2.1.,., { n Q[t ±1 ] := a k t k a k Q, m, n N k= m. Z., s Z, n k= m a kt k s := n k= m a kt k+s. : Q[t ±1 ] {t n } n Z Q t 2 Q t 1 Q t 0 Q t Q t 2 (Q-

Size: px
Start display at page:

Download "2.1.,., { n Q[t ±1 ] := a k t k a k Q, m, n N k= m. Z., s Z, n k= m a kt k s := n k= m a kt k+s. : Q[t ±1 ] {t n } n Z Q t 2 Q t 1 Q t 0 Q t Q t 2 (Q-"

Transcription

1 ( ) 2018,.. 1, 1 H 1 (X; Q) 0 1 CW X.,,...,,..,,. [Adams, CF, Lic,,, Rol] [Gor,, Kaw],,,, (, ).,,.,,.,,. (3 )., ( ) (, ).. 3,.,,.,,.,., Blanchfield.,. 2.,,,. 1 H 1 (X; Q) 0,. 3,, H 1 (X; Q) = 0. 1

2 2.1.,., { n Q[t ±1 ] := a k t k a k Q, m, n N k= m. Z., s Z, n k= m a kt k s := n k= m a kt k+s. : Q[t ±1 ] {t n } n Z Q t 2 Q t 1 Q t 0 Q t Q t 2 (Q- ),,. (, Q[t ±1 ]-, Q Z ). }., n- f = n k=0 a kt k Q[t], Q[t ±1 ]/(f) ( a n 0, a 0 0 ). n, 1, t, t 2,..., t n 1. 2, Q[t ±1 ]/(f).,. n 2,., t n 1 1 t, t t 2,..., t n 2 t n 1, t n 1 t n (a 0 + a 1 t + + a n 1 t n 1 )/a n. (f) 3., n V Z (, Q[t ±1 ]- ). V v 0, n, v 0 s t s., V 1, t,..., t n 1., t n 1, a 0,..., a n 1, t n 1 1 = a 0 a 1 t a n 1 t n 1., f = a 0 + a 1 t + + a n 1 t n 1 + t n, V Q[t ±1 ]/(f).,.,. Q[t ±1 ] W 1 = 1 Q t i i Z V,, f 1, W 1 = Q[t]/(f1 )., V/W 1, W 2 = Q[t]/(f 2 )., : V = W 1 W m = Q[t]/(f1 ) Q[t]/(f m ), 2.1 ( ). V, Z. V Q[t ±1 ]. f 1,..., f m 4, Q[t ±1 ]. V = Q[t]/(f 1 ) Q[t]/(f 2 ) Q[t]/(f m ). (1) 2 Q[t ±1 ] ( ) ( ). 3,, ( ). 4, f k, a Q t ±1 ( (Q[t ±1 ]) = {at n } a Q,n Z.) 2

3 , Z V, f 1,..., f m.,. 2.2 M ( ). α : π 1 (M) Z, M M. π 1 (M). M, π 1 (M) := { f : S 1 M f, f(0) = }/.,., ( ) ( [, ] ), p : M M, ( ) p (π 1 ( M)) π 1 (M) : { M M}/ {N π 1 (M) N.}.,.,,.,. α : π 1 (M) Z, Ker(α), Y CW, [Y, S 1 ] K S 1 ( S 1 = R/Z ). [ϕ] [Y, S 1 ], γ(ϕ) : π 1 (Y ) π 1 (S 1 ) = Z. γ : γ : [Y, S 1 ] Hom(π 1 (Y ), Z) 5. Proof... Y, Y k k-., f : π 1 (Y ) Z, ˆf : Y 1 S 1. π k (S 1 ) = 0 (k > 1), ˆf Y 2-skeleton., Y S 1., up to ( ),.. [, 6.2.5]., α α : M S 1.,. exp:r S 1 y exp(2π 1y)., X R ( ) M := {(x, y) X R α(x) = exp(y) }.. p(x, y) = x, α(x, y) = y,. 5, Hom(π 1 (M), Z) = H 1 (M; Z).. 3

4 M M α R ˆα S 1 1: S 1. M t : M M t(x, y) = (x, y + 1). M ( ) p : M M {t n } n Z,., x X, O Y, M Õ (1)(2) : (1) n, pt n = p p t n Õ : tn Õ O. (2) p 1 (O) = n Z t n Õ. Õ, t±1 Õ, t ±2 Õ. Proof. pt n = p. x M, α(x) V S 1, p 1 (V ) = n Z t n Ṽ Ṽ R. exp Ṽ : Ṽ V, O = α 1 (V ), Õ = α 1 (Ṽ ),, (1)(2) α,, M. ([, p.177] )., M, α. 2.3 M Z = {t n } n Z ( )., H ( M; Q). Q[t ±1 ] ( ). V H k ( M; Q), Q[t ±1 ], (1). f 1 f m (α k ). k (t) (k = 1, k ) H k ( M; Z)( Z[t ± ], ). 2.7.,, Q t ±1, (, (f i ) f i, ).,, 6. f 1 f m 0, H k ( M; Q) Q.. : 2.8 ( [, 6.2.8]). H ( M; Q), M χ(m).,.,. 4

5 2.9. : M = S 1 S n, M = R S n,, H n ( M; Q) = Q[t]/(t 1),. M. H 1 (M; Z) = Z Z/2. M S 1, H 0 ( M; Q) = Q[t]/(t 1) H 1 ( M; Q) = Q[t]/(t + 1), n 2, M S 1 S n. M S n ( 2 ), H ( M; Q) Q[t ±1 ],., M S 1 S 2n 1 S 2n, H ( M; Q) (χ(m) = 0 ). 2: S n, S 1 S n,, : f : M S 1 fibered. dim(m) 1 W, f : W W, M = (W [0, 1])/{(x, 0) (f(x), 1)} x W 6. f : π 1 (W ) π 1 (S 1 ) = Z α., M W R. W, H ( M; Q). dim(m) = 3, W Σ g,r, H 1 (W ; Z) Z 2g+r f : H k (W ; Q) H k (W ; Q) A, Alexander Det(tA I rkhk (W ;Q)) (Hint: ) H (M; Q) H (S 1 ; Q) 7., H ( M; Q). Proof. M 1 = t, M. 0 C cell ( M; Q) 1 t. C cell ( M; Q) C cell (M; Q) 0 (exact) Hn+1(M; cell Q) Hn cell ( M; Q) 1 t Hn cell ( M; Q) Hn cell (M; Q) (2) ( Wang ). n > 1,, 1 t. Hn cell ( M), Q[t ±1 ], Q[t ±1 ] 1 t., n > 1 Hn cell ( M)., n = 1, 0, 0 H 1 ( M; Q) 1 t H 1 ( M; Q) H 1 (M; Q) H 0 ( M; Q) 1 t H 0 ( M; Q) H 0 (M; Q) 0 6. f, x S 1, f 1 (x) W. 7, K : S n 2 S n, M = S n \ Im(K), Alexander H (M; Z) H (S 1 ; Z) 5

