π Ω [δ(ω Ω) δ(ω + Ω)] + 2j Ω (a + jω) 2 + Ω 2 Ω 2 ω 2 Ω 2 ω 2 Heaviside (= ) (= u(t) = ω ) (= u(t) = ω ) (= = ω ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/8

81 Nyquist Shigeki Sagayama, FourierTrans26nov.tex, November 8, 26/8

82 ( ) : etc. f(t) ( ) 2.5 Sampling a Signal signal samples Time (* sampling period) ( ) 2 Sampling a Signal samples Time (* sampling period) 2 Sampling a Signal Time (* sampling period) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/82

83 ( ) ( )? Ambiguity of a Sample Sequence low band signal high band signal samples Time (* sampling period) 2.5 Ambiguity of a Sample Sequence low band signal high band signal samples Time (* sampling period) : 2 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/83

84 ( ) f m [Hz] f(t) /2f m [ ] ( ) F [ f(t) ] = F (ω) =, ω > ω m = 2πf m any, ω < ω m = 2πf m Satisfying the Sampling Theorem low freq signal samples Time (* sampling period) Violating the Sampling Theorem high freq signal samples Time (* sampling period) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/84

85 ( ) ( ) Signal Spectrum Distribution.2.2 Waveform(t) ( ) Signal Spectrum Distribution Spectrum(omega) Frequency (* pi) Frequency (* pi) Sampling of a Signal Signal Spectrum Sampling.2 Sampling(t) Sampling(omega) Time Frequency Sampling of a Signal Signal Spectrum Distribution.2 Waveform(t) Spectrum(omega) Samples(t) Time Frequency (* pi) Sample Interpolation Function Low Pass Filter.2 Interpolation(t) LowPassFilter(freq) Time Frequency (sinc) Sampling of a Signal Signal Spectrum Distribution.2 Waveform(t) Spectrum(omega) Samples(t) Interpolation(t,.) Interpolation(t,.) Interpolation(t,2.) Interpolation(t,3.) Interpolation(t,4.) Interpolation(t,5.) Time Frequency (* pi) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/85

86 f(t) Ω[rad/S] : F (ω) = F [ f(t) ] F (ω) = where ω > Ω Signal Spectrum Distribution Spectrum(omega) Frequency (* pi) f(t) T Ω 2π f T (t) f T (t) = f(t)δ T (t) Sampling of a Signal.2 Waveform(t) Samples(t) Time F Ω (ω) = F [ f T (t) ], Ω = 2π/T F Ω (ω) = F [ f(t)δ T (t) ] = 2π F (ω) F [ δ T (t) ] = 2π F (ω) {Ωδ Ω(ω)} = T F (ω)δ Ω (ω σ)dσ F Ω (ω) F (ω) Ω Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/86

87 ( ): B.2 Signal Spectrum Distribution Spectrum(omega) Frequency (* pi) B f m f m (aliasing).2 Signal Spectrum Distribution Spectrum(omega) Frequency (* pi) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/87

88 Nyquist ( ) : f m = 2B (Nyquist : T = 2f m ) Nyquist.2 Signal Spectrum Distribution Spectrum(omega) Frequency (* pi) Nyquist.2 Signal Spectrum Distribution Spectrum(omega) Spectrum(omega-) Spectrum(omega+) Spectrum(omega-2) Spectrum(omega+2) Frequency (* pi) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/88

89 f(t) (f m = Ω/2π ) f T (t) ( T = /2f m )? (rect W W ) f(t) = F Ω [T F T (ω) rect 2Ω (ω)] = T f T (t) π sinc(ωt) = f T (t) sinc(ωt) k f k f T (t) = f kδ(t kt ) f(t) = f T (t) sinc(ωt) = f kδ(s kt )sinc(ω(t s))ds k= = f ksinc(ω(t kt )) = f sin Ω(t kt ) k k= k= Ω(t kt ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/89

90 Interpolation of Samples signal samples Time (* sampling period) ( ) Interpolation of Samples signal samples Time (* sampling period) ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/9

91 : t > T [ ] f(t) /2T [Hz](= π/t [rad/s]) ( ) t > T f(t) = T = π/ω f(t) = c k e jkω ot c k = 2T T T f(t)e jkω t dt = 2T f(t)e jkω t dt = 2T F [ f(t) ] (kω ) F [ f(t) ] (kω ) = F (kω ) ω = π/t [rad/s] F (ω) = f(t)e jωt dt = T T k= = F (kω ) T k= 2T = T T F (kω ) sin(ω kω )T (ω kω )T dt T e jk(ω ω )t dt 2T F (kω )e jkωt e jωt dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/9

92 Ω x(t) ω < ω 2 etc. ω < ω 2 (low-pass filter: LPF) ω /2 ω (low-pass filter: LPF) ω /2 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/92

