A spectral theory of linear operators on Gelfand triplets (New Developments in Geometric Mechanics)

Size: px
Start display at page:

Download "A spectral theory of linear operators on Gelfand triplets (New Developments in Geometric Mechanics)"

Transcription

1 A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba\copyright imikyushu-uacjp Dec 21, $\frac{du}{dt}=tu$ (11) $u$ $X$ $X$ $X$ $0$ $X$ $X$ $*1$ Landau [7] Gelfand 3 $*1$ sectorial operator $X$ Banach ( ) [10] sectorial operator [12] $S(t)$ Hilbert $e^{\sigma(t)t}=\sigma(s(t))$ $e^{\sigma(t)t}\subset\sigma(s(t))$ $S(t)$ $\sigma(t)$ $D(T)$ $X$ $S(t)$ $X$ $D(T)$ $D(T)$ [12]

2 79 Gelfand 3 $\searrow$ $L^{2}(R)$ $ix$ $\mathcal{m}$ : $\phi(x)\mapsto ix\phi(x)$ : $\sigma(\mathcal{m})=ir$ $(\lambda-\mathcal{m})^{-1}$ $(L^{2}(R)$ ) ( 0 ) $L^{2}(R)$ $\phi,$ $\psi\in L^{2}(R)$ $((\lambda-\mathcal{m})^{-1}\phi,\psi)$ $(( \lambda-\mathcal{m})^{-1}\phi, \psi)=\int\frac{1}{\lambda-ix}\phi(x)\psi(x)dx$ $1/(\lambda-ix)$ $\phi,\psi$ $\lim_{{\rm Re}(\lambda)arrow+0}\int\frac{1}{\lambda-ix}\phi(x)\psi(x)dx$ $*2$ $\phi,\psi$ $((\lambda-\mathcal{m})^{-1}\phi, \psi)$ $\int\frac{1}{\lambda-ix}\phi(x)\psi(x)dx+2\pi\phi(i\lambda)\psi(i\lambda)$ $\phi$ $\psi$ $R(\lambda;\phi,\psi)=\{\begin{array}{ll}\int_{R}\frac{1}{\lambda-ix}\psi(x)\phi(x)dx+2\pi\psi(i\lambda)\phi(i\lambda) ({\rm Re}(\lambda)<0),\lim_{{\rm Re}(\lambda)arrow+0}\int_{R}\frac{1}{\lambda-ix}\psi(x)\phi(x)dx (\lambda\in ir),\int_{r}\frac{1}{\lambda-ix}\psi(x)\phi(x)dx ({\rm Re}(\lambda)>0),\end{array}$ $*2$ $\lim_{{\rm Re}(\lambda)arrow+0}\int\frac{{\rm Re}(\lambda)}{{\rm Re}(\lambda)^{2}+({\rm Im}(\lambda)-x)^{2}}\phi(x)\psi(x)dx=\pi\phi({\rm Im}(\prime l))\psi({\rm Im}(\prime l))$

3 80 $R$ $\phi$ $\psi$ $R$ $X$ $L^{2}(R)$ $X$ $X$ $\phi\in X$ $R(\lambda;\phi, \psi)$ $\phi\mapsto R(\lambda;\phi, \psi)$ $X$ $R(\lambda;\bullet, \psi)$ $X$ $\psi\mapsto R(\lambda;\bullet, \psi)$ $X$ $X$ : $\langle A(\lambda)\psi \phi\rangle=\{\begin{array}{ll}\int_{r}\frac{1}{\lambda-ix}\psi(x)\phi(x)dx+2\pi\psi(i\lambda)\phi(i\lambda) ({\rm Re}(\lambda)<0),\lim_{{\rm Re}(\lambda)arrow+0}\int_{R}\frac{1}{\lambda-ix}\psi(x)\phi(x)dx (\lambda\in\iota R),\int_{R}\frac{1}{\prime t-ix}\psi(x)\phi(x)dx ({\rm Re}(\lambda)>0)\end{array}$ (12) $\langle\cdot \cdot\rangle$ $X $ $X$ Dirac $A(\lambda)=(\lambda-\mathcal{M})^{-1}$ $\mathcal{m}$ : $\mathcal{m}$ $(_{\ell}\lambda-\mathcal{m})^{-1}$ $L^{2}(R)$ $X$ $X $ (X - ) $L^{2}(R)$ $X$ $L^{2}(R)$ $L^{2}(R)$ $L^{2}(R)$ Hilbert $X\subset L^{2}(R)\subset X$ (13) 3 Gelfand 3 rigged Hilbert space Hilbert $(\lambda-t)^{-1}$ $X$ $X$ $X$ $(\lambda-t)^{-1}$ Riemann $R_{\lambda}$ Riemar

4 81 $X$ Banach $C^{0}$ $e^{tt}$ Laplace $e^{tt}= \lim_{yarrow\infty}\frac{1}{2\pi i}\int_{x-iy}^{x+iy}e^{\lambda t}(\lambda-t)^{-1}d\lambda$ (14) $x$ $($ $1(a))$ (a) (b) Fig 1 $\cross$ ( ) 1(b) : $\phi(x)\mapsto ix\phi(x)$ $e^{\prime tt}(\lambda-t)^{-1}$ $\mathcal{m}$ $X$ Laplace $e^{tt}= \lim_{yarrow\infty}\frac{1}{2\pi i}\int_{x-iy}^{x+iy}e^{\lambda t}a(\lambda)d\lambda$ (15) ( 2 Riemam ) $(T \phi)(x)=ix\phi(x)+k\int_{r}\phi(x)dx$ (16)

5 82 $L^{2}(R,g(x)dx)$ (11) ( $K>0$ $g$ ) [3,4] $K_{c}=\Subset/\pi$ 4 $\mathcal{m}$ $K$ $K$ $K>K_{c}$ $\lambda=\lambda$( $K=K_{c}$ $0<K<K_{c}$ $\phi,$ $\psi$ ( $((\lambda-t)^{-1}\phi, \psi)$ ), 2 2 Riemam Laplace 2 Riemam (11) $u(t)$ $X$ [3, 4] Fig 2 $K$ $K>K_{c}$ 0 K K $<$ $<$ Riemalm D$()$ R$()$ 2 Gelfand 3 $X$ $C$ Hausdorff $X $ $X $ $X$ $\mu\in$ $\mu(\phi)$ $\phi\in X$ $a,$ $b\in C,$ $\phi,$ $\psi\in X$ $\mu,$ $\xi\in X $ $\langle\mu \phi\rangle$ Dirac

