表紙

Size: px
Start display at page:

Download "表紙"

Transcription

1 6

2 X Spring8 03

3 (N/m) (N/m) T() T() 03 M. J. McNallan, T. Debroy, Metall. Trans. 22B (1991) 557 P. Sahoo, T. Debroy, Metall. Trans. 18B (1991)

4 He-Ne Mo Ta Mo Ta 03 He-Ne Mo Ta 03

5 03 Direction 1 Direction 2 direction1 direction2 03

6 sus304(110ppms) 03 SUS304 S 03

7 γ Temperature: 1973K M. J. McNallan, T. Debroy, Metall. Trans. 22B (1991) Debroy Debroy 03

8

9 EB (a) (b) EB (c) 0.1 m/sec (d) 0.1~1 m/sec 0.01 m/sec After S.Kou and D.K.Sun:Metallurgical Transactions A,Vol.16A, (1985)

10 (EB) (100mm l 25mm w 3mm t ) Fe (3N) Fe-6%W (SKD4) Al (5N) Al-6%Cu (A2219) 18kV 11kV 18kV 3mm/sec 5mm/sec 04 3mm A B B A B A EPMA 04

11 Fe/SKD4 W 18kV (a) (b) (c) Fe (3t) 1 G 1 G 10-5 G Fe SKD4 Fe SKD4 Fe SKD4 1mm 04 Al (11kV) Al/A2219 Cu 11kV (a) 1 G (b) 1 G (c) 10-5 G Al A2219 Al A2219 Al A2219 1mm 04

12 Fe Al Fe Al Fe 3. Al Fe 04

13 (a) (b) 0.1 m/sec (c) (d) 0.1~1 m/sec 0.01 m/sec After S.Kou and D.K.Sun:Metallurgical Transactions A,Vol.16A, (1985) G Al/A2219 Cu Al 100A 3mm Ar 5l/min 5mm/s 60 A2219 1mm 04

14 04 04

15 3 mm Ar 5 l/min 1.7 After 68 (2000)p88 Ar P ½mv 2 100A 150A 200A 4.25mm 5.00mm 5.50mm After

16 100A Ar 5 l/min After 68 (2000)p mm 5mm 10mm 3mm 4.25mm 6mm After

17 Ar-He Ar He After 15 3 p He 100A Ar 4.25mm He 3.00mm 150A 200A 5.00mm 5.50mm 3.75mm 4.25mm 1.2 After (a) (b) 50~80 cm/sec 10 cm/sec (c) (d) 25~40 cm/sec 1 cm/sec After A.Matsunawa, S.Yokoya; Trans.JWRI, OsakaUniv.,Vol.16, No.2,1, (1987) 04

18 Al (150A) A2219 (6mm) 1mm He 100A 3mm Ar 5l/min 04 GTA 100A 3mmAr vs 04

19 2 - He Ar, 75 A τ = 4.0s 0G -2.5 Axial distance (mm) Max. 139 m / s Max. 26 cm / s 7 cm / s mm / s Ave. Vr= 1.8 cm/s Ave. Vz= 3.6 cm /s 10 Ave. ave V = 2.7 cm /s Aluminum Radial distance (mm) A 3mm Ar 04

20 Axial distance (mm) Ar, 50 A Ar, 100A τ = 10s τ = 2.5s G 0G Max. 69 m / s Max. 18 cm / s -15 cm / s -2.5 Axial distance (mm) Max. 218 m / s Max. 36 cm / s 9 cm / s mm / s Ave. Vr= 1.6 c m/s Ave. Vr= 2.6 c m/s 4.5 cm / s Ave. Vz= 5.7 cm /s Ave. Vz= 5.0 cm /s Ave. V = 3.7 cm /s 10 Ave ave. V = 3.8 cm /s Aluminum Aluminum Radial distance (mm) Radial distance (mm) 04 Axial distance (mm) Ar, 75 A τ = 3.5s Ar, 75 A 0G τ = 4.0s G Max. 140 m / s Axial distance (mm) Max. 30 cm / s 5-9 cm / s 7.5 Max. 144 m / s Max. 20 cm / s 13 cm / s mm / s 0.1 mm / s Ave. Vr= 1.8 c m/s Ave. Vr= 2.1 c m/s Ave. Vz= 5.3 cm /s Ave. Vz= 4.4 cm /s Ave. V = 3.6 cm /s ave Ave. V = 3.2 cm /s Aluminum Aluminum Radial distance (mm) Radial distance (mm) 04

21 He, 75 A τ = 1.0s -5 0G Axial distance (mm) 5 Max. 134 m / s -8 cm / s Max. 28 cm / s 7.5 Ave. Vr= 2.7 c m/s 3.1 mm / s Ave. Vz= 10.0 cm /s 10 ave Ave. V = 6.4 cm /s Aluminum Radial distance (mm) 04

