可約概均質ベクトル空間の$b$-関数と一般Verma加群

Size: px
Start display at page:

Download "可約概均質ベクトル空間の$b$-関数と一般Verma加群"

Transcription

1 $b$- Verma (Akihito Wachi) Faculty of Education, Hokkaido University of Education Capelli Capelli [4] $(1\leq i,j\leq n)$ $\det(a)= A =\sum_{\sigma}$ sgn $(\sigma)a_{\sigma(1)1}\cdots A_{\sigma(n)n}$ Capelli Capelli $\det(tt)\det(\frac{\partial}{\partial T})=\det(tT\frac{\partial}{\partial T}+[Matrix])$ (1) $T$ $\partial/\partial T$ $n$ $T=(T_{ij})_{1\leq i,j\leq n}, \frac{\partial}{\partial T}=(\frac{\partial}{\partial T_{ij}})_{1\leq i,j\leq n}$ Capelli (1) $ZU(\mathfrak{g}\mathfrak{l}_{n})$ Capelli $ \frac{\partial}{\partial T}(u_{1}) ^{t}t \frac{\partial}{\partial T}(u_{2}) ^{t}t \cdots tt \frac{\partial}{\partial T}(u_{l}) = \frac{\partial}{\partialt}(u_{1})^{t}t\frac{\partial}{\partial T}(u_{2})^{t}T\cdots tt\frac{\partial}{\partial T}(u_{l}) $ (2)

2 36 [4] $u_{i}$ $(\partial/\partial T)(u)$ $n$ $\frac{\partial}{\partial T}(u);=\frac{\partial}{\partial T}+u^{t}T^{-1}=\frac{\partial}{\partial T}+u\frac{\partial g}{\partial T}$ $=( \frac{\partial}{\partial T_{ij}}+u\frac{\partial g}{\partial T_{ij}})_{1\leqi,j\leq n}=(f^{-u}\frac{\partial}{\partial T_{ij}}f^{u})_{1\leq i,j\leq n}$ $(f=\det(tt), g=\log f)$. 1 2 $\partial g/\partial T=tT^{-1}$ $\mathbb{c}[t_{ij}, \partial/\partial T_{ij}, f^{-1}]$ (2) 2 Capelli Capelli (1) Capelli (2) [4] $b$- $\det(t)$ $\det(x^{(1)}x^{(2)}\cdots X^{(l)})$ [4] $ZU(\mathfrak{g}\mathfrak{l}_{n})$ $($ $5$ $)$ Howe-Umeda [1] ( 2 ) $\det(x^{(1)}x^{(2)}\cdots X^{(l)})$ $b$- Capelli $ \frac{\partial}{\partial T} (f^{s+1})=(s+1)(s+2)\cdots(s+n)f^{s}$ $b(s)=(s+1)(s+2)\cdots(s+n)$ $(f^{s+1})$ $f^{8+1}$ $ \frac{\partial}{\partial T}(u) (f^{s+1})= f^{-u}\frac{\partial}{\partial T}f^{u} (f^{s+1})=(f^{-u} \frac{\partial}{\partial T} f^{u})(f^{s+1})$ $=f^{-u} \frac{\partial}{\partial T} (f^{s+u+1})=(s+u+1)(s+u+2)\cdots(s+u+n)f^{s}.$ $b(s)$ $s$ 2 Capelli 3 4 $k$ $b$-

3 $\frac{\overline{\partial}}{\overline{\partial}s}(u):=\frac{\overline{\partial}}{\overline{\partial}s}+u^{t}s^{-1}=\frac{\overline{\partial}}{\overline{\partial}s}+u\frac{\overline{\partial}g}{\overline{\partial}s}$ 37 $\backslash Sato$-Sugiyama [2] [2] 5 Capelli Capelli Capelli (1) $ZU(\mathfrak{g}\mathfrak{l}_{n})$ Capelli 2 CapeIli Capelli (2) $T$ $S_{ij}(1\leq i,j\leq n)$ $S_{ij}=S_{ji}$ Capelli $\det(ts)\det(\frac{\overline{\partial}}{\overline{\partial}s})=\det(ts\frac{\overline{\partial}}{\overline{\partial}s}+(\begin{array}{llll}(n-1)/2 O (n-2)/2 \ddots O 0\end{array}))$ (3) $\overline{\partial}/\overline{\partial}s$ (Tumbull [3]) $S$ $n$ $S=(S_{ij})_{1\leq i,j\leq n}, \frac{\overline{\partial}}{\overline{\partial}s}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}})_{1\leq i,j\leq n}$ Capelli Capelli (2) Capelli Capelli 1 ( ). $f=\det(ts)$ $\mathbb{c}[s_{ij}, \frac{\partial}{\partial S_{ij}}, f^{-1}]$ $ \frac{\overline{\partial}}{\overline{\partial}s}(u_{1}) ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{2})_{1} ts \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $ $= \frac{\overline{\partial}}{\overline{\partial}s}(u_{1})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(u_{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $. (4) $(\overline{\partial}/\overline{\partial}s)(u)$ $n$ $=( \frac{\overline{\partial}}{\overline{\partial}s_{ij}}+u\frac{\overline{\partial}g}{\overline{\partial}s_{ij}})_{1\leq i,j\leq n}=(f^{-u}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}$ $)$ $(f=\det(ts), g=\log f)$. $1\leq i,j\leq n$