6 83 $\langle\mu a\phi+b\psi\rangle=\overline{a}\langle\mu \phi\rangle+\overline{b}\langle\mu \psi\rangle$, (21) $\langle a\mu+b\xi \phi\rangle=a\langle\rho r \phi\rangle+b\langle\xi \phi\rangle$, (22) $X $ ( ) ( ) $*$ $*$ $\phi\in X$ $\langle\mu J \phi\ranglearrow\langle\mu \phi\rangle$ $\{\mu j\}\subset X $ $\mu\in$ $X$ $\langle\mu j \phi\ranglearrow\langle/l \phi\rangle$ $\{\mu J\}\subset$ $\mu\in X $ $(\cdot,$ $\cdot)$ Hilbert $X$ $H$ $X$ Hilbert $\subset X $ 21 Hausdorff $X$ Hilbert $X$ 3 $X\subset H\subset X $ (23) rigged Hilbert space, Gelfand 3 $i:^{c}harrow X $ ; $\psi\in$ $i(\psi)$ $\langle\psi $ $i(\psi)(\phi)=\langle\psi \phi\rangle=(\psi, \phi)$, $\phi\in X$ (24) $i$ $\prime Harrow X $ : $X$ $i$ ( ) $X$ $i$ (Tr\ eves [18]) 21 Gelfand 3 Schwartz Gelfand [8] $X=C_{0}^{\infty}(R^{m}),$ $H=L^{2}(R^{m})$ Gelfand 3 Schwartz 3 Gelfand 3 Chiba [5] 31 $C$ Hilbert $H$ $\{E(B)\}_{B\in B}$ $H$ $H= \int_{r}\omega de(\omega)$ :

7 84 Fig $E[\psi, \phi](\omega)$ 3 $\Omega$ $K$ $T:=H+K$ Schr\"odinger $H$ $K$ $\Omega\subset C$ $\tilde{i}$ $\tilde{i}$ $I$ ( 3) $T=H+K$ $C$ $\Omega$) (Xl) $X(\Omega)$ (X2) $X(\Omega)$ (X3) $X(\Omega)$ (Xl), (X2) Gelfand 3 $X(\Omega)\subset H\subset X(\Omega) $ (31) ( Treves [18] ), Frechet Banach Hilbert $C^{\infty}$ Frechet $*3$ Montel $*4$ Banach-Steinhaus, $*3$ $*4$ Montel Montel $C^{\infty}$ $C^{\infty}$ $C^{\infty}$ Montel Schwartz Montel Montel [9,13] Banach-Steinhaus $X$ $\chi$ $\chi$ 4 $A$ (i) $A$ (ii) $A$ (iii) $A$

8 85 [5] $H$ $E(B)$ (X4) $\phi\in X(\Omega)$ $E[\phi, \phi](\omega)$ $\lambda\in I\cup\Omega$ (X5) $(E(B)\phi, \phi)$ $I$ $\Omega\cup I$ $E[\cdot,$ $\cdot](\lambda)$ : $X(\Omega)\cross X(\Omega)arrow C$ (X4) $\phi,$ $\psi\in X(\Omega)$ $E[\phi, \psi](\omega)$ : $(E(B)\phi, \psi)$ $I$ $d(e(\omega)\phi, \psi)=e[\phi, \psi](\omega)d\omega$, $\omega\in I$ (32) $E[\phi, \psi](\omega)$ $\omega\in I\cup\Omega$ $I$ $\omega\in R$ $ix(\omega)$ $X(\Omega)$ $X(\Omega) $ : $ix(\omega)arrow X(\Omega) $ $\langle A(\lambda)\psi \phi\rangle=\{\begin{array}{ll}\int_{r}\frac{1}{\lambda-\omega}e[\psi,\phi](\omega)d\omega+2\pi\sqrt{-1}e[\psi,\phi](\lambda) (\lambda\in\omega),\lim_{yarrow-0}\int_{r}\frac{1}{x+\sqrt{-1}y-\omega}e[\psi,\phi](\omega)d\omega (\lambda=x\in I),\int_{R}\frac{1}{\lambda-\omega}E[\psi,\phi](\omega)d\omega ({\rm Im}(\lambda)<0),\end{array}$ (33) ${\rm Im}(\lambda)<0$ $\langle A(\lambda)\psi \phi\rangle$ $\{{\rm Im}(\lambda)<0\}\cup\Omega\cup I$ $\langle A(\lambda)\psi \phi\rangle=((\lambda-h)^{-1}\psi,\phi)$ $H$ $A(,l)$ $X(\Omega) $ $\Omega$ $(\lambda-h)^{-1}$ $*5$ $H$ 1 $(\Omega$ $)$ $\Omega$) $X(\Omega) $ $A(\lambda)\circ i$ : $X(\Omega)arrow X(\Omega) $ $*6$ $Q$ $Q $ : $D(Q )arrow X(\Omega) $ ; $Q $ $D(Q )$ $X(\Omega)$ $C$ $\phi\mapsto\langle\mu Q\phi\rangle$ $\Omega$) $\mu\in X(\Omega) $ $*5$ (iv) $A$ Treves[18] $X$ Banach $\Omega$ $\Omega$ Riemann 4 Banach [1] $*6X(\Omega)$ Banach

9 86 $\langle Q \mu \phi\rangle=\langle\mu Q\phi\rangle$ Hilbert $Q$ $H$ $Q$ $Q^{*}$ $(Q\phi, \psi)=(\phi, Q^{*}\psi)$ $\Omega$ $Q^{*}$ $)$ $(Q^{*}) $ $Q^{\cross}$ $Q^{\cross}=(Q^{*}) $ $i\circ Q=Q^{\cross}\circ i _{D(Q)}$ $Q$ $Q^{\cross}$ $H$ $K$ (X6) $H$ $X(\Omega)$ $HY\subset X(\Omega)$ (X7) $K$ $X(\Omega)$ $Y$ $H$ - $K^{*}$ $X(\Omega)$ (X8) $\lambda\in\{{\rm Im}(\lambda)<0\}\cup I\cup\Omega$ (X6) (X7) $D(H^{\cross})$ id( $K,$ $H^{\cross},K^{\cross}$ $K$ $H^{\cross},K^{\cross},$ $T^{\cross}$ $K^{\cross}A(\lambda)iX(\Omega)\subset ix(\omega)$ $\Omega$ $)$ $H,K$ $\Omega$) $T^{\cross}$ $X(\Omega) $ $H$- $K(\lambda-H)^{-1}$ (X7) $(\lambda-h)^{-1}$ (X8) $(\lambda-t)v=0$ $T=H+K$ $X(\Omega) $ $(\lambda-h)^{-1}$ $(id-(\lambda-h)^{-1}k)v=0$ 31 $\lambda\in\omega UIU\{\lambda {\rm Im}(\lambda)<0\}$ $(id-a(\lambda)k^{\cross})\mu=0$ (34) $\mu\in X(\Omega)$ $\mu$ $K^{\cross}$ $(id-k^{\cross}a(\lambda))k^{\cross}\mu=0$ (35) $K^{\cross}\mu=0$ (34) $\mu=0$ $id-k^{\cross}a(\lambda)$ $K^{\cross}A(\lambda)$ $ix(\omega)$ $(\Omega$ $)$ (X8) well-defined 32 $\mu$ $T^{\cross}\mu=\lambda\mu$ (36)

