1: USERS MUSES-C km km H-2A 2

Size: px
Start display at page:

Download "1: USERS MUSES-C km km H-2A 2"

Transcription

1 () 80 50km 1 GPS 2 2: (X)

2 1: USERS MUSES-C km km H-2A 2

3 GPS : [mm] 200 [mm] 150 [mm] 300 [kg] 5.2 [mm] 30 [mm] 25 ˆ ˆ V ˆ ˆ ˆ [km/s] 3: - - CFD 3

4 φ [rad] δ(mv ) = ρ V sin φ V sin φ = ρ V 2 sin 2 φ p p = ρ V 2 sin 2 φ C p C p = p p 1 2 ρ V 2 = 2 sin 2 φ C p = C pmax sin 2 φ [ (γ + 1) 2 C pmax = 4γ γ = 1.4 C p = sin 2 φ ] γ/(γ 1) 4: θ R C D C D = 1 2Rθ = θ θ C p sin φdφ θ ( sin θ 1 ) 3 sin3 θ = (θ = π 4 ) - C D MUSES-C MUSES-C. 2.3,, : J 2 4

5 6: - 7 V,,, V = 50[m/s], V, V = 100[m/s] J 2 α air α air = D air m = 1 2m ρ airv 2 SC D ˆV D air : m: ρ air : V : S: C D : ˆV : V a = [km] e = 0 i = 30[deg] Ω = 0[deg] ω =- ν = 0[deg] V = 100[m/s],2125[s] 13154[km] V 10[deg] 20[deg] 8 V = 90[m/s] 9 x () y ( ) V 10[deg] V = 90[m/s] V ν = 60[deg] ν = 240[deg] 130[deg] ±10[deg] V ν = 60[deg] ν = 240[deg] 130±10[deg] 26[deg] i sin(ν) V 5

6 7: 6

7 T a T = 2π 3 = 5431[s] = [h] µ 1 15[deg] 15[deg] = 22.63[deg] V 10: 8: ( V = 100[m/s]) 2: (68%) (16%) (14%) ρ[kg/m 3 ] 1700 [K] 3100 I sp [s] 295 [mm/s] : ( V = 90[m/s]) V [10] 2 250[s] m 0 m grain m 0 V = I sp g ln m 0 m grain 7

8 g, m 0 m grain = 0.21[kg] 11 D 1 = 0.08[m] D 2 = 0.02[m] L = 0.03[m] 5[mm/s] I : [kg m 2 ] ω : [rad/sec] τ : [N m] F : [N] l : [m] r : [m] α : [deg] m : [kg] I sp : (=250[sec]) g : D 1 D = 6[sec] 12: : 12 [ ] b [ ] dω I = [τ] b [ω (Iω)] b dt b df dt τ = F l 2 + r 2 sin = dm dt I spg ( πα r ) tan 1 l I = diag(0.0675, , ) l = 0.10 r = 0.01 α = 3 10[deg] [rpm] 50[rpm]

9 : 16: 14: 17 17: 15: ˆ 9

10 ˆ ˆ Spallation ˆ step1: step2: 2 step1: q conv = Rn ρ ρ s ( h s h w h s h w0 )[MW/m 2 ] Tauber q rad = RNρ a 1.22 f(v )[MW/m 2 ] V 1.88 ρ when R N 1 min(0.6, V 1.88 ρ ) a = when 1 R N 2 min(0.5, V 1.88 ρ ) when 2 R N 3 f(v ) V =8.0km/s 1.5 m[g/cm 2 /s] Metzger, ṁ sub = Pe R N 30.5 R N e 22140/Tw ( e Tw Pe 2/3 e Tw 18 ) 2 q in = q conv + q rad ṁ sub h sub V 2 V ( ) 3 R N 1/2 Detra-Kemp-Riddell V ρ 18: 1O 10

11 2O M 2 ( + 1)2 ρ e = ρ [ 2( 1) 2γ γ 1 M 2 1 ] 1 γ 1 γ + 1 M 2 2 2γ γ 1 M ( T e = T 1 + 2γ ) γ 1 M 2 q in q in = ɛσt :1300[kg/m 3 ] ():0.95[W/(m K)] :950[J/(kg K)] : T w T w = 4 qin ɛσ t(s) l(m) l = ṁsub ρ versin t step2: T t = κ 2 t x 2 ˆ T base = 320(x, t > 0) ˆ T surfase = T w (0, t > 0) T base = 320(L, t > 0) 320[K] 80[km] 60[km] [K] 320[K] 30[mm] 19: - 20: - Thermal Desktop 23 Excel 320[K] 1.41[mm] 21 11