22 (b) ( ) ( ) (, ) (c) ( ) ( ) ( ) ( ) DB 05-1 ( ) 05-2

23 Pure helium arc Helium arc during welding Cathode Interval 2000 K = Anode 5 mm

24 05-5 (1 ) 05-6

25 ( ) ( ) 05-7 ( ) ( ) ( ) 1 ( ) ( ) 05-8

26 ( ) LS (10ppm) HS (220ppm) LS (10ppm) LS (10ppm) + Active flux HS (220ppm) 05-9 ( ) Ar100A LS HS ( ) ( ) HS LS: HS: 05-10

27 140 ms I=65A, V 7.2V (Ar), 9.4V(Ar+5%H2), 15.1V(He), Arc length 3mm 280 ms 5mm SUS304 TIG

28 TIG electrode Laser beam Arc? TIG torch Microfocused X-ray tube?? YAG laser head Work table Specimen X Fiber Image intensifier YAG laser High speed camera X G Shielding A gas S CRT TIG arc welder Recorder

29 RIO-DB

30 06 WG WG-2

31 06 WG-3 Tungsten Cathode Conduction Mass balance Ohmic heating Energy balance Radiation & Conduction Cathode jet Thermionic emission ofelectron Arc plasma Conduction, and Neutralizationof ion Ohmic heating Radiation & Conduction Drag of cathode jet Conduction, and Electronabsorption Surface tension j B Buoyancy Radiation Ohmic heating Conduction Anode 06 WG-4

32 ρv t 06 WG-5 ρ 1 + ( rρv r ) + ( ρv z ) = 0 t r r z r 1 2 P + ( rρv r ) + ( ρv z v r ) = j z B r r z r θ 1 v 2 r v r v z v + rη + η + η 2η r 2 r r r z z r r ρv z 1 2 P + ( rρv r v z ) + ( ρv z ) = + j r B t r r z z θ v z 1 v r v z + 2η + rη + rη + ρg z z r r z r ρ h 1 rκ h κ h + ( rρv r h) + ( ρv z h) = j r E r + j z E z U t r r z r r c r z c z p p 1 ( rj r ) + ( j z ) = 0 r r z 1 ( rb ) µ j z r r θ = 0 F K = εσt 4 je φk + ji Vi 4 FA = εσ T + j e φa Axial distance min Axial distance min Axial distance min Axial distance min 06 WG-6

33 Axial distance (mm) A K τ = 10 s K 1750 K 3000 K 3500 K 1000 K, Interval 2000 K K 1500 K 1000 K 500 K SUS 304 Axial distance (mm) K 2500 K 3000 K 3500 K 1500 K 150 A τ = 10 s 1000 K, Interval 2000 K K 1000 K 500 K SUS 304 Axial distance (mm) K 1500 K 2500 K 3000 K 3500 K 1000 K, Interval 2000 K K 1000 K 150 A τ = 10 s 500 K SUS Radial distance (mm) Radial distance (mm) Radial distance (mm) 06 WG-7 Low-S, SUS304 s Heat intensity (W/cm 2 ) Shielding gas: Ar Arc current: 150 A Cathode conical angle: 60 Anode: Cu (water cooled) Arc gap: 2.5 mm Arc gap: 5 mm Arc gap: 10 mm Experiments Radius (mm) 06 WG-8

34 (TIG,Ar, Low-S SUS304,τ=20s) Axial distance (mm) 150A, Low Sulfur Experiment τ = 20 s Calculation Axial distance (mm) Radial distance (mm) Radial distance (mm) 06 プロセス WG-9 y 40mm y T v = 0 = 0 z Welding direction Molten pool u = 0 T = 0 x T = 0 x z 計算モデルの基礎式 連続の式 ナビエ ストークスの式 エネルギー方程式 x Specimen 0 10mm T = 0 y z 20mm :Liquid :Solid x T = 293 u r = 0 r u r r 1 r 2 r r 1 + ( u ) u = P + η u + g + F t ρ ρ H r 1 + ( u ) H = ( K T ) t ρ (K) 06 プロセス WG-10

35 100mm/s S 10ppm ppm Ar 150A 3mm 2mm/ mm/s 06 WG mm/s S 250ppm ppm Ar 150A 3mm 2mm/ mm/s 06 WG-12

36 2mm/s LS(10ppm) HS(250ppm) D/W ratio LS HS Calculation : Experiment : Heat conduction only : 10mm/s 0.2 5mm Welding speed [mm/s] D/W 06 WG-13 40mm y T v = 0 = 0 z y u = 0 T = 0 x T = 0 x Arc :Liquid Specimen 0 10mm x :Solid z Molten pool x T = 0 y z 20mm T = 293 (K) 06 WG-14

37 06 WG-15 Surface tension (mn/m) Low sulfur (10 ppm) γ T = 0.13 High sulfur (250 ppm) γ T = 0.57 ( mn mk ) Temperature (K) ( mn mk ) Temp. coefficient of surface tension (mn/mk) High sulfur (250 ppm) Low sulfur (10 ppm) Temperature (K) Macnallan (a) (b) 06 WG-16