4 $\frac{\overline{\partial}g}{\overline{\partial}s}=ts^{-1}.$ Proof. $\frac{\overline{\partial}}{\overline{\partial}s_{ij}}=\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}}$ $\partial $\overline{\partial}/\overline{\partial}s_{ij}$ $\partial$/ S$ $S_{ii}$ 1 $S_{ij}(i\neq j)$ $f=\det(ts)$ 1 $S_{ii}$ $S_{ij}(i\neq j)$ $i$ 1 1/2 ) $S$ 1/2 ( $\det(ts)$ $S_{ii}$ $S$ $i$ $i$ $S_{ii}$ $i$ $i$ 1 $i\neq j$ $S$ $i$ ( $j$ ) ( $i$ $i$ ) 2 $0$ $\sum_{a=1}^{n}s_{ai}\frac{\overline{\partial}f}{\overline{\partial}s_{aj}}=\delta_{ij}f$ $f$ $\sum_{a=1}^{n}s_{ai}\frac{\overline{\partial}g}{\overline{\partial}s_{aj}}=\delta_{ij}$ $\overline{\partial}g/\overline{\partial}s$ $ts$ Capelli (4) 3. $\mathcal{w}=\mathbb{c}[s_{ij}, \frac{\partial}{\partial S_{ij}}, f^{-1}]$ $(\mathcal{w}$ $\mathcal{r}$ 3 ) $\underline{u}=(u_{1}, u_{2}, \ldots, u_{l})$ $v\in \mathbb{c}$ $A^{(l)}(\underline{u}),$ $n$ $B(v)\in Mat(n;\mathcal{W})$ $A^{(l)}( \underline{u})=\frac{\overline{\partial}}{\overline{\partial}s}(u_{1})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(u_{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}), B(v)=tS\frac{\overline{\partial}}{\overline{\partial}S}(v)$

5 $S_{bs} \frac{\overline{\partial}}{\overline{\partial}s_{bt}}]$ $\mathbb{c}$ $\underline{u}$ 39 $A^{(l)}(\underline{u})$ Capelli (4) $B(v)=B+v1_{n}$ $1_{n}$ ( $n$ $0$ ) $B(0)=B$ $\mathbb{c}^{n}$ $\wedge(\mathbb{c}^{n})$ $\mathcal{w}$ $\mathcal{r}=\wedge(\mathbb{c}^{n})\otimes_{\mathbb{c}}\mathcal{w}$ $\eta j(\underline{u}),$ $\zeta_{j}(\underline{u}, v)\in \mathcal{r}$ $\eta_{j}(\underline{u})=\sum_{i=1}^{n}e_{i}a_{ij}^{(l)}(\underline{u})$, $\zeta_{k}(\underline{u}, v)=\sum_{i=1}^{n}e_{i}a_{ik}^{(l+1)}(\underline{u}, v)=\sum_{j=1}^{n}\eta_{j}(\underline{u})b_{jk}(v)$ $e_{1},$ $e_{2},$ $\ldots,$ $e_{n}$ $\mathbb{c}^{n}$ $(\underline{u}, v)$ $\underline{u}$ $v$ $l+1$ $\eta j(\underline{u}),$ $\zeta_{k}(\underline{u}, v)$ 7 ). $A^{(l)}(\underline{u})$ 4( Proof. $u,$ $v\in \mathbb{c}$ $\frac{\overline{\partial}}{\overline{\partial}s}(u)^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(v)=(\frac{\overline{\partial}}{\overline{\partial}s}+u^{t}s^{-1})ts(\frac{\overline{\partial}}{\overline{\partial}s}+v^{t}s^{-1})$ $= \frac{\overline{\partial}}{\overline{\partial}s}ts\frac{\overline{\partial}}{\overline{\partial}s}+(u+v)\frac{\overline{\partial}}{\overline{\partial}s}+uv^{t}s^{-1}$ 5. $[x, y]=xy-yx$ $[B_{ij}, B_{st}]= \frac{1}{2}(\delta_{js}b_{it}-\delta_{ti}b_{sj})$. $A^{(l)}(\underline{u})$ $\underline{u}$ Proof. (LHS) $= \sum_{a,b=1}^{n}[s_{ai}\frac{\overline{\partial}}{\overline{\partial}s_{aj}},$ $= \sum_{a,b}s_{ai}\cdot\frac{\delta_{ab}\delta_{js}+\delta_{as}\delta_{jb}}{2}\cdot\frac{\overline{\partial}}{\overline{\partial}s_{bt}}+\sum_{a,b}s_{bs}\cdot\frac{-\delta_{ab}\delta_{it}-\delta_{at}\delta_{ib}}{2}\cdot\frac{\overline{\partial}}{\overline{\partial}s_{aj}}$ $= \frac{1}{2}(\sum_{a}s_{ai}\frac{\overline{\partial}}{\overline{\partial}s_{at}}\delta_{js}+s_{si}\frac{\overline{\partial}}{\overline{\partial}s_{jt}}-\sum_{a}s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{aj}}\delta_{it}-s_{is}\frac{\overline{\partial}}{\overline{\partial}s_{tj}})$ $= \frac{1}{2}(\delta_{js}b_{it}-\delta_{it}b_{sj})$ $=$ (RHS).