6 ., 4 Q., 1 t., n 1 Hn cell ( M; Q) H ( M; Q)., (2) χ( M) = χ( M) + χ(m) χ(m) = 0., Alexander 3,., M M R. m N, M (x, y) (x, y + m) m, M m., M s S 1 S n 2, M m ( M = S 3 \ K )., M m s S 1 D n 1, m ( ). B m., M M m B m H 1 ( M; Z) H 1 (B m ; Z), (t m 1)/(t 1)H 1 ( M; Z)., : H 1 (B m ; Z) = H 1 ( M; Z) (t m 1)/(t 1)H 1 ( M; Z) Z[t ±1 ]. [Kaw, 5.5]. [Lic, Cor 9.8] : 3.2. M = S 3 \ K, Alexander (t 1 ) = (t), (1) = ±1., m, : m 1 H 1 (B m ; Z) = (e 2π 1v/m )., 3.3 ( - [NY]). M S 3 \ K. v=1 {f Hom(π 1 (M), SU(2)) f } SU(2), ( 1 ( 1) + 1)/2. 6

7 4 Alexander,.. Z,., Alexander., Alexander. 4.1 Z[t ± ] order.,, Q[t ±1 ]., Z. H ( M; Z) Z[t ±1 ]., Z[t ±1 ] ( )., Z[t ±1 ] M ( M < ).,, Alexander order. S, A S., s, r N S r P S s A 0 ( ), (P s r )., i E i (A), : { det(b) S B : (s i) (s i) P }. ( ) a 11 a 12 a P, : a 21 a 22 a 23 a 11 a 12 E 0 = 0, E 1 = a 21 a 22, a 11 a 13 a 21 a 23, a 12 a 13, E a 22 a 23 2 = a ij i 2,j 3, E 3 = A., A E i (A) ( [CF] ) ( [CF] ), S UFD( ) 8.,, E 0 (A) S. S S order, ord(a) S. S S, ( ). Order,, : 4.4. ( Q(S) S, Tor S A A ): orda 0 E 0 (A) 0 Q(S) S A = 0 ranka = 0 A = Tor S A S PID ( Z, Q[t ±1 ]). M S,, m, n N f 1,..., f m S, S M = S m ( S/(fi ) ) 1 i n 8 R x x = p 1 p 2 p n R R., Z[t ±1 1,..., t±1 m ]. 7

8 . S n+m S n+m M 0, P = diag[0,... (m )..., 0, f 1,..., f n ].., E 0 = det(p )S., ord(a)=±det(p )S. : 4.6., M. H k ( M; Z) Z[t ±1 ]-. order Z[t ±1 ], (k )Alexander ( ±t m± ). 2.6 Q[t ±1 ], : 4.8. M M, H ( M; Q). Z[t ±1 ] (k )Alexander. Q[t ±1 ], 2.6 (k )Alexander. Proof. S = Z[t ±1 ], S n S m H ( M; Z) 0. Q, H ( M; Q). Q order. 4.5 order f 1 f m, 2.6 (k )Alexander H ( M; Q), Alexander. 4.2 Alexander., Alexander.., 7, Alexander. Alexander., Alexander., M 2k + 1., k Alexander (reciprocity)., k (t 1 ) = t deg k (t). k = a m t m + + a 0 t a m t m = a i = a i., H s (M; Z) H s+1 (M; Z)., Alexander t = 1, s (1) = ±1. 8

9 9, 6.,., : 4.11 ([Yj]). n > 1. f Z[t ±1 ], K : S n S n+2, H 1 ( Sn+2 \ K; Z) = Z[t]/(f). Alexander fibered : M 3, M 2.11, fibered., Alexander ±1. H 1 (Σ g,r ; Z)., 10., K : S 1 S Alexander ±1, K fibered. Slice. ( )Slice, F : D 2 D 4, (ImF ) D 4 = S 3, F D 2 = K. Alexander ( ) K : S 1 S 3 Slice, g(t) Z[t ±1 ], (t) = g(t 1 )g(t). [, 5.3.4] [Lic, 8.18]., K S 3, (K ). g (K) := min{g Z K g. } : deg 1 (t) 2g (K). g (K),, deg 1 (t) = degdet(tv V T ) rkv = 2g (K)., Knot Floer homology, g (K) [OS]. 9 Reidemeister [, 5.3]. [CF, IX ]. Blanchfield pairing [Gor, Kaw, Hil].,. 10 Alexander, Knot Floer homology, homology fibered-ness [Ni]. 11,, arc,. 9

10 5 Alexander H 1 (X) = Z, 1 ( )., π 1 (M), π 1 ( M)., H 1 ( M; Z) = π 1 (M) /[π 1 (M), π 1 (M) ]. Z = t. Z[t ±1 ], Z[t ±1 ].., M 2.11 π 1 (M) = π1 (W ), t,, : 5.1., M := S 3 \ K 31. G := π 1 (S 3 \ K 31 ). G := π 1 (S 3 \ K 31 ) = x, y yxyx 1 y 1 x 1. π 1 (S 3 \ K 31 ) Z x 1, y 1. a = yx 1 G = x, a ax 2 ax 1 a 1 x 1 = x, a a(x 2 zx 2 )(xa 1 x 1 ), π 1 ( M) = G : H 1 ( M; Z) = G /G = α, t α + t 2 α tα. t 2 t [Rol, 7.D],, M = S 3 \ T (p, q) (p, q ): S 3 \ T (p, q) := {(x, y) C x 2 + y 2 = 1, x p + y q = 0 }., 1 (t) = (1 t)(1 tpq ) (1 t p )(1 t q ), H 1( M; Z) = Z[t ±1 ]/ 1 (t).,., π 1 (M) /[π 1 (M), π 1 (M) ], t 2 t + 1 t 2 3t + 1 t 5 1 t 1 2t 2 3t + 2 3:. 12, 5 2, H 1 ( M; Z) = Z[t ±1 ]/(2t 2 3t + 2) Z. 10

11 5.2 Alexander 2. Alexander., ( ). S 1,., L : m S 1 R 3. m #L. L L, h : R 3 [0, 1] R 3, h t R 3, h 0 = id R 3 h 1 (L) = L., D : m S 1 R 2,,. 7 L +, 7 L,. L, p : R 3 R 2, p L., 4., : { } 1:1 { }. RI RI RII RII RIII 4:.,. D π 1 (S 3 \L). Wirtinger. D arc,. 11