38 Surface tension data by Nogi Low sulfur High sulfur K 3000 K 3500 K Ar, 150 A τ = 20 s Max. 202 m/s Ar, 150 A τ = 20 s K 3000 K 3500 K Ar, 150 A τ = 20 s Max. 201 m/s Ar, 150 A τ = 20 s Axial distance (mm) K 1000 K, Interval 2000 K K Axial distance (mm) Max. 46 cm/s Axial distance (mm) K 1000 K, Interval 2000 K K Axial distance (mm) cm/s K K 1000 K 8 10 Max. 53 cm/s K 2000 K 500 SUS K 304 (LS) 12 SUS 304 (LS) K SUS 304 (HS) 12 SUS 304 (HS) Radial distance (mm) Radial distance (mm) Radial distance (mm) Radial distance (mm) 06 WG-17 Macnallan Surface tension data by Macnallan Low sulfur High sulfur Axial distance (mm) K 2500 K 3000 K 3500 K Ar, 150 A τ = 20 s 1000 K, Interval 2000 K K Axial distance (mm) Max. 202 m/s Ar, 150 A τ = 20 s Max. 49 cm/s Axial distance (mm) K 3000 K 3500 K Ar, 150 A τ = 20 s 1000 K, Interval 2000 K K Axial distance (mm) Max. 202 m/s Ar, 150 A τ = 20 s Max. 51 cm/s K K 1500 K K 2000 K SUS 304 (LS) 500 K SUS 304 (LS) K 1750 K SUS 304 (HS) SUS 304 (HS) Radial distance (mm) Radial distance (mm) Radial distance (mm) Radial distance (mm) 06 WG-18

39 : TIG / TIG 06 WG WG-20

40 (a) 06 WG-21 TIG torch CCD camera G Shielding A gas S TIG arc welder Materials used Type 304 plates ( 4 & 6 mm w ) Pt wire 6 mm Microfocused X-ray tube Bead welding Work table W particle Specimen %S %S 4 mm 4 mm Image intensifier (Fluorescent screen) Butt welding Moving stage High speed video camera (200~1000 f/s) TIG arc welding conditions Parameters Arc current, I (A) Arc voltage, E (V) Welding speed, v(mm/s) Shielding gas TIG arc (DCSP) Ar (15 l/min) He (20 l/min) Video set 06 WG-22

41 t = 60 ms (F=4025) t = 120 ms (F=4085) Welding direction W-2%La2O3 electrode mm t = 160 ms (F=4125) Type 304 (0.011%S) (6 mm t ) 100 A, 15 V, 3.33 mm/s, Ar (15 l/min) W particle dives downward near the central part below the electrode. X-ray transmission images and schematic representation of molten pool during TIG arc butt welding of Type 304 steel with 0.011%S, showing movement of W particle and liquid flow. 06 WG-23 v WM =0.1 m/s 06 WG-24

42 t=t n-1 Welding direction t=t n Electrode wire Metal transfer Weld metal t=t n t=t n Molten pool Arc 06 WG-25 W.D. W.D. 5mm 5mm 6mm 6mm (a) Pa=0 (b) Pa=1000Pa Influence of arc pressure on weld profile in horizontal fillet welding (I=230A, V=25V, v=40cm min -1,=65%, R q =4mm, R p =9mm) 06 WG-26

43 Calculated example 4.1 Calculated example 4.2 W.D. W.D. W.D. B C B C B C A A A 6mm 6mm 6mm (a) First pass (b) Second pass (c) Third pass 5mm 5mm 5mm B C B C B C A A A 6mm 6mm 6mm (a) First pass (b) Second pass (c) Third pass Calculated result in three passes welding (I=230A, V=25V, v=40cm min -1, Pa=800Pa, R p =4mm, R q =4mm) Temperature (K) A Time (s) Temperature history (I=230A, V=25V, v=40cm min -1, Pa=800Pa, R p =4mm, R q =4mm) B C 06 WG-27 (I=200A, V=25V, v=40cm/min) W.D. W.D. 6mm 6mm 10mm (a) D=20mm 10mm (b) D=30mm 06 WG-28

44 6mm 6mm 6mm Comparison between experiment and calculation in horizontal fillet welding (I=230A, V=25V,v=60cm/min, =90%, Ra=Rp=4mm, Pa=500Pa) 6mm 6mm (a)calculation 6mm 6mm (b) Experiment Comparison between experiment and calculation in fillet welding in vertical down position (I=230A, V=25V,v=60cm/min, =90%, Ra=Rp=4mm, Pa=500Pa) 6mm 06 WG-29 3mm 3mm 6mm 6mm (a) plate thickness: 3mm (b) plate thickness: 6mm Horizontal fillet welding (I=230A, V=24V, v=40cm/min) 06 WG-30