10 $\blacksquare$ 87 $D(\lambda-H^{\cross})\supset R(A(\lambda))$ $ix(\omega)$ $(\lambda-h^{\cross})a(\lambda)=id:ix(\omega)arrow$ $(\lambda-h^{\cross})(id-a(\lambda)k^{\cross})\mu=(\lambda-h^{\cross}-k^{\cross})\mu=(\lambda-t^{\cross})\mu=0$ $T^{\cross}$ $T^{\cross}$ $X(\Omega) $ $T^{\cross}$ $C$ $T^{\cross}$ 32 $n=1,2,$ $\cdots$ $A^{(n)}(\lambda)$ : $ix(\omega)arrow X(\Omega) $ $\langle A^{(n)}(\lambda)\psi \phi\rangle=\{\begin{array}{l}\int_{r}\frac{1}{(\lambda-\omega)^{n}}e[\psi, \phi](w)d\omega+2\pi\sqrt{}=\text{ } \frac{(-1)^{n-1}}{(n-1)!}\frac{d^{n-1}}{dz^{n-1}} _{z=\lambda}e[\psi, \phi](z), (\lambda\in\omega),\lim_{yarrow-0}\int_{r}\frac{1}{(x+\sqrt{-1}y-\omega)^{n}}e[\psi, \phi](\omega)d\omega, (\lambda=x\in I),\int_{R}\frac{1}{(\lambda-\omega)^{n}}E[\psi, \phi](\omega)d\omega, ({\rm Im}(\lambda)<0)\end{array}$ $\langle A^{(n)}(\lambda)\psi \phi\rangle$ $\Omega$ $((\lambda-h)^{-n}\psi, \phi)$ $A^{(1)}(\lambda)$ 33 (i) $(\lambda-\mathscr{x})^{n}a^{(f)}(\lambda)=a^{0-n)}(\lambda)$, (ii) $A^{(J)}(\lambda)(\lambda-H^{\cross})^{n}=A^{0-n)}(\lambda)$ $(\lambda-h^{\cross})\mu\in ix(\omega)$ $j\geq n\geq 0$ $A^{0)}(\lambda)$ $A^{(0)}(\lambda):=id$ $A(\lambda)(\lambda-H^{\cross})\mu=\mu$ (iii) $\frac{d^{j}}{d\lambda^{j}}\langle A(\lambda)\psi \phi\rangle=(-1)^{j}j!\langle A^{0+1)}(\lambda)\psi \phi\rangle,$ $j=0,1,$ $\cdots$ (iv) $\psi\in X(\Omega)$ $A(\lambda)\psi$ (37) $A( \lambda)\psi=\sum_{j=0}^{\infty}(\lambda_{0}-\lambda ya^{(i+1)}(\lambda_{0})\psi,$ (38) $\Omega$)

11 -Hx)kBO) $\blacksquare$ 88 (i),(ii) (iii) $\langle A(\lambda)\psi \phi\rangle$ (iii) $\langle A(\lambda)\psi \phi\rangle=\sum_{j=0}^{\infty}(\lambda_{0}-\lambda\dot{y}\langle A^{0+1)}(\lambda_{0})\psi \phi\rangle,$ (39) $A(\lambda)\psi$ $X(\Omega)$ (iv) Banach-Steinhaus $(\lambda-t)^{n}v=0$ $n=2$ $(\lambda-h-k)(\lambda-h-k)v=(\lambda-h)^{2}(id-(\lambda-h)^{-2}k(\lambda-h))\circ(id-(\lambda-h)^{-1}k)v=0$ $(\lambda-h)^{2}$ $(\lambda-h)^{-n}$ $(id-(\lambda-h)^{-2}k(\lambda-h))\circ(id-(\lambda-h)^{-1}k)v=0$ $A^{(n)}(\lambda)$ $(id-a^{(2)}(\lambda)k^{\cross}(\lambda-h^{\cross}))\circ(id-a(\lambda)k^{\cross})\mu=0$ $B^{(n)}(\lambda)$ $D(B^{(n)}(\lambda))\subset X(\Omega) arrow X(\Omega) $ : $B^{(n)}(\lambda)=id-A^{(n)}(\lambda)K^{\cross}(\lambda-H^{\cross})^{n-1}$ (310) $2$) $(\lambda)b^{(1)}(\lambda)\mu=0$ $B^{(n)}(\lambda)$ $A^{(n)}(\lambda)K^{\cross}(\lambda-H^{\cross})^{n-1}$ ( $(\lambda$$)=$ l -0 $(\lambda$ $\cross$ $)$( -H )k, $j>k$ (311) 34 $V_{\lambda}= \bigcup_{m\geq 1}Ker\mathscr{A}^{m)}(\lambda)\circ B^{(m-1)}(\lambda)\circ\cdots\circ B^{(1)}(\lambda)$ (312) $\dim V_{\lambda}$ $KerB^{(1)}(\lambda)$ 35 $\mu\in V_{\lambda}$ $M$ $(\lambda-t^{\cross})^{m}\mu=0$ $\bigcup_{m\geq 1}Ker(\lambda-T^{\cross})^{m}$ $(\Omega$ $)$ $\bigcup_{m\geq 1}Ker(\lambda-T^{\cross})^{m}$

12 89 33 $R_{\lambda}=(\lambda-T)^{-1}$ $R_{\lambda}\psi=(\lambda-H)^{-1}(id-K(\lambda-H)^{-1})^{-1}\psi$ (313) $X(\Omega) $ $(\lambda-h)^{-1}$ $\hat{\omega}=\omega\cup I\cup\{_{1}l {\rm Im}(\lambda)<0\}$ 36 $(id-k^{\cross}a(\lambda))^{-1}$ $X(\Omega) $ $R_{\lambda}=A(\lambda)\circ(id-K^{\cross}A(\lambda))^{-1}=(id-A(A)K^{\cross})^{-1}\circ A(\lambda)$, 2 $id-k^{\cross}a(\lambda)$ $(\Omega$$)$ $(id-a(\lambda)k^{\cross})a(\lambda)=a(\lambda)(id-k^{\cross}a(\lambda))$ $ix(\omega)arrow$ R : $\lambda\in\hat{\omega}$ (314) $id-a(\lambda)k^{\cross}$ $R(A(\lambda))$ $X(\Omega) $ $A(\lambda)\circ i$ $\text{ _{}\lambda}\circ i:x(\omega)arrow$ $\lambda\in\hat{\omega}$ 37 2 $\hat{\rho}(t)$ $V_{\lambda}\subset\hat{\Omega}$ $\lambda \in V_{\lambda}$ (i) $\Omega$) $\Omega$) $R_{\lambda }\circ i$ $X(\Omega) $ (ii) $\psi\in X(\Omega)$ $id-k^{\cross}a(\lambda)$ $)$ $\{\text{ _{}\lambda }\circ i(\psi)\}_{\lambda }$ $\in$ $\Omega$) $c\hat{\tau}(t):=\hat{\omega}\backslash \hat{\rho}(t)$ $(\hat{\tau}_{p}(t)$ $\lambda\in\hat{\sigma}(t)$ ( $\hat{\sigma}_{r}(t)$ $\circ i$ $\Omega$) $\lambda\in\hat{\sigma}(t)$ $\hat{\sigma}_{c}(t)=\hat{\sigma}(t)\backslash (\hat{\sigma}_{p}(t)\cup\hat{\sigma}_{r}(t))$ $*7$ ; $\hat{\rho}(t)$ $\hat{\rho}(t)$ $\Omega$) Banach Banach $i^{-1}k^{\cross}a(\lambda)i$ [19, 14] $\Omega$) Banach $X(\Omega)$ $\lambda\in\hat{\rho}(t)$ ( $id-i^{-1}k^{\cross}a(\lambda)i$ $\Omega$ $)$ 315) $\hat{\rho}(t)$ $*7$ Banach-Steinhaus