12 5.4 (Wirtinger ( [Rol])). π 1 (S 3 \ L). e α (α D arc ) τ, e 1 γ τ e 1 β τ e ατ e βτ ), e α, α.. α τ β τ β τ γ τ γ τ α τ,.,.,, H 1 (S 3 \ L; Z) Z #L. Proof. i #L, α, γ L, Wirtinger,. α, π 1 (S 3 \ L) Z #L..,,. L, D, D = D 1 D #L. p, 2. p, ϵ(p) = +1, p, ϵ(p) = 1. (i j), i j. lk(d i, D j ) := 1 ε(p). 2 p D i D j.. [Rol, 5.D ] #L #L {link(l i, L j )} i,j #L ( Jordan ).,,. 5.3 FOX Alexander. Alexander.. G Z[G]., Z[G] := { a i g i a i Z, g i G }.., H := G Z k ( m i=1(z/n i Z)), Z[H] : Z[H] = Z[t ±1 1,..., t ±1 k, s 1,..., s m ]/(s n 1 1 1,..., s n m m 1). 12

13 Z[H] UFD, H., FOX F I I. k I x k. FOX( ), k I, x k : F I Z[F I ]. x i x k = δ i,k, (uv) x k = u v x k + u x k, for all u, v F I F I = x, y, yxy x yx y + y x + 1 = yx + 1. y y 5.9. well-definedness ((uv)w) w 1 x i 1 w = w x i wn x i = y xy x + y x x k = (u(vw)) x k = yx y x + y x x. = y, yxy y = (1 + w + + w n 1 ) w x i (n > 0). w F, w 1 = s i=1 w x i (x i 1). = y xy y + y y =, Alexander. G = x 1,..., x n r 1,..., r m, H G, a : G H. Alexander, G r 1,..., r m, r i x j,., Z[H] n m a( r 1 x 1 ) a( r 1 x n ) A G :=..... Mat(n, m, Z[H]). a( r m x 1 ) a( r m x n ) A G k, k k, x 1,..., x n r 1,..., r m ( Tietz ). ( [CF, 4.5] ) H, Z[H] UFD, order., Alexander :, G := π 1 (S 3 \ L). H = Z #L 5.5. A G k order, (k ) Alexander. 1 Alexander G ( G H = Z, Z[H] = Z[t ±1 ] ), k order, 5.1 k Alexander ( ) G = x, y xyx = yxy 3 1. : α( x (xyxy 1 x 1 y 1 )) = α(1 + xy xyxy 1 x 1 ) = 1 + t 2 t. 13

14 α( x (xyxy 1 x 1 y 1 )) = α(x + xyxy 1 xyxy 1 x 1 y 1 ) = 1 t 2 + t. Alexander (1 t + t 2 1 t 2 + t). order, Alexander 1 t + t , Alexander., 8 18, t 2 t T (p, q), x, y x p = y q,, FOX, Alexander. FOX, Alexander. 9 CW.., CW X, p : X X., X π1 (X). X CW., X j- σ j, 1 σ j, p 1 (σ j ) π 1 (X) σ j., C j ( X; Z) = Z[π 1 (X)] σ j (3) σ j :X j. X C : C k ( X; Z) k Ck 1 ( X; Z) k 1 C1 ( X; Z) 1 C 0 ( X; Z) 0, k π 1 (X)., M, π 1 (X) M,. H n (C ( X; Z) Z[π1 (X)] M, k id) ab : π 1 (X) H, Ker(ab) X ( ). M Z[H],, C ( X; Z) Z[π1 (X)] M, X C (X; Z)., k,. 2., X CW, 0-cell 1, 1-cell n, 2-cell m., π 1 (X) x 1,..., x n r 1,..., r m ( 9 )., X i-cellσ, p 1 (σ) π 1 (X) i-cell., C 1 ( X; Z) Z[π 1 (X)] n, C 2 ( X; Z) Z[π 1 (X)] m. FOX, : C 1 ( X; Z) 1 C 0 ( X; Z) = Z[π 1 (X)] x k 1 x k., C 2 ( X; Z) 1 C 1 ( X; Z) FOX., 5.17, M = Z[H], Alexander, C 2 (X; Z) 1 C 1 (X; Z). 14

15 ,. H 1 (X; Z) X,, Alexander. 6, Alexander. [Rol, 8 ] [Lic, 6 ] (,, ). L S 3.. α : π 1 (S 3 \ L) Abel Z #L Z.,. 6.1, : 6.1. L S 3. L, S 3 \ L Σ, ( )L., Σ S L, , ([Lic, 8 ] ). Proof. L D. ˆD 5 D., ˆD,. ˆD R 2. ˆD,.,.,, ˆD, L.,,,. ( ). 2.3 α C - S 3 \ L S , α 1 (0) (S 3 \ L) #L. 0, Σ := α 1 (0),. Σ,. = = 5: [Lic, 5.A]. google.,. 15

16 K 41, K 31 K 41, (,.) 6.5. Σ S 3, N(Σ)., S 3 \ N(Σ) 13. ( 6, 1 g attach. 2. m S 1. ) ( 6.12), Alexander., (Alexander ). 6.6 ([Lic, 6.3] ). Σ S 3 g Seifert., H 1 (S 3 \ F ; Z) H 1 (F ; Z) (Z 2g+#L 1 )., β : H 1 (S 3 \ F ; Z) H 1 (F ; Z) Z, F S 3 \ F c d, β([c], [d]) = lk(c, d).. V S 3, V S 3 \F. V V = S 3 V V V, Mayer -Vieoris, H 2 (S 3 ; Z) H 1 ( V ; Z) H 1 (V ; Z) H 1 ( V ; Z) H 1 (S 3 ; Z).,. H 1. 6,., H 1 (V ; Z) = H 1 (F ; Z) {f i } i 2g+#L 1,., H 1 (V ; Z) e i, 6 (f i ). H 1 (V ; Z)., V,, H 1 ( V ; Z) = Z 2g+#L 1 Z 2g+#L 1,., β([e i ], [f j ]) = δ ij β., 6 β([c], [d]) = lk(c, d) ( ).. e 1 e 2 e 4 e2g 1 e 2g f 1 f 2 f 3 f 4 f 2g 1 f 2g f 2g+1 f 2g+2 f 2g+#L 1 6: H 1 [f j ], H 1 (S 3 \ F ) [OSJS, 3 4 ],, trefoil (3 ), 3, m S 1. Σ m R

17 ,., [0, 1],. + : F {0} F {1} 6.8. L S 3, F. F, : H 1 (F ; Z) H 1 (F ; Z) Z; ([α], [β]) lk(α, (β) + ). α, β H 1 (F ; Z) F well-defined [Lic, 6.3]..,,., : Z[t ±1 ] Λ ( ). tv T V H 1 ( S 3 \ L; Z)., Λ 2g tv T V Λ 2g H 1 ( S 3 \ L; Z) 0 (exact)., F,. F, F ( 1, 1) S 3 \ F. Y S 3 \ F ( 1, 1), F = F { 1} F + = F {1} K ( 1, 1). { 1} {1} ϕ : F F +., i Z, Y Y i. h i : Y i Y i+1. i Z Y i X = i Z Y i / {(x, i) (ϕ h i (x), i + 1)} i Z, x F+.. t : X X t Yi := h i+1 h 1 i. Y i X S 3 \ K α. 17