12 21:. 30[mm] 25[mm]. 700[K] HOPE-X :130[kg/m 3 ] :0.1[W/m/K] :1047[J/kg/K] 12[mm] [kg] 2.6,. 24. OREX(1994). 22: 24: : ThermalDesktop,.,..,,,.,,. 12

13 ,.,.,.,,.. Bohm,, I r. I r = ne iv + (2πR p L) 4 0.1[mm], 0.1[mm], 5[mm].,, 5V. M. 45[deg], 10[mm] 30[mm], 10[mm]. 25., OREX 26[ JAXA ].. R p, L. n, e i, v +. v +. v + = 2kTe M k, T e, M., NO +.,,,.,, CFD.,,, T e 3000[K]. 1/2,., OREX,,., , OREX.,,,.. 25: JAXA 26: (OREX) 2.7,.,.., 13

14 ,. f p,. f p = 1 n 0 e 2 2π ε 0 m 8.98 n 0 [Hz] n 0 [m 3 ], e [C], ε 0 [F/m], m [kg].,,.,.,., NASA RAM B-2(1963), RAM C-1(1967), , p b = p a + ρ a u 2 a(1 ρ a ρ b ) h b = h a + u2 a 2 (1 (ρ a ρ b ) 2 ) a, b p ρ u h p b = p a + ρ a u 2 a h b = h a + u2 a 2 Gordon McMcBride 11 O, N, O 2, N 2, NO, O +, N +, O + 2, N + 2, NO+, e ) 3: φ MPa 1.2MPa DC12V 0.19A p = N tot kt k ( [J/K]) 27: GPS L5 (1.176GHz) GHz, m m , φ5.,

15 NASA NASDA CPU H8/3048., 1Mbyte EEPROM. H8/ : W 0.1 dbi 0.9 kbyte 12 kbyte 2 s 15 s 2 kbps 6.4 kbps ( ) ( ) : 4: H8/3048 CPU H8/300H 16[MHz] ROM 128[Kbyte] RAM 4[Kbyte] EEPROM 1[Mbyte] [V] [ ] [mm]() 2.11,GPS,,, 600[s] = 0.17[h],, Panasonic BR2477A. 8 BR2477A. 9, GPS 6 1Hz 16bit kbyte 0.1Hz GPS 3 12kbyte 5 8: BR2477A φ [mm] 8 [ ] 1.0 [A h] 3 [V] [ ] GPS,,CPU 5[V] 2, 12[V] TOREX DC-DC (XC9119). N[ ]. 15

16 6: - C/N 0 C/N0 MHz km EIRP dbw dbw db 0 0 dbi db db km db 3 3 db db db 0 0 G/T db/k db dbi db 0 0 dbk K K K db 3 2 C/N 0 dbhz dbhz : - C/N 0 C/N0 FM GFSK E b /N 0 db db db kbps db db 3 3 C/N 0 dbhz

17 9: [V] [W] GPS 5 1 CPU : V N = = = 0.48 < 1[ ] BR2477A a = [km] i = 30[deg] r a = 600[km] r p = 200[km] 0.27[km/s] V V = 70[m/s] V = 40[m/s] 30[m/s] [deg] V 1 180[deg] [deg] ν = 60( 240)[deg],,ν = 60( 240)[deg] ν = 60[deg] 1, Ω = 0[deg] 60[deg], J 2, 360/365[deg],, 7 Ω = 3πJ 2Re 2 cos i a 2 (1 e) = 7.347[deg/Day] J 2 = Re = [km] :

18 10[km], 50,30,10[km] 29 31: 29: [mm] 450[mm] [kg] (6[kg] 2) 46.0[kg] 32: CPU 30: 18

19 11: [mm] [kg] GPS IGPS TXE430MFMCW-301A RXE430M-301A EEPROM BR2477A φ CPU H8/ φ [m] 0.5[m] Sun Sensor model 0.05 φ Magnetic Sensor HMC Gyro Sensor ITG GPS IGPS SV 14 Cold Gas Thruster TXE430MFMCW-301A RXE430M-301A CPU SEMC5701B KR-CH(3.0) φ ITJ Solar Cells ( + 2)