45 (a) First pass welding (b) Second pass welding (c) Third pass welding (I=210A,V=26V,v=40cm/min) (I=195A,V=26V,v=22cm/min) (I=190A,V=26.5V,v=25cm/min) Comparison between experimental and calculated cross sections in multi-pass welding 06 WG-31 (a) (b) T- 06 WG-32

46 Өπ Ө π Өπ Ө π Ө π Ө π Ө π Ө π Ө π Өπ Ө π Ө π 3mm V f = 20mm 3 /s (Mild steel, d1=20mm, d2=30mm, h=3.0mm, v=3.0mm/s) 06 WG-33 No.100_1 06 WG-34

47 No.100_ WG (K) No.113 0(K) 06 WG-36

48 3500(K) 0(K) MAG bead on plate 06 WG-37 MAG TIG MAG TIG TIG TIG TIG TIG 06 WG-38

49 NEDO/METI ORNL/Battelle DOE () Dilthey/Daimler-Chrysler Daimler-Chrysler TSIMprogramme) ( ) ( ) ( ) ( ) MAG TIG 06 WG-39 [ ] [ ] 06 WG-40

50 490MPa (1)490MPa (2)950MPa WG- ( ) + +MA MA + WG WG 07 WG-

51 07 WG- (2 ) (1) INPUT (2) OUTPUT (4) (3) CCT 07 WG-

52 07 WG- -EBSP(OIM - ND 07 WG-

53 mass% C Si Mn P S Ti O N BASE Low C Low Si High Si Low Mn WG- 50MPa Hv = Si[%] [%] Si 07 WG-

54 100µm 100µm 07 WG- R=0.79 ve 0 = [ (wt%)] 63.2[ (um)] 07 WG-

55 + + 50um 07 WG- MA MA, (1997) p µm 07 WG-

56 28 20µm µm 20µm WG- 07 MA 07 WG-

57 1 1 C C X = 1 exp 2S t 1 exp I St ( 1 2x + x ) dx C C (C C ) D D = yc ( 1 yc ) exp ( yc 26436) T T (C0 C)(C C ) John Agren:Scripta Met., vol.20 (1986) pp.1507 X I s parabolic rate constant = 07 WG- A W : A =A 0 constant W = 1/2 1 X = exp [ A 0 N 1/2 ] 4 m s -1/2 = t s 07 WG-

58 1992Umemoto 3 ( ) x 2 X P = 1 exp Sα / γ G t 1 exp π I gb G t x 1 x dx 0 Cahn Sα / γ = D 2π γ Dc (cγ cγθ ) 1 G = (c - c ) F F S αp θp 2 2 2σ αθ S = S0 = 3 3 dg p γ c α 1 S / I gb D C C C C C F p F p S S 0 dg p 07 WG- BASE C Si at 600 at 600 at 600 Si Mn at 600 at 600 = = = 1.0 J/m 2 07 WG-

59 Input < Ae3 C < Bs C < Acm C < 200 MA MA MA C C C Ae3(C) Bs(C) Acm Acm(C) 07 WG- Input > Ae1 = f (, 07 WG-

60 Ae3 Ae1 MA 50µm 07 WG- 07 WG-

61 07 WG WG-

62 WG Si% 07 WG- 07 WG-

63 1757

64 mm 380 mm 25 mm Q=533 J/mm v=1.5 mm/s 10 σ Y dt dt 200 o C / s 120

65 熱弾塑性理論による詳細解析 : 数万自由度の連立方程式を数千回解く計算の高速化 高精度化が必要 溶接時間 = 溶接長さ / 溶接速度 = 240/1.5= 160 秒温度増分を 10 とした時のステップ数 = /10=3600 ステップ dt dt 200 o C / s 冷却後の状態 ( 固有変形 ) に注目した弾性簡易解析固有変形データベースが必要 WG -a -b

66 1/5 1/4 50% ( ) 15%

67 [ ] 15% (1) (2) (3) Material SM400 Flange plate Thickne Length Breadth ss Rib plate Thickne Length Breadth ss Leg length 8 Welding Current Voltage Speed Heat input Shield gas Pass wire (A) (V) (cm/min) (J/cm) DW-100V CO

68 T1 16 TT T 31 56mm (a) (b) Displacement w (mm) Experiment (x) mm y (mm) Analysis (x) mm

69 15%

70 (2) 150 y x Poisson's ratio(x10-2 ) Yield stress(x10 MPa) thermal expansion Young's modults (x10-6 ) (x10 4 MPa) y

71 (x10mpa) x=0 (x10mpa) x=0 y=-10 y=-10 y (mm) y (mm) y σ y Usual incremental method New method T / σ y / σ y u1600 c T c u1600 (Tc CPU Time) T / 1600 c T σ c u y / σ y u1600 ( σ y : σ y at x=0,y=-10mm) 1/10

72 [ ] 1/4 15 ARC (mm) A V (cm/min) (%) (J/mm) () () mm 12 mm Model C ( 0 mm) Model D ( 10 mm)