18 2.4., α, [Lic, 7.9] ( ) ( [Lic, 6.5] ). X :Y := i Z Y 2i+1, Y := i Z Y 2i., Y Y X, Mayer-Vietoris H 1 (Y Y ) H 1 (Y ) H 1 (Y ) H 1 (X ) δ H 0 (Y Y ) H 0 (Y ) H 0 (Y ) Z, Y Y F,, δ. H 1. H 1 (Y Y ) Z[t ±1 ] H 1 (F ; Z). 6.6 H 1 (S 3 \ F ; Z) = H 1 (F ; Z), H 1 (Y ) (Z[t ±2 ]) 2g+#L 1, H 1 (Y ) (tz[t ±2 ]) 2g+#L 1.,. (Z[t ±1 ]) 2g+#L 1 α (Z[t ±1 ]) 2g+#L 1 H 1 (X ) 0 (exact).. V ij ij., Mayer- Viertoris, 6.6, α(1 [f i ]) = ( V ij (1 [e j ]) + V ji (t [e j ])) j rkv ( ).,,., : Alexander. K (t) := det(t 1/2 V T t 1/2 V ) Z[t ±1/2 ]. 4.7 Alexander,, : 6.13., 4.7,,., Alexander K (t 1 ) = K (t).,, t = 1, K (1) = 1. Proof. K (t 1 ) = det(t 1/2 V T t 1/2 V ) = ( 1) rkv det(t 1/2 V T t 1/2 V ) = K (t)... {f i },. K (1) = det(v T V ), ij (V V T ) ij = lk(f i, f j) lk(f + i, f j) ( 0 1, f i f j. 1 0., det 1. ) g 18

19 6.15. Alexander order, ±t ±1/2., K, K (t 1 ) = K (t) (1) = 1,., 6.12 Seifert, (±t ±1/2 ) ([Lic, 8] )., S k S k+2., k ([Hil, Rol] ) 6.2 Seifert. 5.13, Fox 5.12, 4.7., S 3 \ K,., π 1 (S 3 \ K) (4). ([Lin, 2] ). 1- H S 3 K m π 1 (S 3 \ K), g Seifert F S 3 K. U := S 3 F, U := H (F )., U U F F. 6.5, U (resp. U U U ) 2g (resp. 2g + 1 4g). 6, e i f i (1 i 2g)., π 1 (U ), {(f 1 ) +,..., (f 2g ) + }., π 1 (U ) {(f 1 ),..., (f 2g ), m} π 1 (U U ) {(f 1 ) +,..., (f 2g ) +, (f 1 ),..., (f 2g ) }., {e 1,..., e 2g } π 1 (U ). 6.6, e i f j δ ij. i : U U U i : U U U., van-kampen π 1 (S 3 \ K) m, e 1, e 2,..., e 2g, ma j m 1 b 1 j, (1 j 2g), (4) a j b j {e 1,..., e 2g }., π L = π 1 (U U ) {f 1,..., f 2g, (e 1 ),..., (e 2g ), } i (e j )i (e j ) 1 = m i ((f j ) + ) m 1 (i ((f j ) )) 1, (e 1 ),..., (e 2g ) i (e j )i ((e j ) + ) 1 ) ( )., [Lin, ]., : π 1 (S 3 \ 3 1 ) = x 1, x 2, h hx 1 x 1 2 h 1 = x 1, hx 2 h 1 = x 2 x 1 1. Trotter X ( ) 6.17 ( [Tro, 4.1])., X. 0 Z[t ±1 ] 2g (V T tv, w) Z[t ±1 ] 2g+1 1 t Z[t ±1 ϵ ] Z 0 (exact)., w. 19

20 ., 1 e (i) j 1 t, X., a (i) j X. i Z, e j e (i) j, e j e (i) j. b (i) j Shreirer, π 1 (X ) : e (i) 1, e (i) 2,..., e (i) 2g, (i Z) a (i+1) j.,., Reidemeister- (b (i) j ) 1, (1 j 2g) (i Z). r (i) j, X 2-cell., 2 (r (i) j ), e j e j, e j e + j. 6.10, α., α., ( ma jm 1 b 1 j w. m), 2 α = (V T tv, w)., , Alexander π K, π K. 6.14, Z[t ±1 ] (1 t) 1 Z[t ±1, (1 t) 1 ]. 5.18, 2 (4) Alexander., 6.17, 1 w, 2 k- order, V T tv (k 1)- order., 6.10, V T tv H 1 (X ; Z)[(1 t) 1 ]., Alexander. Alexander A : { } Z[t ± 1 2 ]. D 1, D 2 Reidemeister, A(D 1 ) = A(D 2 ). U, A(U) = 1. 3 L +, L, L 0, 1, 7,,, ( ) : A(L + ) A(L ) = (t 1/2 t 1/2 )A(L 0 )., 6.19., S 3 \ K, A(K) 1 (t). [Lic, 15.2], [Lic, 8.6] [, 3.2].,.,.,,. 14.,, X, π 1 (X ), X., 2 π 1 (X ),. X 3, 3. 20

21 Alexander,. L 0 F 0 8 ( 6.2 )., L + L 8. V 0, V +, V., H 1 (F 0 ; Z), {f 2,..., f n }. f 1 8, {f 1, f 2,..., f n } H 1 (F ±1 ; Z).,, V + V : M + = ( M0 w v T n ), M = ( M0 w v T n + 1 v w.,. det(tv T + V + ) det(tv T V ) = (1 t)det(tv T 0 V 0 ). t rkv +/2, L (t),. ). 6.4., Colored Jones (Melvin-Morton ) [OSJS, 5 ]. L + L 0 L 7: 21

22 f 1 f 1 8:, f 1. 22

23 7 Reidemeister 7.1.,. (i) Reidemeister. 3. (ii) Franz,. (iii) Whitehead,. Whitehead. (iv) Milnor [Mil4], Alexander. (v) Turaev[Tu1, Tu2], refine., Spin c, ([Nic] )., ,. ([Tu3] ) (vii) 2000,,. ( [FV] ),., [Tu1, Mas], [, ]. [Nic, Tu2] ( Turaev ) 7.2,. F, F : C : 0 C m m 1 m Cm C1 C0 0, ( ). (5), C q c q := {c (q) 1,..., c (q) n q }., ( ).,. ( ). C q a q := {a 1,..., a m } b q := {b 1,..., b m }. a i = m j=1 d ijb j {d ij }. det{d ij } [a q /b q ] m = 1., 0 C 1 C 0 0, 1 : C 1 C 0. ( ). det( 1 ) m = 2, 0 M (f,0) M N (0,g)T N 0. f, g., detf/detg. 15, Euler class, Casson, LMO, Seiberg-Witten 23