20 3.2.2 CFRP CFRP ( ) XN-90 CFRP 12 12: [deg] 0 90 [kg/m 3 ] 2190 [MPa] [GPa] 550( ) ( ) - [MPa] [MPa] ,µ-Labsat1.., Dyneema (YGK ) 20 (0.740mm). Dyneema ,. 3 1,,.,3 1, 1. 10mm 4 ( TM10 20, 20mm),3mm.,, :, 80kg., 6G 4 6GMg + 4 kx = 6 5g = [N] = 73.49[kg],., 3. (, ),.,, 1cm, 1.5mm 5mm 4.5., W = cρv (T T 0 ) = (523 3) = 13.9[J],15[W]. Cute-1.7+APD 1 5[sec], 3 20

21 10., [m/sec]. GPS ,,, ( ), 8 21[mm]. 12[mm] ( TU21 25, 25[mm]), 15mm. 15[mm] [m/s]. GPS. Pro Engineer/Mechanica ˆ 500[g] ˆ 500[g] MECO 4G 1.8G 1.5 6G 2.7G [MPa] MS = = 6.76 > 0 35: 34: H2A 30[Hz] 10[Hz] 52.36Hz H2A H-2A MECO

22 : 50[rpm] 2[deg] T g = 4Ω 2 (I y I z )φ I y, I z :, [kg m 3 ] Ω :, Ω µ/r 3 r : [km] µ : (= [km 3 /s 2 ]) φ : [deg] I y I z = r = = φ = 10 T g = T s = F s (cp cg) F s : [N] cp : cg : P : A : [m 2 ] ρ s : [-] i : [deg] A = ρ s = 0.08 i = 10 cp cg = 0.05 T s = T m = M m B M m : [A m 2 ] B : [tesla] M : ) (= [tesla m 3 ] M m = 0.1 B = T m = T a = F a (cp cg) 22

23 F a : [N] cp : cg : ρ : [kg/m 3 ] C d : (2 2.5) A : [m 2 ] ν : [m/s] ρ = C d = 2.3 A = ν = 7726 cp cg = T a = : T g [Nm] T s [Nm] T m [Nm] T a [Nm] T max [Nm] Optical Energy Technologies Model : [deg] ± 0.05(2 ) [deg] 100 [g] 40 [mm] φ [W] 0.05 [ ] -30 to 80 3 Honeywell HMC : [gauss] ± 4 [% FS] ± 0.1 [kg] 0.05 [mm] [VDC] 1.8( ) ( )[mw] 1.44 [ ] -30 to 85 3 InvenSense ITG : [deg/s] ±2000 [%] ± 0.1 [mm] [µ A] 5 [VDC] ( )[mw] GPS [ ] -30 to 85 GPS GPS IGPS

24 17: GPS [V] 5 [ma] 160( ) [W] 0.8( ) [g] 39g [mm] [ ] : Operating Fluid Xe CMG [cm 3 ] 1 1 t [s] GN 2 Thrust Levels [mn] 40(±5% ) Operational Temperature [ ] -35 to 65 Operating Pressure [bar] 2.5 Opening/Closing Response [msec] 4 Mass[g] 75 Maximum Length [mm] 52 Maximum O/D [mm] H = T max t = = 0.127[N ms] MAROTTA SV14 Cold Gas Thtuster SV14 40mN [mm] : 24

25 [m] F(=0.04 [N]) 0[rpm] 50[rpm](=5.23[rad/s]) ( ) ( I sp =90[s]) 1.68[kgm 2 ] t[s] t = 5.23[rad/s] 1.68[kgm2 ] 0.04[N] 0.093[m] 2 = 1355[s] m[kg] m = 0.04[m/s2 ] 2 t[s] 90[s] 9.8[m/s 2 ] = 0.108[kg] 155[l(1 )] 20.49[l] [l(1 )] HK HouseKeeping data km 30[deg] JAXA 45[deg] 19 19: km 300 min 90.5 km/s 7.72 deg 45 km 600 s 77.8 HK HK 0.1Hz kbyte HK 16bit 6 1Hz GPS 0.1Hz kbyte 3 1Hz 28.8kbyte kbps kbps TXE430MFMCW-301A,RXE430M-301A 25