6 (3) 40 6( Capelli ). (1) $[A_{ij}^{(l)}( \underline{u}), B_{8}t(v)]=\frac{1}{2}(\delta_{j_{s}}A_{it}^{(l)}(\underline{u})+\delta_{i\epsilon}A_{tj}^{(l)}(\underline{u}))$ (2) $A^{(l)}(\underline{u})$ (3) $A^{(l)}(\underline{u})$ $l$ Proof. (1), (2), (3) $((1),$ (2) $,$ ) $B$ $v=0$ $l=1$ (2) (3) (1) $t(v)=b_{st}+v1_{n}$ $A^{(1)}(u_{1})= \frac{\overline{\partial}}{\overline{\partial}s}(u_{1})=f^{-u_{1}}\frac{\overline{\partial}}{\overline{\partial}s}f^{u_{1}}$ $l=1$ (1) $\underline{u}=(u)$ ((1) LHS) $=[ \frac{\overline{\partial}}{\overline{\partial}s_{ij}}(u),$ $\sum_{a}s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{at}}]$ $= \sum_{a}\frac{1}{2}(\delta_{ia}\delta_{js}+\delta_{is}\delta_{ja})\frac{\overline{\partial}}{\overline{\partial}s_{at}}+\sum_{a}[u\frac{\overline{\partial}g}{\overline{\partial}s_{ij}}, S_{as}\frac{\overline{\partial}}{\overline{\partial}S_{at}}]$ $= \frac{1}{2}(\delta_{js}\frac{\overline{\partial}}{\overline{\partial}s_{it}}+\delta_{is}\frac{\overline{\partial}}{\overline{\partial}s_{jt}})-\sum_{a}(s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}\frac{\overline{\partial}}{\overline{\partial}s_{at}})(ug)$ (5) $(ug)$ $ug$ $\sum_{a}(s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}\frac{\overline{\partial}}{\overline{\partial}s_{at}})(ug)=\sum_{a}((\frac{\overline{\partial}}{\overline{\partial}s_{ij}}s_{as}\frac{\overline{\partial}}{\overline{\partial}s_{at}})(ug)-\frac{1}{2}(\delta_{ai}\delta_{sj}+\delta_{aj}\delta_{si})\frac{\overline{\partial}}{\overline{\partial}s_{at}}(ug))$ $= \frac{\overline{\partial}}{\overline{\partial}s_{ij}}(\sum_{a}s_{as}u\frac{\overline{\partial}g}{\overline{\partial}s_{at}})-\frac{1}{2}(\delta_{sj}u\frac{\overline{\partial}g}{\overline{\partial}s_{it}}+\delta_{si}u\frac{\overline{\partial}g}{\overline{\partial}s_{jt}})$ $u\delta_{st}$ (5) $\frac{1}{2}(\delta_{js}\frac{\overline{\partial}}{\overline{\partial}s_{it}}(u)+\delta_{is}\frac{\overline{\partial}}{\overline{\partial}s_{jt}}(u))=$ ( (1) RHS) $l=1$ (1)