24 q+1 q , 0 C q+1 Cq Cq 1 0. Im( q+1 ) = B q C q., B q b q. : q+1 0 C q+1 Bq 0, 0 Z q C q B q 1 0, 0 B q 1 C q 1 0. F, s : B q 1 C q,,. q+1 0 Z q Im( q+1 ) Im(s) B q 1 0. bq 1 s(c q 1 ).., c q+1 b q 1, C q., [c q+1 bq 1 /c q ]. s, ( ). 3 : [b q+1 /c q+1 ] [ b q 1 /c q 1 ]., : [b q+1 /c q+1 ] 1 [b q bq 1 /c q ][ b q 1 /c q 1 ] (Reidemeister ). (5),. S q : 0 Z q (C ) C q B q 1 (C ) 0 Reidemeister, τ(c ),. m τ(c, c q ) := [b q, b q 1 /c q ] ( 1)q+1 F \ 0 q=0 7.5., B q. Proof. {b q}, [b q b q 1/c q ] = [b q bq 1 /c q ][b q/b q ][b q 1/b q 1 ]., m m [b q, b q 1/c q ] ( 1)q+1 = ([b q bq 1 /c q ][b q/b q ][b q 1/b q 1 ]) ( 1)q+1 q=0 = q=0 m ([b q bq 1 /c q ]) ( 1)q+1 ([b q/b q ][b q 1/b q 1 ]) ( 1)q+1 = q=0 m [b q, b q 1 /c q ] ( 1)q+1. q=0 7.6., τ(c ) C., c q, ( [, Lemma 5.1.6]): m τ(c, c q ) = τ(c, c q) [c q /c q] ( 1)q+1., c q, c q. q=0 24

25 ,., C 3 C 2 0 C 1 C 0 0 ( 0), det( 3 )det( 1 ) A m A m+1 A 0, 2 (A, w), 1 = ( v, b) T, w., A m m.,, det(a)/b ( )., : C C C 0., c q, c q, c q C q, C q, C q, ι : C i C i p : C C i,. [ι(c q)c q/c q ] = 1., τ(c) = ±τ(c )τ(c ) , ([ ] ). 7.3 CW Reidemeister. 5.3, π 1 (X) = G H = π 1 (X) ab, X. φ : π 1 (X) F., C : C k ( X; Z) Z[π1 (X)]F k C1 ( X; Z) Z[π1 (X)]F 1 C 0 ( X; Z) Z[π1 (X)]F (Reidemeister )., τ φ (X) = 0.,,, φ(π 1 (X)) : τ φ (X) := τ(c ( X Z[π1 (X)] F)) F /φ(π 1 (X)),., CW,., Reidemeister. [Tu1, 8.8] ( 16 ).,,, 16 : simple homotopy.. simple homotopy. 25

26 7.14.., Reidemeister. (, ) (Chapman[]). CW h : X X., Reidemeister τ φ (X) = τ φ h (X )., ([Nic, 2.1] [, 1 ] ): X = S 1 S b, 1-cell x, y, 2-cell u. u = xyx 1 y 1. π 1 (X) = x, y xyx 1 y 1, FOX ( 5.18) 2 : C 2 ( X Z[π1 (X)]F) C 1 ( X Z[π1 (X)]F); ũ x [x, y] [x, y] +ỹ x y = x(1 φ(y))+ỹ(φ(x) 1)., 5.18, 1 ( x) = φ(x) 1, 1 (ỹ) = φ(y) 1.,. (1 φ(y), φ(x) 1) (1 φ(x), 1 φ(y)) C : 0 C 2 C T 1 C 0 0. det(1 φ(x)) det(1 φ(y). det(1 φ(y) = 0. b 2 := u, b 1 = x, b 0 =. ( ) 1 φ(y) 1 [b 2 /c 2 ] = 1, [( b 2 )b 1 /c 1 ] = det = 1 φ(x), [( b 1 )b 0 /c 0 ] = det(1 φ(x)). (1 φ(x)) 0,, τ φ (C ) = n > 1, X = (S 1 ) n, F = Q(H 1 (X)) = Q(t 1,..., t n ), 1., X S 3 \ K (H = Z α )., Milnor Alexander : τ α (X) = K (t)/(1 t) Proof X. t 1 K (t), ( ) H ( X; Q(H)) ,., τ α (X) = det(tv T T )/(1 t)., K (t),., Mayer-Vietoris Gluing Y, X 1, X 2 X X = X 1 X 2 X 1 X 2 = Y. φ : Q(H 1 (X)) F, : j : Q(H 1 (Y )) Q(H 1 (X)), j k : Q(H 1 (X k )) Q(H 1 (X)) 26

27 C ( X) F q, C ( X k ) F q, C (Ỹ ) F q 17. τ φ (X) τ φ j (Y ) = τ φ j1 (X 1 ) τ φ j2 (X 2 ) up to ± φ(π 1 (X)) , X = S 1 S 2, solid torust 1, T 2. H 1 (T i ) = t i = Z, T 1 T 2 = T 1 = T 2 = S 1 S 1. T 1 T 2 T 1, T 1 T 2 T 2, t = t 1 = t 2. τ(s 1 S 2 ) = (t 1 1) 1 (t 2 1) 1 1 = (t 1) X = S 1 S n. Gluing, n > 1,. (t 1) 2 (n ) τ(s 1 S n ) = 1 (n ). Reidemeister, F,. ( ),., Reidemeister Spin c., ([Nic, 3.7] ) CW Milnor X CW. CW, (, ). H α : π 1 (X) H. Q[H] H ( ), Q(H). α. C : 0 C m (X) Z[π1 (X)]Q(H) C m 1 (X) Z[π1 (X)]Q(H) C 1 (X) Z[π1 (X)]Q(H) C 0 (X) 7.23., Milnor., Milnor. τ(c ) Q[H]/±H, Alexander. Alexander, TorH i (X; Q(H)) 0 i,,. A α (X) := i=0 ordh 2i 1 (X; Q(H)) ordh 2i (X; Q(H)) Q(H) A α (X) = τ α (X) Q(H)/ ± H. 17 Tureav refied torsion,. 27

28 7.25. R, K. R, : C : 0 C m C m 1 C 1 C 0 0 rank K H (C) = 0, Tor ( H (C) ) = H (C). C [c]. ζ R, m τ α (C, c) = ζ ord ( H j (C) ) ( 1) j+1 j=0 Proof.. [Mil4, Tu1, Nic]., Milnor,, X X, α., Milnor : τ α (X) = τ α (X ) 7.27., Whitehead, Reidemeister ([Tu1, 2 ] ). Whitehead Wh 1 (Z[G]) G., ; G, Whitehead. G = H (Bass, Heller, Swan). Wh 1 (Z[G]) = 0., G, Wh 1 (Z[G]) = 0. ( ) ([Tu1, ] ) L(p, q) L(p, q ). 1. l (Z/m), ±l 2 q = q (mod p). 2. q = ±q (mod p).,,. Hatcher 3 [], (Seifert ),. (2). 28