13 $R_{\lambda\ovalbox{\tt\small REJECT} h}i(\psi)$ i $\blacksquare$ (i) $\psi\in X(\Omega)$ (ii) ${\rm Im}(\lambda)<0$ $R_{\lambda}i\psi$ (ii) $\hat{\rho}(t)$ $R_{\lambda}\circ i=i\circ(\lambda-t)^{-1}$ ${\rm Im}(\lambda)<0$ $\Omega$) - $\psi,$ $\phi\in X(\Omega)$ $\langle R_{\lambda}\psi \phi\rangle=((\lambda-t)^{-1}\psi, \phi)$ $\langle R_{\lambda}\psi \phi\rangle$ $((\lambda-t)^{-1}\psi,\phi)$ $\psi_{\lambda}=i^{-1}(id-k^{\cross}a(\lambda))^{-1}i(\psi)$ $R_{\lambda+h}i(\psi)-R_{\lambda}i(\psi)=(A(\lambda+h)-A(\lambda))i(\psi_{\lambda})+R_{\lambda+h}i\circ i^{-1}k^{\cross}(a(\lambda+h)-a(\lambda))i(\psi_{\lambda})$ $harrow 0$ $X(\Omega) $ $0$ $A(\lambda)\circ i$ 1 2 $\lambda+$4 $i^{-1}k^{\cross}a(\lambda)i$ $\{R_{\lambda}, \circ i\}_{\lambda \in V_{\lambda}}$ (ii) Banach-Steinhaus $R_{\lambda+h}i$ $harrow 0$ $i^{-1}k^{\cross}a(\lambda)i$ $\Omega$ $)$ $(\psi$ $)$ $h$ $R_{\lambda}i(\psi)$ $\Omega$) 39 (i) $(\lambda-t^{\cross})\circ R_{\lambda}=id _{ix(\omega)}$ $R_{\lambda}\circ(\lambda-T^{\cross})\mu=\mu$ (ii) $\mu\in X(\Omega) $ $(\lambda-t^{\cross})\mu\in ix(\omega)$ (iii) $T^{\cross}\circ R_{\lambda}=R_{\lambda}\circ T^{\cross}$ 33 (iii) well-defined 34 $\Sigma\subset\hat{\sigma}(T)$ $\{\lambda {\rm Im}(\lambda)<0\}$ $\Pi_{\Sigma}:iX(\Omega)arrow X(\Omega) $ $\gamma\subset\omega\cup I\cup$ $\Pi_{\Sigma}\phi=\frac{1}{2\pi\sqrt{-1}}\int_{\gamma}R_{\lambda}\phi d\lambda$, $\phi\in ix(\omega)$, (315)

14 91 $\Pi_{\Sigma}\circ\Pi_{\Sigma}$ $*8$ Pettis $\Pi_{\Sigma}$ $\Pi_{\Sigma}$ $\Sigma$ 310 $\Pi_{\Sigma}(iX(\Omega))\cap(id-\Pi_{\Sigma})(iX(\Omega))=\{0\}$ $ix(\omega)\subset\pi_{\sigma}(ix(\omega))\oplus(id-\pi_{\sigma})(ix(\omega))\subset X(\Omega) $ (317) $\phi\in X(\Omega)$ $\mu_{1},\mu_{2}\in X(\Omega) $ $\phi$ $i(\phi)=\langle\phi =\mu_{1}+\mu_{2}$, $\mu_{1}\in\pi_{\sigma}(ix(\omega)),$ $\mu_{2}\in(id-\pi_{\sigma})(ix(\omega))$ (318) $\Pi_{\Sigma}$ 311 $T^{\cross}$- : $\Pi_{\Sigma}\circ T^{\cross}=T^{\cross}\circ\Pi_{\Sigma}$ $\lambda_{0}$ 312 $\Pi_{0}$ $\lambda_{0}$ $V_{0}=$ $\bigcup_{m\geq 1}KerB^{(m)}(\lambda_{0})\circ\cdot\cdot\cdot$ $\circ B^{(1)}(\lambda_{0})$ $\lambda_{0}$ $\Pi_{0}iX(\Omega)$ $\Pi_{0}iX(\Omega)=\nabla_{0}$ $\Pi\circ\Pi=\Pi$ $\Pi$ ( ) 312 $\lambda_{0}$ $E_{-1}=-\Pi_{0}$ $id=(\lambda-t^{\cross})\circ \text{ _{}\lambda}$ $= \sum_{j}^{\infty}=-\infty(\lambda_{0}-\lambda)^{j}e_{j}$ $\{E_{j}\}_{j}$ $E_{-1}$ 35 $\hat{\sigma}_{p}(t)\subset\sigma_{p}(t^{\cross})$ $C_{-}=\{{\rm Im}(\lambda)<0\}$ $\hat{\sigma}(t)$ $\sigma(t)$ (i) $\hat{\sigma}(t)\cap C_{-}\subset\sigma(T)\cap C_{-}$, $\hat{\sigma}_{p}(t)\cap C_{-}\subset\sigma_{p}(T)\cap C_{-}$ $\sigma_{p}(t)$ $\sigma(t)$ $*8$ $x$ $X $ $s$ Hausdorff Borel $f:sarrow X $ $\phi\in X$ $\mu$ $s$ $\langle I(]) \phi\rangle=\int_{s}\langle f \phi\rangle d\mu$ (316) $I( \int)\in$ $l \omega=\int_{s}f^{d\mu}$ $f$ Pettis $x$ $f$ Pettis [5] $f$ Pettis

15 $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\blacksquare$ 92 (ii) $\Sigma\subset C_{-}$ $\sigma(t)$ $\sigma(t)$ $\hat{\sigma}(t)$ $\lambda\in C_{-}$ $\sigma(t)$ $\prime 1\in\hat{\sigma}(T)$ $\lambda\in C_{-}$ $\circ i=i\circ(\lambda-t)^{-1}$ $(\lambda-t)^{-1}$ ( 38) (i) $X(\Omega)$ $\hat{\sigma}(t)$ $\hat{\sigma}(t;x(\omega))$ $X_{1}(\Omega)$ $X_{2}(\Omega)$ $(X1)\sim(X8)$ 2 $\hat{\sigma}(t;x_{1}(\omega)),\hat{\sigma}(t;x_{2}(\omega))$ 314 $X_{2}(\Omega)$ $X_{1}(\Omega)$ $X_{2}(\Omega)$ $X_{1}(\Omega)$ (i) $\hat{\sigma}(t;x_{2}(\omega))\subset\hat{\sigma}(t;x_{1}(\omega))$ $\Sigma$ (ii) $\hat{\sigma}(t;x_{1}(\omega))$ $\hat{\sigma}(t;x_{1}(\omega))$ $\hat{\sigma}(t;x_{2}(\omega))$ $\hat{\sigma}(t;x_{1}(\omega))$ $\lambda\in\hat{\sigma}(t;x_{2}(\omega))$ $R_{\lambda}$ $X_{1}(\Omega)$ $X_{1}(\Omega) $ $X_{2}(\Omega)$ $X_{2}(\Omega) $ $\Pi_{\Sigma}$ (i) (ii) $\Pi_{\Sigma}iX_{1}(\Omega)\neq\{0\}$ $X_{2}(\Omega)$ $X_{1}(\Omega)$ $\blacksquare$ $\Pi_{\Sigma}iX_{2}(\Omega)\neq\{0\}$ 2 $\Omega$) $*$9, $X_{1}$ $X_{2}$ $L$ $*$ 10, $U\subset X_{1}$ $LU\subset X_{2}$ $L=L(\lambda)$ $L(\lambda)$ $U$ $X_{1}$ $L(\lambda)$ Banach $L(\lambda)$ ( $U$ ) $L$ $U\subset X_{1}$ $LU\subset X_{2}$ $*9$ $*10$ Schr\"odinger [15] complex deformation [11] Gelfand 3 Banach (resonance pole)