73 L-S- T-S T-L FEM (C, D) (A, B) stiffener 1 stiffener 2 (Model-C, D) Line Line 1 1 Line 2 Gap (10 mm) Line-1 Line-2

74 (Model-A, B) Line 4 Line 2 Line 3 Line 1 Gap (10 mm) -A -B Line 3 Line 4 Line 2 Line A, Line B, Line A, Line B, Line-1

75

76 SOLVER

77 Trans-Varestraint Fish Bone ( 3D FCB () ZoomedView Heat input=1500 J/mm, P/W=1.45, Groove=5.0 mm ( ) ( ) ( )

78 5mm mm mm z Welding direction 200 mm 120 mm x=152 mm x=160 mm x=168 mm x=176 mm WG CO2 [ ] 15% 15% [ ] 50% [ ] [ ] 1/4

79 変形モデルの実用化 プロジェクトの成果と課題 熱弾塑性詳細解析 固有変形を用いた弾 性解析 プロジェ (1) 予測精度の検証済 クトの (2) 十倍程度の高速化 成果 (1) 固有変形データベース 作成法 逆解析法開発 (2) 大型構造物変形予測 各種構造物に対する 適用性検証 (1) 倍の高速化 実用化に (2) 曲げ加工などの前工程 向けての との連続解析 課題 (3) クランプ 逆ひずみなど の考慮 (4) 簡便なデータ入出力 (1) データベースの充実 (2) 実機への適用実績の 蓄積 (3) 実機からの固有変形 同定 (4) 適用限界の明確化 08 溶接変形予測 33 変形シミュレーションの現状と今後の展開 複 雑 対象構造物の複雑さ 圧力容器 自動車 車両の 小型部品 ノズル部 高速化 メモリー低減 大型部品 多パス 熱弾塑性詳細解析 多パス 船のブロック 固有変形を 橋梁 用いた弾性解析 単純溶接継手 1パス 対象構造物の規模 08 溶接変形予測 34 大

80 (a) { } (b) { }{ } (c) { }{ } + E ASTOM D A B C D F Virtual Weld ASTOM A B C D E F Virtual Weld E A B C ASTOM F ASTOM

81 09-1 Materials and its properties Joint type and groove geometry Shielding gas and wire, Process parameters Welding conditions, etc Input Virtual Welding System Output m

82 No.100_ D D 09-4

83 Temperature(K) 12mm Temperature(K) 12mm mm 30mm 50mm 80mm Time(s) (a) Experiment Time(s) (b) Calculation Comparison between experimental and calculated temperature histories in multi-pass welding

84 3500(K) No.115 0(K) A 28V 35cm/min 0.8mm -0.2mm 09-8

85

86 09-11 A V 09-12

87

88 09-15 (a) (b) (c) (d)

89 0.5mm No mm A 25V 40cm/min

90

91

92

93 T-S T-L ( ) 10-5 [ ] 100 3,100 1,800 17,000 17,400 7,300 17,200 2,600 8,200 74,700 [ ]

94 H16 user I/F DB Marketing A A ( >WG) PJ A or or or or A / H NEDO JST VirtualWeld SOF ASTOM TPS 10-8

95 (virtual weld) ASTOM (Virtual Weld) 10-9

1 158 14 2 8 00225 2 1.... 3 1.1... 4 1.2... 5 2.... 6 2.1...7 2.2... 8 3.... 9 3.1... 10 3.2... 16 4.... 17 4.1... 18 4.2... 20 4.3... 22 5.... 23 5.1... 24 5.2... 28 5.3... 34 5.4... 37 5.5... 39 6....

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA [ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA Keiji and HIRATA Yoshinori Metal transfer modes in

More information

155 13 2 15 B97176 1 1.1. 4 1.2. 5 1.2.1. 1.2.2. 1.3. 7 2. 2.1. 9 2.2. 1 2.3. 13 2.4. 16 3. 3.1. 3.1.1. 18 3.1.2. 26 3.1.3. 33 3.2. 3.2.1. 34 3.2.2. 5 4. 4.1. 52 4.2. 53 54 55 2 1 1.1 1.2 1.3 3 4 Fig.