26 20: 8 GPS ,22 300km PFD [ (πd ) 2 G[dBi] = 10 log η] λ D : [m] η : (60 ) λ : [m] : TXE430MFMCW-301A W W 3.2 V kbps 9.6 mm g 60 RXE430M-301A dbm -123 ma 25 V kbps mm g 38 22: MHz 430 mm 130 g 50 dbi 1.2 Ω 73 23: m 1 dbi 10.3,, 1 26

27 24: - C/N 0 C/N0 MHz km EIRP dbw dbw db 0 0 dbi db db km db 3 3 db db db 0 0 G/T db/k db dbi db 0 0 dbk K K K db 3 2 C/N 0 dbhz dbhz PFD dbw : - C/N 0 C/N0 FM GFSK E b /N 0 db db db kbps db db 3 3 C/N 0 dbhz

28 ,,., SEMC5701B., SpaceWire,. CPU VR5701.OS ITRON OS et-kernel. 26..,,,, %. 27: [V] [W] GPS CPU : 26: VR5701 CPU VR [MHz] 16[MByte] DRAM I/F DDR SDRAM 64[Mbyte] IEEE1355(SpaceWire) +5[V] [ ] [mm] SANYO KR-CH(3.0) ,. 28: KR-CH(3.0) φ [mm] 78 [ ] 2.9 [A h] 1.2 [V] ,.,, C r : [A h] P e : [W] P t : [W] T e : [h] T t : [h] C d : DOD N : 28

29 V d : n :, C r, C r = P et e + P t T t C d NV d n. 3 4, 300[km], 30[degree], T = 1.50[h], T e = 0.58[h], T d = T T e = 0.92[h] DOD C d =60[%]. n = 0.8. V d V d =5[V], 24[v] TOREX DC-DC (XC9101) 24[V]., = = 5 = 4.2 < 5[ ] P t = 15.4[W ], T t = 300[s]=0.08[h], 27 P e = 15.1[W] N, N = P et e + P t T t C r C d V d n = = 1.49 < 2[ ].. KR-CH(3.0) 2 2 5= = 1560 [g] SPECTROLAB Improved Triple Junction (ITJ) Solar Cells. 29. P sa : [W] P e : [W] P d : [W] 29: ITJ (28 ) 0.14 [mm] 26.8 [%] () 0.16 [A/cm 2 ] () 2.27 [V] 0.92 [%] 0.85 [%] [%/ ] 84 [mg/cm 2 ] P t : [W] T e : [h] T d : [h] T t : [h] X e : X d :, P sa (EOL) P sa (EOL) = (P et e + P m T m )/X e + P d T d /X d T d.,x e = X d = 0.90.P e = P d, P sa (EOL) = ( )/ = 30.0[W]. 3 4,,,,. 65, 29 28, [%/ ], γ γ = 1 + (65 28) ( 0.286/100) = P sa (BOL) P sa (BOL) = P sa(eol) γ. = = 33.6[W] 29

30 ., 1/π, π., 1350[W/m 2 ], = P sa (BOL) π = 33.6 π = 0.292[m2 ] = = ( ) 2 = 729[ ].,1 2[cm] 2[cm]. 750[ ], 90%, = = 750 ( ) 2 = 0.33[m 2 ] [mm] 450[mm] 8, 0.72[m 2 ]. 52%. 0.33/ = 46%,., (5 1.2 = 6[V]), 20%, = 7.2[V], = = 7.2 = 3.17 < 4[ ] = = = 200[ ]., ,, i 0 4[K] m i c pi dt i dt = Q i n C ij (T i T j ) j=1 n j=1 R ij σ(t 4 i T 4 j ) 30

31 30:, [W] [ ] / / /+85 GPS /+80 CPU 10-20/ / / / / : 39: m i : i [kg] c pi : i [J/(kg K)] T i, T j : i, j [K] Q i : i [W] C ij : i, j [W/K] R ij : i, j [m 2 ] σ : (= [W/(m 2 K 4 )]) Q i Q i 31