16 $\cross$ $\blacksquare$ 93 $L=L(\lambda)$ $L(\lambda)$ $U$ Banach $X_{1}$ $L(\lambda)$ ( $(\lambda$ $)$ )L $X_{2}$ Montel Montel ( ) ( ) $i^{-1}k^{\cross}a(\lambda)i$ $\lambda\in\hat{\omega}$ 315 $(\lambda$ $U_{\lambda}\subset\hat{\Omega}$ $i^{-1}$ K $)$ i : $X(\Omega)arrow$ $X(\Omega)$ $id-$ $\lambda \in U_{\lambda}$ $i^{-1}k^{\cross}a(\lambda)i$ $\Omega$ $)$ $\lambda\not\in\hat{\sigma}(t)$ $R_{\lambda}\circ i=a(\lambda)\circ i\circ(id-i^{-1}k^{\cross}a(\lambda)i)^{-1}$ $\{(id-i^{-1}k^{\cross}a(\lambda )i)^{-1}\psi\}_{\lambda \in V_{1}}$ $A(\lambda)\circ i$ $\Omega$) $\lambda \mapsto(id-i^{-1}k^{\cross}a(\lambda )i)^{-1}\psi$ $\lambda \in V_{\lambda}$ $id-i^{-1}k^{\cross}a(\lambda)i$ $X(\Omega)$ Banach Neumam Banach Neumann Bmyn [2] $X(\Omega)$ $\lambda\in\hat{\rho}(t)$ $i^{-1}k^{\cross}a(\lambda)i$ Banach $X(\Omega)$ $\Omega$ $id-i^{-1}k^{\cross}a(\lambda)i$ $)$ $i^{-1}k^{\cross}a(\lambda)i$ 316 $i^{-1}k^{\cross}a(\lambda)i:x(\omega)arrow X(\Omega)$ $\lambda\in\hat{\omega}$ $D\subset\hat{\Omega}$ (i) $D$ $\hat{\sigma}_{p}(t)$ $\hat{\omega}$ (ii) 312 (iii) $\hat{\sigma}_{c}(t)=\hat{\sigma}_{r}(t)=\emptyset$ $X(\Omega)$ Banach Riesz-Schauder $X(\Omega)$ Banach Riesz-Schauder (Ringrose [16]),

17 $I$ ( $I$ ) $\lambda_{0}\in I$ ( ) $\lambda_{0}$ $\mathcal{p}_{0}\phi=\lim_{\epsilonarrow-0}\sqrt{-1}\epsilon\cdot(\lambda_{0}+\sqrt{-1}\epsilon-t)^{-1}\phi$, $\phi\in H$, (319) $\Pi_{0}$ $i\circ \mathcal{p}_{0}=\pi_{0}\circ i$ $\Omega$) $\mathcal{p}_{0}h\neq\emptyset$ $\Pi_{0}iX(\Omega)\neq\emptyset$ $\sigma_{p}(t)\subset\hat{\sigma}_{p}(t)$ $\blacksquare$ $\hat{\sigma}_{p}(t)$ $C^{0}$- $e^{\sqrt{-1}tt}$ $\sqrt{-1}t=\sqrt{-1}(h+k)$ Laplace $(e^{\sqrt{-1}tt} \psi,\phi)=\frac{1}{2\pi\sqrt{-1}}\lim_{xarrow\infty}\int_{-x-\sqrt{-1}y}^{x-\sqrt{-1}}\mathcal{y}e^{\sqrt{-1}\lambda t}((\lambda-t)^{-1}\psi, \phi)d\lambda$, $x,y\in R$, (320) $tarrow\infty$ 38 $\phi,$ $\psi\in X(\Omega)$ $(e^{\sqrt{-1}tt} \psi,\phi)=\frac{1}{2\pi\sqrt{-1}}\lim_{xarrow\infty}\int_{-x-\sqrt{-1}}^{x-\sqrt{-1}}ye^{\sqrt{-1}\lambda t}\langle R_{\lambda}\psi y \phi\rangle d\lambda$, (321) 316 $\langle R_{\lambda}\psi \phi\rangle$ $\Pi_{0}$ $\lambda_{0}$ $M$ $\frac{1}{2\pi\sqrt{-1}}\int_{\gamma_{0}}e^{\sqrt{-1}\lambda t}\langle R_{\lambda}\psi \phi\rangle d\lambda=\sum_{k=0}^{m-1}e^{\sqrt{-1}\lambda_{0}t}\frac{(-\sqrt{-1}t)^{k}}{k!}\langle(\lambda_{0}-t^{\cross})^{k}\pi_{0}\psi \phi\rangle$, 0 $(\sqrt{-1}t$

18 95 $(e^{\sqrt{-1}tt}\psi,\phi)$ ), $e^{\sqrt{-1}tt}\psi$ Landau [7], Schr\"odinger [11, 15] $\lambda_{0}$ $\mu_{0}\in X(\Omega) $ $(e^{\sqrt{-1}tt})^{\cross}=((e^{\sqrt{-1}tt})^{*}) $ $(e^{\sqrt{-1}\tau t})^{\cross}\mu_{0}=e^{\sqrt{-1}\lambda_{0}t}\mu_{0}$ $\mu_{0}$ $\mu_{0}$ $\Omega$) $\Omega$) $T>0$ $\epsilon>0$ $\phi_{0}\in X(\Omega)$ $0\leq t\leq T$ $ \langle(e\sqrt{}=$ $Tt)^{\cross}\phi_{0} \psi\rangle-\langle(e^{\sqrt{-1}\tau t})^{\cross}\mu_{0} \psi\rangle <\epsilon$, $0\leq t\leq T$ $(e^{\sqrt{-1}tt}\phi_{0}, \psi)\sim e^{\sqrt{-1}\lambda_{0^{f}}}\langle\mu_{0} \psi\rangle$, (322) $tarrow\infty$ 4 41 [3,4] $g_{1}(z)$ $-1<\omega<1$ $g_{1}(\omega)>0$ $g(\omega)$ $g(\omega)=\{\begin{array}{ll}0 (\omega<-1),g_{1}(\omega) (-1<\omega<1),0 (\omega>1),\end{array}$ (41) ${}^{t}h=l^{2}(r,g(\omega)d\omega)$ $L^{2}$ $H$ $\sigma$( $H$ $(H\phi)(\omega)=\omega\phi(\omega)$ $supp(g)=[-1,1]$ $(E(\omega)\psi, \phi):=e[\psi,\phi](\omega)=\{\begin{array}{ll}0 (\omega<-1),\psi(\omega)\overline{\phi(\omega)}g_{1}(\omega) (-1<\omega<1),0 (\omega>1),\end{array}$ (42) $X$ $L^{2}(R,g(\omega)d\omega)$