7 41 $l$ (1), (2), (3) $l+1$ (1), (2), (3) (1) $[A_{ij}^{(\iota+1)}(\underline{u}, v), B_{st}]$ $= \sum_{a}[a_{ia}^{(l)}(\underline{u})b_{aj}(v), B_{st}]$ $= \sum_{a}\frac{1}{2}(\delta_{as}a_{it}^{(l)}(\underline{u})+\delta_{is}a_{ta}^{(l)}(\underline{u}))b_{aj}(v)+\sum_{a}a_{ia}^{(l)}(\underline{u})\cdot\frac{1}{2}(\delta_{js}b_{at}-\delta_{ta}b_{sj})$. 1 (1) 2 5 $= \frac{1}{2}(a_{it}^{(l)}(\underline{u})b_{sj}(v)+\delta_{is}a_{tj}^{(\iota+1)}(\underline{u}, v)+\delta_{js}a_{it}^{(\iota+1)}(\underline{u}, 0)-A_{it}^{(l)}(\underline{u})B_{sj})$ $= \frac{1}{2}(a_{it}^{(l)}(\underline{u})\cdot v\delta_{sj}+\delta_{is}a_{tj}^{(l+1)}(\underline{u}, v)+\delta_{js}a_{it}^{(l+1)}(\underline{u}, 0))$ $= \frac{1}{2}(\delta_{js}a_{it}^{(l+1)}(\underline{u}, v)+\delta_{is}a_{tj}^{(l+1)}(\underline{u}, v))$ (1) $l+1$ (2) $A_{ij}^{(l+1)}( \underline{u}, v)=\sum_{a=1}^{n}a_{ia}^{(l)}(\underline{u})b_{aj}(v)$ $= \sum_{a}(b_{aj}(v)a_{ia}^{(l)}(\underline{u})+\frac{1}{2}\delta_{aa}a_{ij}^{(l)}(\underline{u})+\frac{1}{2}\delta_{ia}a_{ja}^{(l)}(\underline{u}))$. (1) (2) 2 $= \sum_{a}b_{aj}(v)a_{ia}^{(l)}(\underline{u})+\frac{1}{2}(n+1)a_{ij}^{(l)}(\underline{u})$ (6) $B_{aj}(v)= \sum_{b=1}^{n}s_{ba}\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)$ $= \sum_{b}(\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)s_{ba}-\frac{1}{2}\delta_{aj}-\frac{1}{2}\delta_{bj}\delta_{ab})$ $= \sum_{b}\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)s_{ba}-\frac{1}{2}(n+1)\delta_{a}$

8 42 (6) ( (6) ) $= \sum_{a}(\sum_{b}\frac{\overline{\partial}}{\overline{\partial}s_{bj}}(v)s_{ba}-\frac{n+1}{2}\delta_{aj})a_{ia}^{(l)}($ $)+ \frac{n+1}{2}a_{ij}^{(\iota)}(\underline{u})$ $= \sum_{a,b}\frac{\overline{\partial}}{\overline{\partial}s_{jb}}(v)s_{ab}a_{ai}^{(l)}(\underline{u})$. (2) $=A_{ji}^{(l+1)}(v,\underline{u})=A_{ji}^{(\iota+1)}(\underline{u}, v)$ (2) ( 4) $l+1$ (3) $A^{(\iota)}(\underline{u})$ $[A_{ij}^{(\iota+1)}(\underline{u}, v), A_{st}^{(l+1)}(\underline{u}, v)]$ $= \sum_{a,b=1}^{n}[a_{ia}^{(l)}(\underline{u})b_{aj(v),a_{sb}^{(l)}(\underline{u})b_{bt}(v)]}$ $\alpha\not\in$ (3) $\sum_{a,b}(a_{ia}^{(l)}(\underline{u})[b_{aj}(v), A_{sb}^{(l)}(\underline{u})]B_{bt}(v)$ $+A_{sb}^{(l)}(\underline{u})[A_{ia}^{(l)}(\underline{u}),$ $B_{bt}(v)]B_{aj}(v)+A_{sb}^{(l)}(\underline{u})A_{ia}^{(l)}$ $($ $)$ $[B_{aj}(v),$ $B_{bt}(v)])$ $= \frac{1}{2}\sum_{a,b}(-a_{ia}^{(l)}(\underline{u})(\delta_{ba}a_{sj}^{(l)}(\underline{u})+\delta_{sa}a_{jb}^{(l)}(\underline{u}))b_{bt}(v)$ $+A_{sb}^{(l)}(\underline{u})(\delta_{ab}A_{it}^{(l)}(\underline{u})+\delta_{ib}A_{ta}^{(l)}(\underline{u}))B_{aj(v)}+A_{sb}^{(l)}(\underline{u})A_{ia}^{(l)}(\underline{u})(\delta_{jb}B_{at}(v)-\delta_{ta}B_{bj(v)))}.$ (3) $= \frac{1}{2}()(\underline{u}, v)+a_{it}^{(l)}(\underline{u})a_{sj}^{(l+1)}(\underline{u}, v)$ $+A_{si}^{(l)}(\underline{u})A_{tj}^{(l+1)}(\underline{u}, v)+a_{sj}^{(l)}(\underline{u})a_{it}^{(l+1)}(\underline{u}, v)-a_{it}^{(l)}(\underline{u})a_{sj}^{(l+1)}(\underline{u}, v))$ $=0.$ 2 4 ( ) (2) $l+1$ (3) 7( $\eta$ $\zeta$ ). $\eta_{j}(\underline{u})\zeta_{k}(\underline{u}, v)=-\zeta_{k}(\underline{u}, v-\frac{1}{2})\eta_{j}(\underline{u})$