29 7.29 ( ). (p, q) = 1 p, q. L(p, q)., ζ Z/p, S 3 := {(z, w) C 2 z 2 + w 2 = 1 } (z, w) p,q ζ = (e 1/2pπ z, e 1q/2pπ w), Z/p S 3. L(p, q) S 3 /Z p. 3. L p, q S 3, π 1 (L(p, q)) = Z/p.,, H 1 H 2 Z/p., F Q(ζ), φ Z[Z/p] = Z[ζ] Q(ζ). t := φ(ζ)., Reidemeister, S 3. : E 1 j := Ej 0 := {(e j 1/2pπ, 0) S 3 } { (e 1θ, 0) S 3 2πj p θ 2π(j + 1) p { (z 1, se j 1/2pπ ) C 2 s R, z s 2 = 1 Ej 2 := { Ej 3 := (z 1, z 2 ) S 3 2πj p argz 2 2π(j + 1) p Z/p. Ej k k-ball, CW. c k j := Int(Ej k ),. ( ) : p 1 c 2 j = c 1 i, c 1 j = c 0 j+1 c 0 j, c 3 j = c 2 j+1 c 2 j., E k j i=0, ζ E k j = E k j+1, k {0, 1} ζ E k j = E k j+q, k {2, 3}., : p 1 c 2 j = ( ζ i )c 1 n, c 1 j = (ζ 1)c 0 j, c 3 j = (ζ r 1)c 2 j, i=0 rq 1 mod pz r.,. 0 Q(ζ) 1 ζa 1+ζ+ ζ Q(ζ) p 1 Q(ζ) 1 ζ Q(ζ) 0. ζ p 1, 0.., C φ. 7.7, τ φ (L(p, q)) = (1 t) 1 (1 t r ) 1. H 1 (L(p, q)) = Z/p s q = t, : τ φ (L(p, q)) = (1 s q ) 1 (1 s) 1. } }. } 29

30 L(p, q) L(p, q )., φ : π 1 (L(p, q)) Q(ζ) φ : π 1 (L(p, q )) Q(ζ), : u, k Z, t u (1 t r )(1 t) = (1 t kr )(1 t). u, : (1 t r )(1 t 1 )(1 t r )(1 t) = (1 t kr )(1 t k )(1 t kr )(1 t k )., {1, 1, r, r} = {k, k, kr, kr }., (Franz ). S := {j Z/pZ (j, p) = 1 }. Z {s j } j S Z : (1) j S a j = 0, a j = a j. (2) p ζ 1, j S (ζj 1) a j = 1., j S a j = , L, ( [ ] ).,. ( ) j S, m(j) := #{s {1, 1, r, r} s = j}, m (j) := #{s {1, 1, kr, kr} s = j}. a(j) m(j) m (j),. 0 = a(j) m(j) = m (j). (2).. r, r, k 8,., P (T ) C[T ]/(T p 1) : P (T ) = T u (T 1)(T r 1) (T k 1)(T kr 1) C[T ]/(T p 1)., k = 1 kr = t., T u+r (T 1)(T r 1) = (T k 1)(T r 1) C[T ]/(T p 1). (6),, (6) (ζ 1) 1 p 1 p (1 + 2ζ + + pζp 1 ) = 1 ( ζ i /p) p 1 (T u+r + 1)(1 ( ζ i /p) = 0,. k = 1 kr = t r = ±r.. q = ±q,., (1). i=0 i=0 30

31 (1)., q = ±l 2 q modp.. (p, k i ) = 1 k 1, k 2 Z, f k1,k 2 : S 3 S 3 f k1,k 2 (z 1, z 2 ) = ( z 1 1 k 1 z k 1 1, z 2 1 k 2 z k 2 2 )., f k k 1 k 2, : f k1,k 2 (ζ r,x (z 1, z 2 )) = ζ k1 r,k 2 x (z 1, z 2 ). [f k1,k 2 ] : S 3 / r,s S 3 / k1 r,k 2 s. p S 3, p B, k < p ζ k r,s B B =. U := p 1 k=0 ζk r,s B., q = l 2 q mod p. r 0 Z/p q. f llqr0 ( 1,q, l,lq ), : [f l,lq r 0 ] : L(p, q) L(p, q )., deg f l,lq r 0 l 2 q r 0 1 mod p.,. f l,lq r 0 H (S 3 ) H (S 3 ), Whitehead, f., f l,lq r 0. i 2 π i (L(p, q)) = π i (S 3 ), [f l,lq r 0 ] : π i (L(p, q)) π i (L(p, q )) [f l,lq r 0 ] : π i (S 3 ) π i (S 3 )., Whitehead, f. 8., Alexander Blanchfield. 8.1., R, : R R (involution) 18. M R Z- ψ : M M R,. a, b R, m, n M, ψ(am, bn) = abψ(m, n). ψ : M M R, ψ ψ, R- f : M M, ψ(a, b) = ψ (f(a), f(b)). ψ (Hermitian), ψ(a, b) = ψ(b, a). 18, ā = a,. = id R. 31

32 8.2. M R n a 1,..., a n. b ij := ψ(a i, a j ), n n B = {b ij } i,j n. n n B = {ψ (a i, a j )} i,j n., ψ ψ, : O, O T BO = B R = M = Z/m, = id R. A Z/m, ψ(x, y) = Axy. ψ (x, y) = A xy., ψ ψ, l (Z/m), A = l 2 A.,. 19.,,. 8.4 (Sylvester ). R R, = id R., ψ, m, n,. diag(1,..., 1, 1,..., 1, 0,..., 0) }{{}}{{} n m R = Z, indefinite 20 ψ,, (Serre ). R = Z, definite ψ,. M, R = Z/m, ψ. R (Q ), ψ ( [ ] ). R, t : R R ψ(ta, tb) = ψ(a, b), (ψ, t) isometry. isometry Milnor[Mil5]. 8.2 Linking. M n.,. P.D.: H k (N; Z) = H n k (N; Z).,, : H k (N; Z) H n k (N; Z) Z, (p, q) P.D. 1 (P.D.(p) P.D.(q)).. p k-cycle q (n k)-cycle,,., P, T P := {p P a Z ap = 0}. 19,, [MH, 1 ],.,,. 20 ψ R, Sylvester, 32