19 96 $g(\omega)$ $\psi,\phi\in X$ $((\lambda-h)^{-1}\psi, \phi)$ $\omega<-1$, $\omega>1$ $E[\psi, \phi](\omega)$ $((\lambda-h)^{-1}\psi, \phi)$ $((\lambda-h)^{-1}\psi, \phi)$ $((\lambda-h)^{-1}\psi, \phi)$ $0$ $-1<\omega<1$ $\langle A(\lambda)\psi \phi\rangle=\int_{r}\frac{1}{\lambda-\omega}\psi(\omega)\overline{\phi(\omega)}g_{1}(\omega)d\omega+2\pi\sqrt{-1}\cdot\psi(\lambda)\overline{\phi(\lambda)}g_{1}(\lambda)$, (43) $-1<\omega<1$ $+1$ $n$ $((\lambda-h)^{-1}\psi, \phi)$ $\int_{r}\frac{1}{\lambda-\omega}\psi(\omega)\overline{\phi(\omega)}g_{1}(\omega)\pi n\cdot\psi(\lambda)\overline{\phi(\lambda)}g_{1}(\lambda)$, $-1$ $(\lambda-h)^{-1}$ $X$ $X $ $\pm 1$ Riemann $P_{0}(\omega)\equiv 1\in L^{2}(R,g(\omega)d\omega)$ $K$ $(K\phi)(\omega)=-\sqrt{-1}\kappa(\phi, P_{0})P_{0}(\omega)$ $\kappa>0$ $T:=H+K$ $\sqrt{-1}$ $g$ (16) $K$ $H$ $\sigma_{c}(t)=[-1,1]$ $\int_{r}\frac{1}{\lambda-\omega}\mathscr{a}\omega)d\omega-\frac{\sqrt{-1}}{k}=0$, (44) $\lambda=x+\sqrt{-1}y,$ $x,y\in R$ $\int_{r}\frac{x-\omega}{(x-\omega)^{2}+y^{2}}\mathscr{a}\omega)d\omega=0$, $\int_{r}\frac{y}{(x-\omega)^{2}+y^{2}}g(\omega)d\omega=-\frac{1}{\kappa}$ (45) $g(\omega)$ $x=0$ $\kappa>0$ $K$ $x=0$ $K$ $\kappa$ $yarrow-o$ $\lim_{yarrow-0}\int_{r}\frac{y}{\omega^{2}+f}g(\omega)d\omega=-\pi g(0)=-\frac{1}{k}$ (46) $Karrow(\pi g(0))^{-1}$ $\sigma_{c}(t)=[-1,1]$ $\lambda(\kappa)arrow 0$ $\kappa=(\pi g(0))^{-1}$

20 97 $X$ 316 $\hat{\sigma}_{c}(t)=\hat{\sigma}_{r}(t)=\emptyset$ 2 Riemann 2 Riemann $\int_{r}\frac{1}{\lambda-\omega}g_{1}(\omega)d\omega+2\pi\sqrt{-1}\cdot g_{1}(\omega)-\frac{\sqrt{-1}}{k}=0$ (47) (44) $\kappaarrow(\pi \mathscr{a}0))^{-1}$ (44) (47) $\partial u/\partial t=\sqrt{-1}$tu $e^{\sqrt{-1}tt}$ l 36 Laplace 4 Fig 4 $\gamma $ $\gamma$ Laplace [-1, 1] Riemam Riemann 2 $\pm 1$ $\gamma$ 36 $g(\omega)$ $g(\omega)$ $\omega\in R$ ( (42) 2 ), $\gamma$ $u(t)$ $tarrow\infty$ $0$ [3,4]

21 98 42 Schr\"odinger [6] Schr\"odinger $R^{m}$ $T=-\Delta+V$ $\Delta$ ( ) ${}^{t}h=l^{2}(r^{m})$ $V$ $V:R^{m}arrow C$ $-\Delta,$ $V$ $H,$ $K$ $H$ $( \lambda-h)^{-1}\psi(x)=\frac{1}{(2\pi)^{m/2}}\int_{r^{m}}\frac{1}{\lambda- \xi ^{2}}e^{\sqrt{-1}x\cdot\xi}F[\psi](\xi)d\xi$, $F$ $S^{m-1}\subset R^{m}$ Fourier $m-1$ $\xi\in R^{m}$ $\xi=r\omega,$ $r\geq 0,$ $\omega\in S^{m-1}$ $(\lambda-h)^{-1}\psi(x)$ $( \lambda-h)^{-1}\psi(x)=\frac{1}{(2\pi)^{m/2}}\int_{0}^{\infty}\frac{1}{\lambda-r}(\int_{s^{m-1}}\frac{\sqrt{}\mu^{-2}}{2}e^{\sqrt{-1}\sqrt{r}x\cdot\omega}\mathcal{f} [\psi](\sqrt{\gamma}\omega)d\omega)dr$, (48) $\arg(\lambda)=0$ $H$ $\{\lambda -2\pi<\arg(\lambda)<0\}$ $L^{2}$(Rm)- it $f(z):=f[\psi](\sqrt{z}\omega)$ $\frac{1}{(2\pi)^{m/2}}\int_{0}^{\infty}\frac{1}{\lambda-r}(\int_{s^{m-1}}\frac{\sqrt{r}^{m-2}}{2}e^{\sqrt{-1}\sqrt{r}x\cdot\omega}\mathcal{f}[\psi](\sqrt{r}\omega)d\omega)dr$ $+ \frac{\pi\sqrt{-1}}{(2\pi)^{m/2}}\sqrt{\lambda}m-2\int_{s^{m-1}}e^{\sqrt{-1}\sqrt{\lambda}x\cdot\omega}\mathcal{f} [\psi](\sqrt{\lambda}\omega)d\omega$, (49) $V$ $X(\Omega)$ $a>0$ $V$ $e^{2a x }V(x)\in L^{2}(R^{m})$ (410) $a>0$ $X(\Omega):=L^{2}(R^{m}, e^{2a x }dx)$ $X(\Omega) $ $L^{2}(R^{m}, e^{-2a x }dx)$ $T=-\Delta+K$ $(X1)\sim(X8)$, $\psi\in L^{2}(R^{m}, e^{2a x }dx)$ $F[\psi](\sqrt{\lambda}\omega)$ $\psi\in L^{2}(R^{m}, e^{2a x }dx)$ Gelfand 3 $L^{2}(R^{m},e^{2a x }dx)\subset L^{2}(R^{m})\subset L^{2}(R^{m}, e^{-2a x }dx)$ (411) 316 $r$ $F[\psi](r\omega)$ $\{r\in C -a<{\rm Im}(r)<a\}$ Riemam $P(a)=\{\lambda -a<{\rm Im}(\sqrt{\lambda})<a\}$ Riemann $z=0$ ) $m$ [6] (49) ( [6]