9 43 Proof. (LHS) $= \sum_{i=1}^{n}e_{i}a_{ij}^{(l)}(\underline{u})\sum_{a,b=1}^{n}e_{a}a_{ab}^{(l)}(\underline{u})b_{bk}(v)$ $= \sum_{i,a,b}e_{i}e_{a}a_{ab}^{(l)}(\underline{u})(b_{bk}(v)a_{ij}^{(l)}(\underline{u})+\frac{\delta_{jb}}{2}a_{ik}^{(l)}(\underline{u})+\frac{\delta_{ib}}{2}a_{kj}^{(l)}(\underline{u}))$ $=- \zeta_{k}(\underline{u}, v)\eta_{j}(\underline{u})+\frac{1}{2}(\sum_{i,a}e_{i}e_{a}a_{aj}^{(l)}(\underline{u})a_{ik}^{(l)}(\underline{u})+\sum_{i,a}e_{i}e_{a}a_{ai}^{(l)}(\underline{u})a_{kj}^{(l)}(\underline{u}))$ $( 2 e_{i}e_{a} i, a A_{ai}^{(l)}(\underline{u})A_{kj}^{(l)}(\underline{u})$ $i,$ $a$ 0 ) $=- \zeta_{k}(\underline{u}, v)\eta_{j}(\underline{u})+\frac{1}{2}\eta_{k}(\underline{u})\eta_{j}(\underline{u})$ $=- \zeta_{k}(\underline{u}, v-\frac{1}{2})\eta_{j}(\underline{u})$ $=$ (RHS). 8. $ A^{(l+1)}( \underline{u}, v) = A^{(l)}(\underline{u}) ts \frac{\overline{\partial}}{\overline{\partial}s}(v).$ Proof. $\zeta_{1}(\underline{u}, v)\cdots\zeta_{n}(\underline{u}, v)=(\sum_{i=1}^{n}e_{i}a_{i1}^{(\iota+1)}(\underline{u}, v))\cdots(\sum_{i=1}^{n}e_{i}a_{in}^{(l+1)}(\underline{u}, v))$ $=e_{1}\cdots e_{n}\det(a^{(l+1)}(\underline{u}, v))$ $\zeta_{1}(\underline{u}, v)\cdots\zeta_{n}(\underline{u}, v)=\zeta_{1}(\underline{u}, v)\cdots\zeta_{n-1}(\underline{u}, v)\sum_{j_{n}=1}^{n}\eta_{j_{n}}(\underline{u})b_{j_{n},n}(v)$ $g=7(-1)^{n-1}\sum\eta_{j_{n}}(\underline{u})\cdot\zeta_{1}(\underline{u}, v+\frac{1}{2})\cdots\zeta_{n-1}(\underline{u}, v+\frac{1}{2})\cdot B_{j_{n},n}(v)$ $j_{n}$

10 44 $=(-1)^{n(n-1)} \sum_{j_{1},\ldots,j_{n}}\eta_{j_{1}}(\underline{u})\eta_{j_{2}}(\underline{u})\cdots\eta_{j_{n}}(\underline{u})$ $\cross B_{j_{1},1}(v+\frac{n-1}{2})B_{j_{2},2}(v+\frac{n-2}{2})\cdots B_{j_{n},n}(v+\frac{n-n}{2})$ $=e_{1}\cdots e_{n}\det(a^{(l)}(\underline{u}))\det(b+(\begin{array}{llll}v+(n-1)/2 v+(n-2)/2 \ddots v\end{array}))$ Capelli (3) $f^{-v}$ $v$ $=e_{1} \cdots e_{n}\det(a^{(l)}(\underline{u}))\det(ts)\det(\frac{\overline{\partial}}{\overline{\partial}s}(v))$ 8 $ \frac{\overline{\partial}}{\overline{\partial}s}(u_{1}) ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{2}) ts \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $ $= \frac{\overline{\partial}}{\overline{\partial}s}(u_{1})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(u_{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}) $ Capelli (4) 3 $\det((x^{(1)}x^{(2)}\cdots X^{(l)})t(X^{(1)}X^{(2)}\cdots X^{(l)}))$ $b$ Capelli (4) 2 b- 1 - Sato-Sugiyama [2] $b$ $\mathbb{c}$ $m_{1},$ $m_{2},$ $\ldots$, $(G, V)$ $G=GL(m_{0})\cross GL(m_{1})\cross\cdots\cross GL(m_{l-1})\cross SO(m_{l})$, $V=$ Mat $(m_{0}, m_{1})\oplus$ Mat $(m_{1}, m_{2})\oplus\cdots\oplus$ Mat $(m_{l-1}, m\iota)$, $(g_{0}, \ldots, g_{l}).(x^{(1)}, \ldots, X^{(l)})=(g_{0}X^{(1)}g_{1}^{-1}, \ldots, g_{l-1}x^{(l)}g_{l}^{-1})$. $i$ $m_{0}\leq m_{i}$ $f=\det((x^{(1)}x^{(2)}\cdots X^{(l)})t(X^{(1)}X^{(2)}\cdots X^{(l)}))$ $(G, V)$ $f$ b. $b_{f}(s)$ $f$ $f(\partial)$ $f(\partial)(f^{s+1})=b_{f}(s)f^{s}$