More information

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch 110 : 565-0871 2-1 567-0871 11-1 660-0811 1-9 - 1 tanigawa@jwri.osaka - u.ac.jp Influence of Laser Beam Profile on Cladding Layer TANIGAWA Daichi, ABE Nobuyuki, TSUKAMOTO Masahiro, HAYASHI Yoshihiko, YAMAZAKI

More information

untitled

untitled GeoFem 1 1.1 1 1.2 1 1.3 1 2 2.1 2 2.2 3 2.3 FEM 5 (1) 5 (2) 5 (3) 6 2.4 GeoFem 7 2.5 FEM 16 2.6 19 2.7 26 3.1 33 3.2 35 3.3 GeoFem 36 3.4 48 3.5 49 A A1 A2 A3 A4 A5 A6 A7 GeoFem GeoFem CRS GeoFem GeoFem

More information

溶接技術分野でのコンピュータ技術の応用

溶接技術分野でのコンピュータ技術の応用 溶接現象のモデル化 NEDO プロジェクトから 大阪大学 大学院工学研究科 黄地尚義 WDS100 回記念セミナー (2005 年 1 月 ) 溶接現象のモデル化 NEDO プロジェクトから 大阪大学大学院知能 機能創成工学専攻 黄地尚義 宮坂史和 山本剛 辻陽子 0. はじめに技術者は 与えられた溶接構造物に対し 適切な溶接施工法 施工条件を選択 決定しなければならない この決定には高度な技術的判断が要求され

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

電子部品はんだ接合部の熱疲労寿命解析

電子部品はんだ接合部の熱疲労寿命解析 43 Evaluation for Thermal Fatigue Life of Solder Joints in Electronic Components Haruhiko Yamada, Kazuyoshi Ogawa 2 63Sn- 37Pb 95Pb-5Sn Si Cu Si 63Sn-37Pb Since automotive electronic components are used

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

<4D F736F F D20955D89BF8F C4816A C8E CF88F596BC95EB816A E90DA8B5A8F70816A2E646F63>

<4D F736F F D20955D89BF8F C4816A C8E CF88F596BC95EB816A E90DA8B5A8F70816A2E646F63> 溶接技術の高度化による高効率 高信頼性溶接技術の開発 事後評価報告書 平成 17 年 8 月 独立行政法人新エネルギー 産業技術総合開発機構独立行政法人産業技術総合研究所研究評価委員会 目次 はじめに 1 分科会委員名簿 2 審議経過 3 評価概要 4 研究評価委員会におけるコメント 7 研究評価委員会委員名簿 8 第 1 章評価 1. プロジェクト全体に関する評価結果 1-1 1.1 総論 1.2

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering 206 : 316-8511 4-12 - 1 Laser Sintering Characteristics of Silver Nanoparticle Paste for Electronics Packaging YAMASAKI Kazuhiko, MAEKAWA Katsuhiro (Received January 10, 2012) Ibaraki University, Faculty

More information

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量 33 Non-destructive Measurement of Retained Austenite Content in Austempered Ductile Iron Yoshio Kato, Sen-ichi Yamada, Takayuki Kato, Takeshi Uno Austempered Ductile Iron (ADI) 100kg/mm 2 10 ADI 10 X ADI

More information

<30345F90BC96EC90E690B65F E706466>

<30345F90BC96EC90E690B65F E706466> 15 特集 国際宇宙ステーション日本実験棟 きぼう における流体実験 * Space Experiment on the Instability of Marangoni Convection in Liquid Bridge Koichi NISHINO, Department of Mechanical Engineering, Yokohama National University 1 thermocapillary

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

pc725v0nszxf_j

pc725v0nszxf_j PC725NSZXF PC725NSZXF PC725NSZXF PC725 DE file PC725 Date Jun. 3. 25 SHARP Corporation PC725NSZXF 2 6 5 2 3 4 Anode Cathode NC Emitter 3 4 5 Collector 6 Base PC725NSZXF PC725YSZXF.6 ±.2.2 ±.3 SHARP "S"

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

charpter0.PDF

charpter0.PDF Kutateladze Zuber C 0 C 1 r eq q CHF A v /A w A v /A w q CHF [1] [2] q CHF A v /A w [3] [4] A v : A w : A : g : H fg : Q : q : q CHF : T : T 1 : T 2 : T 3 : c 100 T 4 : c 100 T b : T sat : T w : t : V

More information

Microsoft Word - 予稿集表紙.doc

Microsoft Word - 予稿集表紙.doc ミクロ組織に基づくフェライト セメンタイト鋼の脆性破壊発生予測 柴沼一樹東京大学大学院工学系研究科 ミクロ組織に基づくフェライト セメンタイト鋼の脆性破壊発生予測 柴沼一樹 東京大学 大学院工学系研究科システム創成学専攻 113-8656 東京都文京区本郷 7-3-1 shibanuma@struct.t.-u-tokyo.ac.jp 近年, 構造物に使用される鋼材の高張力化や使用環境の過酷化が進み,

More information

H17-NIIT研究報告

H17-NIIT研究報告 DLC SiC 1 2 3 4 4 5 5 6 The Influence of SiC Shot Blasting on Adhesion of DLC Film MIKI Yasuhiro *1), TANIGUCHI Tadashi *2), MATSUOKA Takashi *3) SASAKI Kenji *4), FUKUSHI Takayoshi *4), YUKI Tamotsu *5),

More information

LNG Tank-Its Structure, the Materials and Welding Techniques Yasunosuke OGAWA, Mitsuhiro SAKAMOTO, Kiyoaki TOYOMASU, Mitsuo OHYAMA, Munemitsu FUKAGAWA, and Yoshinori SAIGA Table 2. Material list for various