22 $\mathcal{p}$ Evans [6] Evans Evans $B(\lambda)$ $\mathcal{p}$ Fredholm $E(\lambda)$ $\mathcal{p}$ [17] Evans $\mathcal{p}$ $(X1)\sim(X8)$ Gelfand 3 ] $B(\lambda)$ [6] [1] J Bonet, On the identity $L(E, F)=LB(E, F)$ for pairs of locally convex spaces $E$ and $F$, Proc Amer Math Soc 99 (1987), no 2, [2] G F C de Bmyn, The existence of continuous inverse operators under certain conditions, J London Math Soc 44 (1969), [3] H Chiba, INishikawa, Center manifold reduction for a large population of globally coupled phase oscillators, Chaos, 21, (2011) [4] H Chiba, A proof ofthe Kuramoto s conjecture for a bifurcation structure ofthe infinite dimensional Kuramoto model, (submitted, arxiv: ) [5] H Chiba, A spectral theory of linear operators on rigged Hilbert spaces under certain analyticity conditions, (submitted, arxiv: ) [6] H Chiba, A spectral theory of linear operators on ngged Hilbert spaces under certain analyticity conditions: applications to Schr\"odinger operators, (submitted) [7] J D Crawford, P D Hislop, Application of the method of spectral deformation to the Vlasov-Poisson system, Ann Physics 189 (1989), no 2, [8] I M Gelfand, N Ya Vilenkin, Generalized functions Vol 4 Applications ofharmonic analysis, Academic Press, New York-London, 1964 [9] A Grothendieck, Topological vector spaces, Gordon and Breach Science Publishers, New York-London-Pans, 1973 [10] D Hemy, Geometric Theory of Semilinear Parabolic Equations, Springer, (1981) [11] P D Hislop, I M Sigal, Introduction to spectral theory With applications to Schrodinger operators, Springer-Verlag, New York, 1996 [12] W Kerscher, R Nagel, Asymptotic behavior of one-parameter semigroups of positive operators, Acta Appl Math 2 (1984), [13] H Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J Math Soc Japan, 19, (1967), [14] F Maeda, Remarks on spectra of operators on a locally convex space, Proc Nat Acad Sci USA 47, (1961) [15] M Reed, B Simon, Methods ofmodem mathematical physics IV Analysis ofoperators, Academic Press, New York-London, 1978 [16] J R Ringrose, Precompact linear operators in locally convex spaces, Proc Cambridge Philos Soc 53 (1957), [17] B Sandstede, Stability of travelling waves, Handbook of dynamical systems, Vol 2, , North-Holland, Amsterdam, 2002 [18] F Tr\ eves, Topological vector spaces, distributions and kemels, Academic Press, New York-London, 1967 [19] L Waelbroeck, Locally convex algebras: spectral theoly, Seminar on Complex Analysis, Institute of Advanced Study, 1958

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

数理解析研究所講究録 第1921巻

数理解析研究所講究録 第1921巻 1921 2014 108-121 108 Local state, sector theory and measurement in AQFT 1 1 () $($local state) (quantum operation) ( RIMS ) () [25] ( [22] ) [5, 35, 36] 2 : $c*$ - $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math $\mathrm{r}\mathrm{m}\mathrm{s}$ 1226 2001 76-85 76 1 (Mamoru Tanahashi) (Shiki Iwase) (Toru Ymagawa) (Toshio Miyauchi) Department of Mechanical and Aerospaoe Engineering Tokyo Institute of Technology

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD

$\lambda$ INFINITELY MANY SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT (SHOICHIRO TAKAKUWA) 1. INTROD INFINITELY MANY SOLUTIONS OF NONLIN TitleELLIPTIC EQUATIONS WITH CRITICAL SO EXPONENT Author(s) 高桑, 昇一郎 Citation 数理解析研究所講究録 (1991), 770: 171-178 Issue Date 1991-11 URL http://hdl.handle.net/2433/82356

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t 1601 2008 19-27 19 (Kentaro Kanatani) (Takeshi Ogasawara) (Sadayoshi Toh) Graduate School of Science, Kyoto University 1 ( ) $2 $ [1, ( ) 2 2 [3, 4] 1 $dt$ $dp$ $dp= \frac{dt}{\tau(r)}=(\frac{r_{0}}{r})^{\beta}\frac{dt}{\tau_{0}}$

More information

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL

Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野, 勝利 Citation 数理解析研究所講究録 (2001), 1238: 1-11 Issue Date URL Title 井草氏の結果の多変数化 : 局所ゼータ関数がガンマ関数の積で書ける場合について ( 概均質ベクトル空間の研究 ) Author(s) 天野 勝利 Citation 数理解析研究所講究録 (2001) 1238: 1-11 Issue Date 2001-11 URL http://hdlhandlenet/2433/41569 Right Type Departmental Bulletin

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t

Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n = 0, 1,,...)., t u(t) = F (u(t)) (1). (1), u n+1 u n t = F (u n ) u n+1 = u n + tf (u n )., t RIMS 011 5 3 7 relaxation sheme of Besse splitting method Scilab Scilab http://www.scilab.org/ Google Scilab Scilab Mathieu Colin Mathieu Colin 1 Relaxation scheme of Besse t t n = n t, u n = u(t n ) (n

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun

Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Progress in Qualitative Theory of Fun 1786 2012 128-142 128 Uniform asymptotic stability for two-dimensional linear systems whose anti-diagonals are allowed to change sign (Masakazu Onitsuka) Department of General Education Miyakonojo National

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm

$\mathbb{h}_{1}^{3}(-c^{2})$ 12 $([\mathrm{a}\mathrm{a}1 [\mathrm{a}\mathrm{a}3])$ CMC Kenmotsu-Bryant CMC $\mathrm{l}^{3}$ Minkowski $H(\neq 0)$ Kenm 995 1997 11-27 11 3 3 Euclid (Reiko Aiyama) (Kazuo Akutagawa) (CMC) $H$ ( ) $H=0$ ( ) Weierstrass $g$ 1 $H\neq 0$ Kenmotsu $([\mathrm{k}])$ $\mathrm{s}^{2}$ 2 $g$ CMC $P$ $([\mathrm{b}])$ $g$ Gauss Bryant

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

量子フィードバック制御のための推定論とその応用

量子フィードバック制御のための推定論とその応用 834 203 96-08 96 * Naoki Yamamoto Department of Applied Physics and Physico-Informatics Keio University PID ( ) 90 POVM (i) ( ) ( ), (ii) $(y(t))$ (iii) $(u(t))$ 3 223-8522 3-5-3 $f$ $t$ 97 [,2] [3] [4]

More information

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De Title 可測ノルムに関する条件 ( 情報科学と函数解析の接点 : れまでとこれから ) こ Author(s) 原井 敬子 ; 前田 ミチヱ Citation 数理解析研究所講究録 (2004) 1396: 31-41 Issue Date 2004-10 URL http://hdlhandlenet/2433/25964 Right Type Departmental Bulletin Paper

More information

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia

90 2 3) $D_{L} \frac{\partial^{4}w}{\mathrm{a}^{4}}+2d_{lr}\frac{\partial^{4}w}{\ ^{2}\Phi^{2}}+D_{R} \frac{\partial^{4}w}{\phi^{4}}+\phi\frac{\partia REJECT} \mathrm{b}$ 1209 2001 89-98 89 (Teruaki ONO) 1 $LR$ $LR$ $\mathrm{f}\ovalbox{\tt\small $L$ $L$ $L$ R $LR$ (Sp) (Map) (Acr) $(105\cross 105\cross 2\mathrm{m}\mathrm{m})$ (A1) $1$) ) $2$ 90 2 3)