11 45 ( monic $b_{f}(s)$ ) $b_{f}(s)= \prod_{r=1}^{\iota}(s+m_{r}/2)^{((m_{0}))}\prod_{r=0}^{l-1}(s+(m_{r}+1)/2)^{((m_{0}))},$ $a^{((k))}=a(a-1/2)\cdots(a-(k-1)/2)$ Sato-Sugiyama [2, Proposition 4. 1] Capelli (4) $b$- 3.1 $m_{0},$ $m_{1},$ $\ldots$, $X^{(i)}$ $m_{l}$ $i$ $m_{i-1}\cross m_{i}$ $x^{(i,j)}=x^{(i)x(i+1)\ldots X^{(j)}}$ $m_{0}$ $S$ $m_{i}\geq m_{0}$ $(1\leq i\leq l)$ $i\leq i$ $S:=X^{(1)}X^{(2)}\cdots X^{(l)}t(X^{(1)}X^{(2)}\cdots X^{(l)})=X^{(1,l)}tX^{(1,l)}$ $\frac{\partial}{\partial X(r)}=(\frac{\partial}{\partial X_{ij}^{(r)}})_{1\leqi\leq m_{r-1},1\leq j\leq m_{r}} (1\leq r\leq l)$ $\frac{\overline{\partial}}{\overline{\partial}s}=(\frac{\overline{\partial}}{\overline{\partial}s_{ij}})_{1\leq i,j\leq m_{0}}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}})_{1\leq i,j\leq m_{0}}$ $f=\det(ts)$, $g=$ log det $(ts)$ $\frac{\overline{\partial}}{\partial}s^{=ts^{-1}}a$ 2 $\frac{\overline{\partial}}{\overline{\partial}s}(u)=\frac{\overline{\partial}}{\overline{\partial}s}+u^{t}s^{-1}=\frac{\overline{\partial}}{\overline{\partial}s}+u\frac{\overline{\partial}g}{\overline{\partial}s}=f^{-u}\frac{\overline{\partial}}{\overline{\partial}s}f^{u}$ $\frac{\partial}{\partial X(r)}(u):=\frac{\partial}{\partial X(r)}+u\frac{\partial g}{\partial X(r)}=f^{-u}\frac{\partial}{\partial X(r)}f^{u} (1\leq r\leq l)$ $X^{(r)}$ $T$ $S$

12 $\frac{\partial\phi}{\partial Y_{ij}}=\sum_{a\leq b}\frac{\partial\phi}{\partial S_{ab}}\frac{\partial S_{ab}}{\partial Y_{ij}}=\sum_{a,b=1}^{n}\frac{\overline{\partial}\phi}{\overline{\partial}S_{ab}}\frac{\partial S_{ab}}{\partial Y_{ij}}$ ( ). $\phi=\phi(s)=\phi(s_{11}, \ldots, S_{m_{0},m_{0}})$ $1\leq r\leq l$ (1) $\frac{\partial\phi}{\partial X(r)}(u)=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}s}(u)t(x^{(r+1,l)}tx^{(1,l)})$ (2) $t( \frac{\partial\phi}{\partial X(r)}(u))=2\cdott(X^{(1,l)}tX^{(r+1,l)})\frac{\overline{\partial}\phi}{\overline{\partial}S}(u)tX^{(1,r-1)}$ Proof. (2) (1) (1) $X=X^{(1,r-1)}, Y=X^{(r)}, Z=X^{(r+1,l)}tX^{(r+1,l)}$ $S=XYZ^{t}Y^{t}X$ $Z$ $S_{ab}= \sum_{p,q,s,t}x_{ap}y_{pq}z_{q }Y_{s}X_{bt}$ $= \sum \frac{\overline{\partial}\phi}{\overline{\partial}s_{ab}}(x_{ap}\delta_{ip}\delta_{jq}z_{qs}y_{ts}x_{bt}+x_{ap}y_{pq}z_{qs}\delta_{it}\delta_{js}x_{bt})$ $a,b,p,q,s,t$ $=(tx \frac{\overline{\partial}\phi}{\overline{\partial}s}xytz)(i,j)$ $+(tx^{t}( \frac{\overline{\partial}\phi}{\overline{\partial}s})xyz)(i,j)$ $S$ $Z$ $\frac{\partial\phi}{\partial Y}=2^{t}X\frac{\overline{\partial}\phi}{\overline{\partial}S}XYZ$ (1) $u=0$ $u$ $\phi=ug$ 10. (1) $\frac{\partial}{\partial X(r)}(u-\frac{m_{r}}{2})tX^{(1,r)}=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}}{\overline{\partial}s}(u-\frac{m_{0}+1}{2})ts$ (2) $t( \frac{\partial}{\partial X(r)}(u-\frac{m_{r-1}}{2}))X^{(r,l)}tX^{(1,l)}=2\cdott(X^{(1,l)}tX^{(r+1,\iota)})\frac{\overline{\partial}}{\overline{\partial}S}(u-\frac{m_{0}}{2})^{t}S$ (3) $t( \frac{\partial}{\partial X(1)}(u))=2\cdott(X^{(1,l)}tX^{(2,l)})\frac{\overline{\partial}}{\overline{\partial}S}(u)$