32 Q i = α i I s A i F s + ai s A i F e + α i I e A i F e + P i α i : i A i : i [m 2 ] I s : [W/m 2 ] I e : [W/m 2 ] F s : F e : a : P i : i [W], I s I s = 1353 ( )[W/m 2 ] 1399W/m 2, 1309W/m 2 a,,, a = (+0.30, 0.15) I e = (+27, 97)[W/m 2 ] F e F e { F e = R 2 e (R e + H) 2 R e : [km] H : [km] R e =6378km,H=300km } 27.8W C ij 1 C ij = 1 Cd i + 1 Cs ij + 1 Cd j Cd i = k i A i /L i Cs ij = h ij A ij Cd i : [W/(m 2 K) k i : [W/(m K) A i : [m 2 L i : [m Cs ij : i, j [W/(m 2 K) hij : i, j [W/(m 2 K) Aij : i, j [m 2 ] CFRP R ij R ij = ɛ i ɛ j F ij A i ɛ i, ɛ j : i, j F ij : i j 41 2 F ij F ij = 1 cosθ i cosθ j πa i A i A j r 2 da i da j r : i, j [m] θ i : Ai i, j [rad] θ j : Aj i, j [rad] 31 F e =

33 42: 41: 31: : CFRP k=100w/mk XN-90(k=500W/mK) (k=0.1w/mk) h=1000w/m 2 K CFRP 850[J/kg K] ( 5 8,19 26) ( 1,2,3,4) 50 44: 45: 33

34 42 図 45 の傾きが正の部分が太陽の光を受けて いる部分 傾きが負の部分が地球の裏に隠れた部 分である 一つの山が 1 周期となる 今回は 平 衡状態に達したと考えられる時間までの計算結果 を示す 図 42 と図 43 はそれぞれ熱入力が最大の 時の機器搭載部温度 (代表して節点 1) と 太陽電 池パネル (代表して節点 6), 放熱面 (代表して節点 5) の温度である 図 44 と図 45 はそれぞれ熱入力 が最小の時の機器搭載部温度と 太陽電池パネル, 放熱面の温度である 図 42 において機器搭載部の最大温度は約 42 で あり 2 周期目で平衡状態に達している 図 43 に おいて太陽電池パネルの最高温度は約 38 であ り これも 2 周期目で平衡状態に達している し たがって 熱入力が最大の時は機器は許容温度範 囲内で使用可能で 太陽電池パネルの効率低下も 顕著には起こらない 図 44, 図 45 においても計算時間をより長くしても 平衡状態は続くので 機器の許容温度範囲を満た す結果となり太陽電池パネルの効率もそれほど低 下しない 衛星に放熱面を設けることにより温度の上下を調 整した 熱解析結果より 衛星はミッション期間 において正常に動作すると考えられる 4 図 46: GPS のログ (予想) 期待される成果 図 47: 電子数密度の変化 (予想) ブラックアウトの時間に対して 本ミッション でカプセルに搭載する水の量は RAM-C 等の過去 の実験よりも少なく ブラックアウトを完全に回 避することは出来ないと予想される 求電子剤と して用いる水の散布の有無による電子数密度の違 いを確認しやすくするために 水は比較的低いプ ラズマ電子数密度において一気に散布する その とき得られると考えられる GPS のログと電子数 密度の変化を図 46 図 47 に示す 5 プセルにジャイロ剛性を与えること 回収を行わ ずに落下地点の誤差楕円を大きく設定することに よって解決する また 誤差楕円が大きいため通信に有利な陸地や 沖合いに着水させることができず 実験終了後の カプセルと陸上の地上局は直接通信できない そ こで 地上局に実験結果を送信するためにカプセ ルを射出した衛星をデータ中継衛星として利用す る点が 2 つめの特徴である これによって陸地から 遠く離れた洋上に落下目標地点を設定することが できる このような実験システムは弾道ミサイル では実現が難しく 人工衛星を用いる必要がある ミッションの特徴 ブラックアウト発生の指標となるプラズマ電子 数密度に対する求電子剤の効果を定量的に知るた めに 再突入カプセルを2個用いた対照実験を行 う点が特徴である そのため 1 個当たりのカプ セルの重量とサイズが限られてしまい 再突入の 精度に大きく影響する減速 V の大きさや方向を 微調整する機構を搭載できない この問題を ス ピンアップさせた衛星からカプセルを射出してカ 34

35 6 6.1., H2A,.,,.,,. 1,., JAXA. JAXA, 24. H2A, , , (PFM). PFM,, PFM. (EM), (PM) (FM).,,, PFM ,, BBM, BBM,EM,,, , PFM, PM FM. 2013,. 2014, H2A, ,. USERS, [1] Frank J. Regan, Satya M. Anandakrishman Dynamics of Atmospheric Re-Entry, AIAA Education Series(1993) 35