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol 58 *1, *1, * 2 Mechanism of Heat Transfer through Mold Flux in Continuous Casting Mold By Hiroyuki Shibata, Shin-ya Kitamura and Hiromichi Ohta 1 K.C.Mills and A.B.Fox [1] [2] Fig.1 q c q r q t q t = q

More information

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成 Title 無電解めっきとレーザー照射による有機樹脂板上への Cu マイクロパターン形成 Author(s) 菊地, 竜也 ; 和智, 悠太 ; 坂入, 正敏 ; 高橋, 英明 ; 飯野, 潔 ; 片山, 直樹 Citation 表面技術, 59(8): 555-561 Issue Date 2008-08 Doc URL http://hdl.handle.net/2115/36647 Type

More information

hν 688 358 979 309 308.123 Hz α α α α α α No.37 に示す Ti Sa レーザーで実現 術移転も成功し 図 9 に示すよ うに 2 時間は連続測定が可能な システムを実現した Advanced S o l i d S t a t e L a s e r s 2016, JTu2A.26 1-3. 今後は光周波 数比計測装置としてさらに改良 を加えていくとともに

More information

Vol. 21, No. 3 (2014) 191 CW Hablanian plot 1,2 Hablanian plot Vd/K, P/θtk V m/s d m K m 2 /s P W θ K t m k W/mK Hablanian plot Vd/K V K/d P/θtk P θtk

Vol. 21, No. 3 (2014) 191 CW Hablanian plot 1,2 Hablanian plot Vd/K, P/θtk V m/s d m K m 2 /s P W θ K t m k W/mK Hablanian plot Vd/K V K/d P/θtk P θtk 190 : 574-8530 3-1 - 1 431-1202 1955 1 472-0017 7 Prediction of Penetration Depth Using Hablanian Plot Based on Laser Welding Results for Stainless Steel HEYA Manabu, TSUBOI Akihiko, SHAMOTO Hideyasu and

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

Journal of Textile Engineering, Vol.53, No.5, pp

Journal of Textile Engineering, Vol.53, No.5, pp ORIGINAL PAPER Journal of Textile Engineering (2007), Vol.53, No.5, 203-210 2007 The Textile Machinery Society of Japan Analyzing the Path and the Tension of a Yarn under a False-twist Process Using a

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

untitled

untitled 1.0 1. Display Format 8*2 Character 2. Power Supply 3.3V 3. Overall Module Size 30.0mm(W) x 19.5mm(H) x max 5.5mm(D) 4. Viewing Aera(W*H) 27.0mm(W) x 10.5mm(H) 5. Dot Size (W*H) 0.45mm(W) x 0.50mm(H) 6.

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

PRODUCT INFORMATION Highly Efficient FXS Carbide Ball Nose End Mills Vol. 3 PAT.P. FXS-EBT FXS-LS-EBT FXS-PC-EBT FXS-EBM

PRODUCT INFORMATION Highly Efficient FXS Carbide Ball Nose End Mills Vol. 3 PAT.P. FXS-EBT FXS-LS-EBT FXS-PC-EBT FXS-EBM PRODUCT INFORMATION Highly Efficient FXS Carbide Ball Nose End Mills Vol. 3 PAT.P. FXS-EBT FXS-LS-EBT FXS-PC-EBT FXS-EBM 3 Flutes Series Features Thanks to 3 flutes ball nose geometry, all of that reach

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information

Influence of Material and Thickness of the Specimen to Stress Separation of an Infrared Stress Image Kenji MACHIDA The thickness dependency of the temperature image obtained by an infrared thermography

More information

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Nagakute, Aichi 480-11, Japan A package of computer programs

More information

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe) 1001 µµ 1.... 2 2.... 7 3.... 9 4. InGaAs/GaAs PIN... 10 5. InGaAs... 17 6. PbS/PbSe... 18 7. InSb... 22 8. InAs/InSb... 23 9. MCT (HgCdTe)... 25 10.... 28 11.... 29 12. (Si)... 30 13.... 33 14.... 37

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

untitled

untitled SPring-83 22(2010)730 MBE PLD MBE 0.002% PLD p Π n p n PF PF = S 2 S =V/ΔT V: [V] ΔT: [K] S[V/K], T[K], σ[s/m] TeBi 2 Te 3 (Bi,Se) 2 Te 3 (n-type) Ar KrF Ar gas 2. A. 3. c-si a-si InP GaAs 1g (μm) PV(W/g

More information

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 4 Simultaneous reduction-sulfurization and direct sulfurization of iron

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

r 0 r 45 r 90 F 0 n

r 0 r 45 r 90 F 0 n Evaluation of Fatigue and Noise-and-vibration Properties of Automobile Partial Models Abstract Application of high strength steel sheets to automotive bodies requires evaluation technologies of fatigue

More information

Microsoft PowerPoint - 02_資料.ppt [互換モード]

Microsoft PowerPoint - 02_資料.ppt [互換モード] db log db db db log log log db log log log4 y log4 log y log log y log4 log log log y log 4 log log log y log log log log y log log y log log y log y 5V.5 m db db log db db.893 - +..5.779-3 +3.43 db(.)