13 47 Proof. (2) (3) (1) (1) 9 $\frac{\partial\phi}{\partial X(r)}=2tX^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}S}t(X^{(r+1,l)}tX^{(1,l)})$ $\phi$ $tx^{(1,r)}$ $\frac{\partial\phi}{\partial X(r)}tX^{(1,r)}=2tX^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}S}tS,$ $t(x^{(r)^{t}}( \frac{\partial\phi}{\partial X(r)}))tX^{(1,r-1)}=2tX^{(1,r-1)^{t}}(S^{t}(\frac{\overline{\partial}\phi}{\overline{\partial}S}))$ (7) $\phi$ $t(x^{(r)^{t}}( \frac{\partial}{\partial X(r)}))=\frac{\partial}{\partial X(r)}tX^{(r)}-m_{r}1_{m_{r-1}},$ $t(s^{t}( \frac{\overline{\partial}}{\overline{\partial}s}))=\frac{\overline{\partial}}{\overline{\partial}s}ts-\frac{m_{0}+1}{2}1_{m_{0}}$ ( ) (7) $1_{m_{r-1}}$ $\phi$ $\frac{\partial}{\partial X(r)}tX^{(1,r)}=2tX^{(1,r-1)}\frac{\overline{\partial}}{\overline{\partial}S}(\frac{m_{r}-m_{0}-1}{2})^{t}S.$ $f^{-u+m_{r}/2}$ 11 ( ). $u_{i},$ $v_{i}\in \mathbb{c}$ $2^{2l} \cdot\frac{\overline{\partial}}{\overline{\partial}s}(u_{1}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u_{l}-\frac{m_{0}}{2})\cdot ts\cdot\frac{\overline{\partial}}{\overline{\partial}s}(v_{l}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(v_{1}-\frac{m_{0}}{2})$ $= \frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(l)}(u_{l}-\frac{m_{l}-1}{2})$ $\cross t(\frac{\partial}{\partial X(\iota)}(v_{l}-\frac{m_{l-1}}{2}))\cdots t(\frac{\partial}{\partial X(1)}(v_{1}-\frac{m_{0}}{2}))$. Proof. 10 (1) $r=1$ $2^{2l-1} \cdot\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})tX^{(1)}\cdot\frac{\overline{\partial}}{\overline{\partial}S}(u_{2}-\frac{m_{0}}{2})ts\cdots\cdot$ 10 (1) $r=2$ $2^{2l-2} \cdot\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdot\frac{\partial}{\partial X(2)}(u_{2}-\frac{m_{2}-1}{2})tX^{(1,2)}\cdot\frac{\overline{\partial}}{\overline{\partial}S}(u_{3}-\frac{m_{0}}{2})^{t}S\cdots\cdot$ $2^{l} \cdot\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(\iota)}(u_{l}-\frac{m_{l}-1}{2})$ $\cross tx^{(1,l)}\cdot\frac{\overline{\partial}}{\overline{\partial}s}(v_{l}-\frac{m_{0}}{2})^{tt}t\cdot-\cdot\cdot\frac{\overline{\partial}}{\overline{\partial}s}(v_{1}-\frac{m_{0}}{2})$

14 (2) $\frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(\iota)}(u_{l}-\frac{m_{l}-1}{2})\cdot\frac{\partial}{\partial X(\iota)}(v_{l}-\frac{m_{l-1}}{2})\cdots\frac{\partial}{\partial X(1)}(v_{1}-\frac{m_{0}}{2})$ 3.3 $b$- $f= (X^{(1)}X^{(2)}\cdots X^{(l)})t(X^{(1)}X^{(2)}\cdots X^{(l)}) $ - $b$ $( S ^{s+1} )$ $ S ^{s+1}$ $ \frac{\partial}{\partial X(1)}\cdots\frac{\partial}{\partial X(\iota)}.$ $t( \frac{\partial}{\partial X(\iota)})\ldots t(\frac{\partial}{\partial X(1)}) ( S ^{s+1})$ $11_{2^{2lm_{0}}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2})$. $ts \cdot\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2})( S ^{s+1})$ $1 2^{2lm_{0}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2}) $. $ ts \cdot \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2}) ( S ^{s+1})$ $ S ^{s+1}$ Capelli (3) $2^{2lm_{0}} \cdot b(s+\frac{m_{1}-m_{0}-1}{2})b(s+\frac{m_{2}-m_{0}-1}{2})\cdots b(s+\frac{m_{l}-m_{0}-1}{2})$. $b(s+ \frac{m\iota-1^{-m_{0}}}{2})\cdots b(s+\frac{m_{1}-m_{0}}{2})\cdot b(s+\frac{m_{0}-m_{0}}{2}) S ^{S}$ $b(s)$ $b$- $b(s)=(s+1)(s+ \frac{3}{2})\cdots(s+\frac{m_{0}+1}{2})=(s+\frac{m_{0}+1}{2})^{((m_{0}))}$ (8)