93 x(t):, x k :, Ω: ω m / : : CD(44.kHz) DAT(48kHz) t x(t) = k= x k sinc Ω(t kt ) (T ) ω m > Ω ( ) ( T = 2π/ω m) x(it ) = k= x k sinc Ω(iT kt ) ω m < Ω ( ) ( T = 2π/ω m) x(it ) = k= x k sinc ω m(it kt ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/93

94 4 Type Type 2 Type 3 Type 4 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/94

95 :. ( :? [ ]) 2. ( ) : type 4 (DFT) FFT 2/ 2: ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/95

96 (type ) (type 2) (type 3) (type 4) t( ) x(t), < t < x(t) = 2π X(ω) ejωt dt x(t), T 2 < t < T 2 x(t) = ( ) k= 2πt jk X k e T {x t }, t =,, x t = π 2π X(ω) π ejωt dω ( ) {x t }, t =,, N x t = N N k= X k e j 2πk N t ( ) ω( ) X(ω), < ω < X(ω) = x(t) e jωt dω {X k }, k =,, X k = T T 2 T 2 ( ) x(t) e 2πt jk T X(ω), π < ω < π ( ) X(ω) = t= x t e jωt {X k }, k =,, N ( ) X k = N t= 2πk j x t e N t dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/96

97 ... type : f(t) F (ω) type 2: f(t) = f(t) δ T (t) F (ω) δ Ω (ω) = F (ω) ( ) type 3: f(t) = f(t) δ T (t) F (ω) δ Ω (ω) = F (ω) ( ) ( π, π) type 4: f(t) = (f(t) δ T (t)) δ S (t) (F (ω) δ Ω (ω)) δ Σ (ω) = F (ω) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/97

98 4 type : type 2: type 3: type 4: : ( ): ( ) ( ) ( ) Parseval Wiener-Khintchine : ( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/98

99 (/2) (type ) (type 2) t( ) x(t) = ξ(t), <t< x(t) = 2π X(ω) ejωt dt x(t) = ξ(t), t <T/2 x(t ± T ) = x(t) x(t), T 2 <t< T 2 x(t) = k= jk 2πt X k e T ω( ) X(ω) = Ξ(ω), <ω < X(ω) = x(t) e jωt dω X(ω) = Ξ(ω) δ Ω (ω) {X k }, k =,, X k = T T 2 T 2 jk 2πt x(t) e T dt Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/99

100 (2/2) (type 3) (type 4) t( ) x(t) = ξ(t) δ T (t) {x t }, t =,, x t = 2π π π X(ω) ejωt dω ζ(t) = ξ(t), t < NT/2 ζ(t) = ζ(t ± NT ) x(t) = ζ(t)δ T (t) {x t }, t =,, N x t = N N k= X k e j 2πk N t ω( ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/ X(ω) = Ξ(ω), ω < Ω/2 X(ω) = X(ω ± Ω) X(ω), π <ω <π X(ω) = t= x t e jωt Z(ω) = Ξ(ω), ω < NΩ/2 Z(ω) = Z(ω ± NΩ) X(ω) = Z(ω)δ Ω (ω) {X k }, k =,, N X k = N x t e t= j 2πk N t

101 Parseval Wiener-Khinchine 4 Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/

102 Parseval Parseval f(t) 2 dt = t 2π F (ω) 2 dω ω = f(t)f (t)e jωt dt ω= = F [ f(t)f (t) ] ω= = ( ) ω= = 2π = 2π = 2π 2π F (ω) F (ω) F (σ)f (ω σ)dσ F (σ)f ( σ)dσ ω= F (σ)f (σ)dσ = QED Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/2

103 Parseval : t ω f(t) g(t) 2 dt = 2π F (ω) G(ω) 2 dω t ω : F (ω) 2 ( ) f(t) ω ω + dω F (ω) 2 dω 2π Squared Rectangular Function Squared Sinc Function RectWave(t) SincFunction(omega)**2.8.8 Waveform.6.4 Fourier Transform Time Frequency (* pi) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/3

104 (cross-correlation function) φ xy (τ) φ xy (τ) = x(t)y(t τ)dt y(t) τ x(t) x(t) y(t) (= ) τ τ φ(τ) = x(t) y(t) : φ xy (τ) = [x(t) y( t)](τ) : φ xy (τ) = φ yx ( τ) (austocorrelation function) φ xx (τ) x(t) = y(t) τ : φ xx (τ) = φ xx ( τ) : δ(τ) : y(t) = x(t) h(t) φ xx (τ) h(τ) = φ xy (τ), φ xy (τ) h(τ) = φ yy (τ) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/4

105 f(t) /koshiraeru/ /a/ (.52sec ) 2 5 Amplitude 5-5 x(t) Amplitude 5-5 x(t τ) dt autocorrelation φ xx (τ) = x(t)x(t τ)dt lag Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/5

106 Wiener-Khintchine Wiener-Khintchine ( ) : Φ xx (ω) = F [ φ xx (τ) ] ( ) F [ F (ω) 2 ] = 2π = = { F (ω) F (ω) 2 e jωt dω = 2π f(τ) 2π F ( ω)e jω(τ t) dω f(τ)f(τ t)dτ Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/6 f(τ)e jωτ dτ } e jωt dω f(τ) 2π dτ = (N. Wiener) ( ) F (ω )e jω (τ