33 , Q/Z L N : T H l (N; Z) T H n l 1 (N; Z) Q/Z ( ). [x] T H l (N; Z) [y] T H n l 1 (N; Z) x C l (N; Z) y C n l 1 (N, Z), w C n l (N; Z) s Z w = sy. L N (x, y) := x, w /s Q/Z., N N, L N. 8.5., x, y, w, s.,. Proof. welldefined. 0 Z Q Q/Z 0 : B : H k+1 (N; Q/Z) H k (N; Z). B, H k (N; Z) H k (M; Q)., T H k (N; Z), L N (x, y) = B 1 (x) y,. : H k+1 (N; Q/Z) H k (N; Z) Q/Z., x B u, u, (u u ) y = 0., u u v H 2 (N; Q) v y = 0 ( y H k (N; Q) ). H k+1 (N; Q/Z) Poincaré H n k 1 (N; Q/Z) evaluation Hom(H n k 1 (N), Q/Z) B TorH k (N; Z) ˆλ Hom(TorH n k 1 (N; Q/Z) ˆλ x L N (x, ). ˆλ,,.,, L N (y, x)( 1) n(n k) L N (x, y).. 1, : 8.7. L(p, q) 3. T H 1 (L(p, q); Z) = H 1 (L(p, q); Z) = Z/p, θ.. L N (θ, θ) = q/p. Proof. S 1 = { z C z = 1 }, D 2 = { z C z 1 }, p, q, r, s pr qs = 1.. f : S 1 S 1 S 1 S 1, (z, w) (z q w p, z s w r )., U 1 := D 2 S 1, U 2 := S 1 D 2. U i S 1 S 1, x 1 x 2 def x 2 = f(x 1 ) x i U i. 33

34 ., U 1 U 2 / L(p, q) ( 21 ). H 1 (U 1 ) = Z H 1 (U 2 ) = Z µ K. : 0 Zµ p H 1 (U 1 ) H 1 (L(p, q)) 0., [K] H 1 (L(p, q)), pk U 1 = D 2 S 1 2-core( ) ( Mayer-Vietoris )., lk([k], [µ]) = 1/p., [µ] H 1 (L(p, q)) = Z/p, x Z/p, [K] = x[µ]. x. f f : H ( U 1 ) H ( U 1 ) ( ) = Z µ, λ, p r., : q s µ pµ + qλ, K rµ + sλ H 1 ( U 1 ). λ H 1 (U 1 ), [K] = s[µ]. s = q 1 mod pz,, q, : L N ( q 1 µ, µ) = 1/p H 2 (M; Z) = T H 2 (M; Z) 5 M,. T, b : T T Q/Z. b(x, y) = b(y, x), b(x, y) = b(y, x). [Wall], [Kawauchi-Kojima] b. 3, [?]. 3,., ( ) 8.9 ([Tu4]). M 3, β 1 (M) = 0. H := H 1 (M; Z)., : g, g H, τ(m) (g 1)(g 1) = λ M (g, g ) Σ H Q[H]/Z[H], Σ H h H h.,.,., r Z, H 1 (M; Z/r) H 3 [M] (M; Z/r) Z/r., 2 [M]. 3. λ (r)., α : π 1 (M) H 1 (M; Z) =: Γ. 22 α : H k (M; Z) H gr k (π 1(M)) H gr k (Γ). k = 3 [M] evaluate α ([M]) H gr 3 (Γ). 21 Dehn (p/q)

35 8.10 (Cochran-Gerges-Orr). M, M 3. ψ : H 1 (M; Z) H 1 (M ; Z) ψ(α ([M])) = α ([M ]), M M, r Z λ (r) (λ (r) ). 8.3 Blanchfield. Blanchfield [Bla]. [Hil, Kaw, FP]. X ( ), π 1 (X) Γ. Γ. X. Z[Γ] Γ, Q(Γ)., X X {t n } n Z, H k ( X; Z) H k (X; Z[Γ]) (, Shapiro )., Blanchfield, X (Z[Γ] ) : Bl : Tor Z[Γ] (H l ( X; Z)) Tor Z[Γ] (H n l 1 ( X, X; Z)) Q(Γ)/Z[Γ].. [x] Tor Z[Γ] (H l ( X; Z)) = Tor Z[Γ] (H l (X; Z[Γ])) [y] Tor Z[Γ] (H n l 1 ( X, X; Z)) = Tor Z[Γ] (H n l 1 (X, X; Z[Γ])), x C l (X; Z[Γ]), y C n l 1 (X, X; Z[Γ])., Z[Γ] w C n l (X, X; Z[Γ]), y = w. Bl([x], [y]) = g Γ x g, w / Q(Γ)/Z[Γ]., X, g Deck well-defined (x, y, ) Blanchfield (, [?, D.3]. ) Bl(y, x) = ( 1) (n l 1)l+1 Bl(x, y)..(, [Kaw, D.1]. ) 8.14 ( )., K : S 2k 1 S 2k+1 X = S 2k+1 \ ImK, f π 1 (X) Z =: Γ. H k ( X; Z) Z[t ±1 ]-. order k Z[t ±1 ] Alexander., 0 Z[t ±1 ] k - Z[t ±1 ] Z[t ±1 ]/ K 0 δ, H k+1 (X; Z[t ±1 ]/ K ) = H k (X; Z[t ±1 ])., : H k (X; Z[t ±1 ]) δ 1 H k+1 (X; Z[t ±1 Poincaré duality ]/ K ) H k (X, X; Z[t ±1 ]/ K ) 35

36 H k (X; Z[t ±1 ]/ K ) Hom(H k (X; Z[t ±1 ]), Z[t ±1 ]/ K ). (Ext 0 = 0 ),, (X, ) (X, X)., ( ) Blanchfield, : Bl K : H k (X ; Z) 2 = H k (X; Z[t ±1 ]) 2 Z[t ±1 ]/ K. Bl K (non-singular), Hermitian., K = K. Bl K, ( [Hil, 3] )..,. k 2, 2k 1 3 K 1 K 2 (, π 2 (S 2k 1 \ K j ) = = π k 1 (S 2k 1 \ K j ) = 0)., K 1 K 2, Bl K1 Bl K2 [2]. k 2, Witt 23, Z ( Z/2) ( Z/4). Blanchfield ([3] ). Seifert, Bl K F S 3 K, V Mat(2g 2g; Z). {e i } i 2g H 1 (S 3 \ F ; Z) ( 6.1 ). Λ := Z[t ±1 ]., Λ 2g H 1 (S 3 \ K; Λ); (p 1,..., p 2g ) e i p i 1 i 2g Φ : Λ 2g /(tv V T )Λ 2g = H1 (S 3 \ K; Λ) (7), : Λ 2g /(tv V T )Λ 2g Λ 2g /(tv V T (v,w) v(t 1)(V )Λ 2g tv T ) 1 w Q(t)/Λ Φ Φ H 1 (S 3 \ K; Λ) H 1 (S 3 \ K; Λ) (v,w) Bl K (v,w) = Q(t)/Λ [FP], (, [Hil, 2] ). Bl K, (7).,. t, ω C w = 1. (1 ω)v (1 ω)v T, L ω-, σ ω (K). 23 Witt,, Grothendieck.. 36