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理)

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理) $\dagger$ 1768 2011 125-142 125 2 * \dagger \ddagger 2 2 $JEL$ : E12; E32 : 1 2 2 $*$ ; E-mail address: tsuzukie5@gmail.com \ddagger 126 Keynes (1936) $F\iota$ Chang and Smyth (1971) ( ) Kaldor (1940)

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Fac

Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Fac 1405 2004 14-30 14 Variational methods in Orlicz-Sobolev spaces to quasilinear elliptic equations*, (Nobuyoshi FUKAGAI) Department of Mathematics, Faculty of Engineering Tokushima University (Masayuki

More information

第88回日本感染症学会学術講演会後抄録(III)

第88回日本感染症学会学術講演会後抄録(III) !!!! β! !!μ μ!!μ μ!!μ! !!!! α!!! γδ Φ Φ Φ Φ! Φ Φ Φ Φ Φ! α!! ! α β α α β α α α α α α α α β α α β! β β μ!!!! !!μ !μ!μ!!μ!!!!! !!!!!!!!!! !!!!!!μ! !!μ!!!μ!!!!!! γ γ γ γ γ γ! !!!!!! β!!!! β !!!!!! β! !!!!μ!!!!!!

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

2 probably 3 probability theory probability theory (gàil`ü) 2 1960 2.1, 1: 583 589 666 1853 2967 2 3 1973

2 probably 3 probability theory probability theory (gàil`ü) 2 1960 2.1, 1: 583 589 666 1853 2967 2 3 1973 ( ) ( C) 1 probability probability probable probable probable probable probably probably maybe perhaps possibly likely possibly

More information

ii

ii HPSI Hosei University Policy Science Institute i ii iii iv Cool Japan) - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - CSBS - 9 - - 10-21 - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 -

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n )

Talk/7Akita-cont.tex Dated: 7/Feb/ Fibonacci Quartery L n = i n T n i/).) F n = i n U n i/).6).),.6) n = 7, F 7 = F n = cos π ) cos π 7 7 ) F = 8 [n ) Talk/7Akita-cont.tex Dated: 7/Feb/ wikipedia Pafnuty Lvovich Chebyshev 8 6-89 8 6 Chebychev Chebyshov Tchebycheff Tschebyscheff https://ja.wikipedia.org/wiki/ wikipediaa) 96 cos π 7 cos π 7 cos π 7 = x

More information

可約概均質ベクトル空間の$b$-関数と一般Verma加群

可約概均質ベクトル空間の$b$-関数と一般Verma加群 1825 2013 35-55 35 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli 6 1 2009 6 [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots

More information

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA) Title 集合値写像の凸性の遺伝性について ( 不確実なモデルによる動的計画理論の課題とその展望 ) Author(s) 西澤, 正悟 ; 田中, 環 Citation 数理解析研究所講究録 (2001), 1207: 67-78 Issue Date 2001-05 URL http://hdlhandlenet/2433/41044 Right Type Departmental Bulletin

More information

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法

ベクトルの近似直交化を用いた高階線型常微分方程式の整数型解法 1848 2013 132-146 132 Fuminori Sakaguchi Graduate School of Engineering, University of Fukui ; Masahito Hayashi Graduate School of Mathematics, Nagoya University; Centre for Quantum Technologies, National

More information

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理) 1768 2011 150-162 150 : Recurrence plots: Beyond visualization of time series Yoshito Hirata Institute of Industrial Science, The University of Tokyo voshito@sat. t.u\cdot tokvo.ac.ip 1 1. 1987 (Eckmann

More information

( β K ) p β W W p β K K aβ β W W β β K K ) 1/(βW +β K ) 3 ln C =lnα + 1 β W + β K ln Q (3) 1/(β W + β K ) ( β W + β K ) 4 ( ) ( ) (1998 2 1 3 ) ( 1998

( β K ) p β W W p β K K aβ β W W β β K K ) 1/(βW +β K ) 3 ln C =lnα + 1 β W + β K ln Q (3) 1/(β W + β K ) ( β W + β K ) 4 ( ) ( ) (1998 2 1 3 ) ( 1998 3 1 1993-1995 ( Cobb-Douglas ) (1998 2 3 ) ( ) 17 (1998 2 1 ) 1 Christensen, Jorgensonand Lau (1973) 1983 ( ) 2 W = K = β W,β K > 0 Q = aw βw K βk (1) C = αq 1/(βW +βk) (2) 10 ( (A) (A03) ) ( ) ( ) 1 2

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用 1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r

More information

一般相対性理論に関するリーマン計量の変形について

一般相対性理論に関するリーマン計量の変形について 1896 2014 137-149 137 ( ) 1 $(N^{4}, g)$ $N$ 4 $g$ $(3, 1)$ $R_{ab}- \frac{1}{2}rg_{ab}=t_{ab}$ (1) $R_{ab}$ $g$ $R$ $g$ ( ) $T_{ab}$ $T$ $R_{ab}- \frac{1}{2}rg_{ab}=0$ 4 $R_{ab}=0$ $\mathbb{r}^{3,1}$

More information

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA,

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA, Journal Article / 学 術 雑 誌 論 文 混 合 識 別 関 数 による 類 似 文 字 認 識 の 高 精 度 化 Accuracy improvement by compoun for resembling character recogn 中 嶋, 孝 ; 若 林, 哲 史 ; 木 村, 文 隆 ; 三 宅, 康 二 Nakajima, Takashi; Wakabayashi,

More information

日本数学会・2011年度年会(早稲田大学)・企画特別講演

日本数学会・2011年度年会(早稲田大学)・企画特別講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 企画特別講演 MSJMEETING-2011-0 1. 2., (1) ρ t + (ρw) x = 0, (ρw) t + (ρw 2 + p) x = (µw x ) x, (ρ(e + w2 2 )) t + ((ρ(e + w2 2 ) + p)w) x = (κθ x + µww x ) x., ρ, w, θ, µ κ, p e, p,

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^ $\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo 5D1 SY4/14/-485 214 SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomomichi SUGIHARA 2 1 School of Engineering, Osaka University 2-1

More information

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\

\mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ). - $\ 1081 1999 84-99 84 \mathrm{n}\circ$) (Tohru $\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{z}\circ 1 $(\mathrm{f}_{\circ \mathrm{a}}\mathrm{m})$ ( ) ( ) - $\text{ }$ 2 2 ( ) $\mathrm{c}$ 85 $\text{ }$ 3 ( 4 )

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension

RIMS Kôkyûroku Bessatsu B3 (22), Numerical verification methods for differential equations: Computer-assisted proofs based on infinite dimension 微分方程式の精度保証付き数値計算 : 逐次反復に基づく Title計算機援用証明 (Progress in Mathematics of Systems) Author(s) 渡部, 善隆 Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (22), B3: 45-55 Issue Date 22-4 URL http://hdl.handle.net/2433/9624

More information

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1 1.3 (heat transfer with phase change) (phase

More information

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌 2016 9 27 RIMS 1 2 3 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin 1983 9-1989 6 University of Illinois at Chicago (UIC) John T Baldwin Y N Moschovakis, Descriptive Set Theory North

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl L A TEX ver.2004.11.18 1 L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sample2 3) /staff/kaede work/www/math/takase sample1.tex

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information