107 (power spectrum): Φ xx (ω) = F [ φ xx (τ) ] (cross spectrum): Φ xy (ω) = F [ φ xy (τ) ] >, t t x(t) = w(t)x(t), : w(t) = < T/2 =, otherwise φ xx (τ) = φ x x (τ) Φ xx (ω) = F φxx (τ) : Hamming Hamming Window HammingWindow(t).8 amplitude (scaled) time (* time constant) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/7

108 x(t) /koshiraeru/ Amplitude /a/ (at.52sec) time (sec) 2 Spectrum Density (db) /sh/ 2 (at.3sec) Spectrum Density (db) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/8

109 f(t) /koshiraeru/ /a/ (.52sec ) Amplitude ( ) autocorrelation lag 2 Spectrum Density (db) Shigeki Sagayama, sagayama@hil.t.u-tokyo.ac.jp FourierTrans26nov.tex, November 8, 26/9

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a 13/7/1 II ( / A: ) (1) 1 [] (, ) ( ) ( ) ( ) etc. etc. 1. 1 [1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

数値計算:フーリエ変換

数値計算:フーリエ変換 ( ) 1 / 72 1 8 2 3 4 ( ) 2 / 72 ( ) 3 / 72 ( ) 4 / 72 ( ) 5 / 72 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t));

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

v_-3_+2_1.eps

v_-3_+2_1.eps I 9-9 (3) 9 9, x, x (t)+a(t)x (t)+b(t)x(t) = f(t) (9), a(t), b(t), f(t),,, f(t),, a(t), b(t),,, x (t)+ax (t)+bx(t) = (9),, x (t)+ax (t)+bx(t) = f(t) (93), b(t),, b(t) 9 x (t), x (t), x (t)+a(t)x (t)+b(t)x(t)

More information

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + 1.3 1.4. (pp.14-27) 1 1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 + i2xy x = 1 y (1 + iy) 2 = 1

More information

sp3.dvi

sp3.dvi 3 15 5 22 1 2 1.1... 2 1.2... 4 1.3... 5 1.4... 8 1.5 (Matlab )... 11 2 15 2.1... 15 2.2... 16 2.3... 17 3 19 3.1... 19 3.2... 2 3.3... 21 3.4... 22 3.5... 23 3.6... 24 3.7... 25 3.8 Daubechies... 26 4

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

2014 3 10 5 1 5 1.1..................................... 5 2 6 2.1.................................... 6 2.2 Z........................................ 6 2.3.................................. 6 2.3.1..................

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i 24 Investigation on HC/MC-CDMA Signals with Non-Uniform Frequency Intervals 1130401 2013 3 1 CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA,

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta 009 IA 5 I, 3, 4, 5, 6, 7 6 3. () Arcsin ( (4) Arccos ) 3 () Arcsin( ) (3) Arccos (5) Arctan (6) Arctan ( 3 ) 3. n () tan x (nπ π/, nπ + π/) f n (x) f n (x) fn (x) Arctan x () sin x [nπ π/, nπ +π/] g n

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

i 3 Mathematica Fourier Fourier Dirac Dirac Fourier Haar 7.4 (MRA) 8 R L 2 {V j } j Z j Z V j V j+1 j Z V j = L 2 (R) f(2x) V j+1 f(

i 3 Mathematica Fourier Fourier Dirac Dirac Fourier Haar 7.4 (MRA) 8 R L 2 {V j } j Z j Z V j V j+1 j Z V j = L 2 (R) f(2x) V j+1 f( Fourier 解析とウェーブレットの基礎 水谷正大著 大東文化大学経営研究所 i 3 Mathematica Fourier 1 5.4 Fourier Dirac Dirac 2.3 4 Fourier 8 6 7 Haar 7.4 (MRA) 8 R L 2 {V j } j Z j Z V j V j+1 j Z V j = L 2 (R) f(2x) V j+1 f(x) V j V 0

More information

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? * 1 2011 2012 1 30 1 (10 5 ) 2 2 6 2.1 (10 12 )..................... 6 2.2 (FP) (10 19 ).............. 14 2.3 2 (10 26 )...................... 26 2.4 (2. )(11 2 )..... 35 3 40 3.1 (11 9 )..........................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t) Radiation from moving harges# Liénard-Wiehert potential Yuji Chinone Maxwell Maxwell MKS E x, t + B x, t = B x, t = B x, t E x, t = µ j x, t 3 E x, t = ε ρ x, t 4 ε µ ε µ = E B ρ j A x, t φ x, t A x, t

More information

09 8 9 3 Chebyshev 5................................. 5........................................ 5.3............................. 6.4....................................... 8.4...................................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

7-12.dvi

7-12.dvi 26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z )

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information