More information

特-7.indd

特-7.indd Mechanical Properties and Weldability of Turbine Impeller Materials for High Temperature Exhaust Gas Turbocharger 1 000 1 050 246 IN100 The increase in environmental awareness in recent years has led to

More information

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Shigeru Kitamura, Member Masaaki Sakuma Genya Aoki, Member

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed

Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed Continuous Cooling Transformation Diagrams for Welding of Mn-Si Type 2H Steels. Harujiro Sekiguchi and Michio Inagaki Synopsis: The authors performed a series of researches on continuous cooling transformation

More information

K 1 mk(

K 1 mk( R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0

More information

untitled

untitled 9118 154 B-1 B-3 B- 5cm 3cm 5cm 3m18m5.4m.5m.66m1.3m 1.13m 1.134m 1.35m.665m 5 , 4 13 7 56 M 1586.1.18 7.77.9 599.5.8 7 1596.9.5 7.57.75 684.11.9 8.5 165..3 7.9 87.8.11 6.57. 166.6.16 7.57.6 856 6.6.5

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

<8B5A8F70985F95B632936EE7B22E696E6464>

<8B5A8F70985F95B632936EE7B22E696E6464> 47 Electrical Discharge Truing for Electroplated Diamond Tools Koji Watanabe Hisashi Minami Hatsumi Hiramatsu Kiyonori Masui (211 7 8 ) Electroplated diamond tools are widely used for grinding because

More information

untitled

untitled (a) (b) (c) (d) (e) (f) (g) (f) (a), (b) 1 He Gleiter 1) 5-25 nm 1/2 Hall-Petch 10 nm Hall-Petch 2) 3) 4) 2 mm 5000% 5) 1(e) 20 µm Pd, Zr 1(f) Fe 6) 10 nm 2 8) Al-- 1,500 MPa 9) 2 Fe 73.5 Si 13.5 B 9 Nb

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue Date 2017 URL http://hdl.handle.net/2433/229150 Right

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

薄板プレス成形の高精度変形解析手法と割れ予測

薄板プレス成形の高精度変形解析手法と割れ予測 Finite Element Simulation of Deformation and Breakage in Sheet Metal Forming Noritoshi Iwata, Masao Matui 3 4J2G Stören & Rice FEM In the analysis of sheet metal forming, constitutive equations are examined

More information

1 2 3

1 2 3 INFORMATION FOR THE USER DRILL SELECTION CHART CARBIDE DRILLS NEXUS DRILLS DIAMOND DRILLS VP-GOLD DRILLS TDXL DRILLS EX-GOLD DRILLS V-GOLD DRILLS STEEL FRAME DRILLS HARD DRILLS V-SELECT DRILLS SPECIAL

More information

pc123xnnsz_j

pc123xnnsz_j PC2XNNSZF PC2XNNSZF = UL577 2 fi le No. E68 PC2 BSI BS-EN665 fi le No. 787 BS-EN695 fi le No. 79 PC2 SEMKO EN665 EN695 PC2 DEMKO EN665 EN695 PC2 NEMKO EN665 EN695 PC2 FIMKO EN665 EN695 PC2 CSAfile No.CA952

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been studied using a volume constant technique. The process

More information

JFE技報 No.5 厚板特集号

JFE技報 No.5 厚板特集号 JFE No. 5 248 37 Minimum Maintenance Steel Plates and Their Application Technologies for Bridge Life-Cycle-Cost Reduction Technologies with Environmental Safeguards for Preser ving Social Infrastructure

More information

(Jackson model) Ziman) (fluidity) (viscosity) (Free v

(Jackson model) Ziman) (fluidity) (viscosity) (Free v 1) 16 6 10 1) e-mail: nishitani@ksc.kwansei.ac.jp 0. 1 2 0. 1. 1 2 0. 1. 2 3 0. 1. 3 4 0. 1. 4 5 0. 1. 5 6 0. 1. 6 (Jackson model) 8 0. 1. 7 10. 1 10 0. 1 0. 1. 1 Ziman) (fluidity) (viscosity) (Free volume)(

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

光害対策ガイドライン平成18年12月改訂版

光害対策ガイドライン平成18年12月改訂版 10 (2003) 50 ...1 1-1... 1 1-2... 1 1-3... 2...12 2-1... 15 2-2... 26 2-3... 38...45...47... 47...49 1-1 1-2 (1) (a) (b) (c) (2) (a) (b) (c) (d) (e) 1 1-3 CIE() JIS A 2 1-a 3 (1) (a) 3 JIS (b) (c) (d)

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information