36 48: [2] John D. Anderson, Jr. Hypersonic and High Temperature Gas Dynamics, McGraw- Hill Book Company(1989) [3] (2002) [4] (2006) [5] (2008) [6] (1995) [7] USERS (2005) [8] (2007) [9] (2005) [10] (2002) [11] James R. Wertz Spacecraft Attitude Determination and contorol, Kluwer Academic Publishers(1987) [12] Ryback J. P. and R. J. Churchill Progress in Reentry Communications, IEEE Trans. On Antennas and Propagation, vol. AES-7, no. 5, Sept. 1971, pp (1971) [14] Kim M.,Keidar M., and Boyd I. D. Two- Dimensional Model of an Electromagnetic Layer for the Mitigation of Communications Blackout, 47th AIAA Aerospace Sciences Meeting, Orlando, Fl, Jan. 2009, no. AIAA [15] Koju Hiraki Yoshifumi Inatani The Aerodynamic Data Base for Asteroid Sample Return Capsule, The Institute of Space and Astronautical Science Report SP No.17(2003) [16] Eric D. Gillman, John E. Foster, Isaiah M. Blankson Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation, NASA TM (2010) [17],NASDA-SPP [18], The Japan Society of Plasma Science and Nuclear Fusion Research, Vpl.82, No.6(2006), [13] Kim Min Kwan. Electromagnetic Manipulation of Plasma Layer for Re-Entry Blackout Mitigation, 36

untitled

untitled 50cm 2500mm 300mm 15 CCD 15 100 1 2 3 4 23 SORA Kwak SeungJo 1 1.1 1995 20 2015 6 18 1931 1 2 3 2 ˆ 300mm 2500mm ˆ 2 1.2 WASP 1: 15 2048 2048 CCD 200mm 70 13 WASP 8 1.3 50cm 1 1: CCD 2: 1.4 MOST MOST 15

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

untitled

untitled 14 BIRD 1. ALOS ETS- 8 1 1 ETS- 6 6 ETS- 2 ETS- 3 ETS- 2 4 1 SN 2. 1 50kg 500mm H-A 2 H-A 5 H-A 3 4 5 1 800 1 1 3.1 JIS C 60068-2-6 450 6 1 800 6 1.0Hz ETS- 0.0933Hz 3 2.1 2.2 2.1 50kg 450R380P500Y mm

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

main.dvi

main.dvi 17 ε -SAT Electric PropulSIon system Loading moon transfer Orbit Navigation SATellite 1 1.1, Copyright: ESA 1: SMART-I 1.2 10 ESA SMART-I( 1 ) JAXA( 2 ) JAXA ESA BepiColombo( 3 ) 1 2: 3: BepiColombo Copyright:

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o = RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

NETES No.CG V

NETES No.CG V 1 2006 6 NETES No.CG-050001-V 2007 5 2 1 2 1 19 5 1 2 19 8 2 i 1 1 1.1 1 1.2 2 1.3 2 2 3 2.1 3 2.2 8 3 9 3.1 9 3.2 10 3.3 13 3.3.1 13 3.3.2 14 3.3.3 14 3.3.4 16 3.3.5 17 3.3.6 18 3.3.7 21 3.3.8 22 3.4

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

Microsoft Word - 学士論文(表紙).doc

Microsoft Word - 学士論文(表紙).doc GHz 18 2 1 1 3 1.1....................................... 3 1.2....................................... 3 1.3................................... 3 2 (LDV) 5 2.1................................ 5 2.2.......................

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

untitled

untitled ( 9:: 3:6: (k 3 45 k F m tan 45 k 45 k F m tan S S F m tan( 6.8k tan k F m ( + k tan 373 S S + Σ Σ 3 + Σ os( sin( + Σ sin( os( + sin( os( p z ( γ z + K pzdz γ + K γ K + γ + 9 ( 9 (+ sin( sin { 9 ( } 4

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

note4.dvi

note4.dvi 10 016 6 0 4 (quantum wire) 4.1 4.1.1.6.1, 4.1(a) V Q N dep ( ) 4.1(b) w σ E z (d) E z (d) = σ [ ( ) ( )] x w/ x+w/ π+arctan arctan πǫǫ 0 d d (4.1) à ƒq [ƒg w ó R w d V( x) QŽŸŒ³ džq x (a) (b) 4.1 (a)

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information