37 [Lic, 8 ]., 8.17 ([Lic, 8.19]). K. ω, σ ω (K) = 0., Witt W (Z[t ±1 ], ϵ). ([Hil] ),. Blanchfield. Milnor [Mil1] ( [ ] ).,,. Blanchfiled, 3 [1]. 9 CW. 9.1 (CW ). : D n = {x R n x 2 1}, D n = {x R n x 2 = 1} = S n 1. X CW -, = X 1 X 0 X 1 X = n 0 X n (, X ). 1. X 0,. 2. X n n-skeleton I n, α I n φ α : D n = S n 1 X n, X n+1 : X n+1 = X n D n = X n D n /( D n x φ α In φα α (x)). α I n α I n, CW. CW-, ( ),. CW. X x X. π 1 (X) := {(S 1, ) (X, x) f( ) = x }/(rel. ) X π 1 (X). G = g 1,..., g n r 1,..., r m CW Xs.t. π 1 (X) = G. x 0, X 1 S 1 n S 1 S 1., 37

38 r i = g ϵ 1 i 1 g ϵ k ik, k a 0 a k, a j 1 a j j S 1 (, ϵ j = 1, ϵ j = 1, ). X, CW.,, π 1 (X) = G., X CW., X 0., X, S 1 n S 1 S 1., 2-cell, k a 0 a k, 1-cell., π 1 (X) = G. : : 9.2 ( ). C X p : C X x X x U p 1 (U) C p U. C Deck ( ) g : C C p g = p. Deck,. p (regular), p : π 1 (C) π 1 (X), π 1 (X)., x X, p 1 (x). π 1 ( X) = 1 X p : X X X CW. π 1 (X) H, p : Y X, p (π 1 (Y )) = H. X, π 1 (X), X CW., X. X, h : X X, p h = p., p : C X π 1 (X)/p (π 1 (C))., C = X, G = π 1 (X). [Adams] C. Adams, The Knot Book. An elementary introduction to the mathematical theory of knots. W. H. Freeman and Company, New York, 1994 (, 1998). [Bla] R. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. 65: (1957) [Bro] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, [CF] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ginn and Co. 1963, or Grad. Texts Math. 57, Springer-Verlag, 1977 (, 1967). [CFH] A. Conway, S. Friedl, G. Herrmann, Linking forms revisited, preprint, arxiv.org math arxiv: [FP] Stefan Friedl and Mark Powell. A calculation of Blanchfield pairings of 3-manifolds and knots arxiv:

39 [FV] S. Friedl and S. Vidussi. A survey of twisted Alexander polynomials. Preprint 2010, 42 pages. arxiv: [Gor] Gordon, Some aspects of classical knot theory, Lecture Notes in Mathematics 685, Springer-Verlag 1 60 [Hat] A. Hatcher, Algebraic topology, Cambridge University Press (2002). [Hil] J. Hillman, Algebraic Invariants of Links, Series on Knots and Everything, 2-nd edition. [ ], ( ) [ ] [ ], Reidemeister torsion (How to use the Reidemeister torsion), theset.las.osakasandai.ac.jp/fledglings/notes/kadokami.pdf [Kaw] A. Kawauchi (ed), A Survey of Knot Theory, Birkhaüser Verlag, Basel, (, ) [ ],,, [1] A. Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23 (1986), [2] C. Kearton, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), [3] J.P. Levine, Algebrai structure of knot modules, Lecture Notes in Mathematics 772. Springer-Verlag [Lic] W. B. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, 175. Springer-Verlag, New York, [Lin] X.S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), [Lyn] R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52, (1950) [Mas] G. MASSUYEAU AN INTRODUCTION TO THE ABELIAN REIDEMEISTER TORSION OF THREE- DIMENSIONAL MANIFOLDS, arxiv: v2 [math.gt] 12 Oct [McC] J. McCleary, A user s guide to spectral sequences, Second edition. Cambridge Studies in Advanced Mathematics, 58. Cambridge University Press, Cambridge, [Mil1] J. Milnor, Infinite cyclic coverings, [Mil2], A duality theorem for Reidemeister torsion, Ann. of Math. (2), 76, 1962, [Mil3], Two complexes which are homeomorphic but combinatorially dis- tinct, Ann. of Math. (2), 74, 1961, [Mil4], Whitehead torsion, Bull. Amer. Math. Soc., 72, 1966, [Mil5], On Isometries of Inner Product Spaces. [MH] J. Milnor, Husemoller, Symmetric Bilinear Forms [ ],,, [ ] ; ;, Alexander, 5 [Ni] Yi Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, [Nic] L. I. Nicolaescu. The Reidemeister torsion of 3-manifolds, volume 30 of de Gruyter Studies inmathematics.walter de Gruyter & Co., Berlin, [NY] F. Nagasato and Y. Yamaguchi: On the geometry of the slice of trace-free SL2(C)-characters of a knot group, Math. Ann. 354 (2012), [OS] Peter S. Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), , [OSJS],,,, Alexander,. [Rei] Kurt Reidemeister. Homotopieringe und Linsenräume. Abh. Math. Semin. Hamb. Univ., 11: , [Rol] D. Rolfsen, Knots and Links, AMS Chelsea Publishing, [ ],,, [ ],, 21, 22 [Tro] H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. 76 (1962), [Tu1] Turaev V., Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Notes taken by Felix Schlenk, Birkhäuser Verlag, Basel, [Tu2] Turaev V., Torsions of 3-dimensional Manifolds, Springer [Tu3] V. Turaev. Reidemeister torsion in knot theory. Uspekhi Mat. Nauk, 41(1):97-147, 240, 1986 (in Russian). English translation: Russian Math. Surveys, 41: , [Tu4] V. Turaev. Torsio invariants of Spin c -structures on 3-manifolds. Math. Res. Lett., 4(5): (1997). [Yj] Yajima, On a characterization of knot groups of some knots in R 4, OJM 39

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1. R A 1.3 X : (1)X ()X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f 1 (A) f X X f 1 (A) = X f 1 (A) = A a A f f(x) = a x

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

WF-note.dvi

WF-note.dvi LECTURE NOTES FOR WORKSHOP OF FLEDGLINGS ON LOW-DIMENSIONAL TOPOLOGY JANUARY 30 FEBRARY 2, 2004 AT OSAKA CITY UNIVERSITY PREFACE This is a collection of lecture notes and resumes for the mini-workshop

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K

Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L). W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K Akbulut-Karakurt diagram L = K 1 K 2 in S 3 Stein corks W = W (L) W the Mazur manifold K 1, K 2 are unknotted lk(k 1, K 2 ) = ±1 Involution τ : K 1 K 2 admits a Stein diagram h 0 h 1 h 2 h 2 is attached

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information