15 49 $a^{((n))}=a(a-1/2)\cdots(a-(n-1)/2)$ 1/2 $f$ - $b$ $b_{f}(s)=(s+ \frac{m_{1}}{2})^{((m_{0}))}(s+\frac{m_{2}}{2})^{((m_{0}))}\cdots(s+\frac{m_{l}}{2})^{((m_{0}))}$ $\cross(s+\frac{m_{l-1}+1}{2})^{((m_{0}))}(s+\frac{m_{l-2}+1}{2})^{((m_{0}))}\cdots(s+\frac{m_{0}+1}{2})^{((m_{0}))}$ 4 $\det((x^{(1)}x^{(2)} \cdot X^{(l)})Yt(X^{(1)}X^{(2)} \cdot X^{(l)}))$ $b$ - $b$ Capelli (4) Sato-Sugiyama [2] [2] $m_{1},$ $m_{2},$ $m_{l}$ $\ldots,$ $(G, V)$ $G=GL(m_{0})\cross GL(m_{1})\cross\cdots\cross GL(m_{l})$, $V=$ Mat $(m_{0}, m_{1})\oplus\cdots\oplus$ Mat $(m_{l-1}, m_{l})\oplus$ Sym $(m\iota)$, $(go, \ldots, g\iota).(x^{(1)}, \ldots, X^{(l)}, Y)=(g_{0}X^{(1)}g_{1}^{-1}, \ldots, g_{l-1}x^{(l)}g_{l}^{-1}, g_{l}ytg_{l})$ $i$ $m_{0}\leq m_{i}$ $f=\det((x^{(1)}x^{(2)}\cdots X^{(l)})Yt(X^{(1)}X^{(2)}\cdots X^{(l)}))$ $(G, V)$ $b_{f}(s)$ $b_{f}(s)= \prod_{r=1}^{\iota}(s+m_{r}/2)^{((m_{0}))}\prod_{r=0}^{\iota}(\mathcal{s}+(m_{r}+1)/2)^{((m_{0}))}$ Capelli (4) 4.1 $i$ $m_{0},$ $m_{1},$ $\ldots$, $m_{l}$ $X^{(i)}$ $m_{i-1}\cross m_{i}$ $m_{l}$ $i\leq j$ $m_{0}$ $S$ $m_{i}\geq m_{0}$ $(1\leq i\leq l)$ $Y$ $Y_{j}=Y_{ji}$ $X^{(i,j)}=X^{(i)}X^{(i+1)}\cdots X$ ( $S:=X^{(1)}X^{(2)}\cdots X^{(l)}Yt(X^{(1)}X^{(2)}\cdots X^{(l)})=X^{(1,l)}YtX^{(1,l)}$

16 $\frac{\overline{\partial}}{\overline{\partial}s}(u)=\frac{\overline{\partial}}{\overline{\partial}s}+u\frac{\overline{\partial}g}{\overline{\partial}s}=f^{-u}\frac{\overline{\partial}}{\overline{\partial}s}f^{u},$ $\frac{\overline{\partial}}{\overline{\partial}y}(u)=\frac{\overline{\partial}}{\overline{\partial}y}+u\frac{\overline{\partial}g}{\overline{\partial}y}=f^{-u}\frac{\overline{\partial}}{\overline{\partial}y}f^{u}$ 50 $\frac{\partial}{\partial X(r)}=(\frac{\partial}{\partial X_{ij}^{(r)}})_{1\leqi\leq m_{r-1},1\leq J\leq m_{r}}$ $\frac{\overline{\partial}}{\overline{\partial}s}=(\frac{\overline{\partial}}{\overline{\partial}s_{ij}})_{1\leq i,j\leq m_{0}}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial S_{ij}})_{1\leq i,j\leq m_{0}}$ $\frac{\overline{\partial}}{\overline{\partial}y}=(\frac{\overline{\partial}}{\overline{\partial}y_{ij}})_{1\leq i,j\leq m_{l}}=(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial Y_{ij}})_{1\leq i,j\leq m_{l}}$ $f=\det(ts)$, $g=$ log det $(ts)$ $\frac{\partial}{\partial X^{(r)}}(u)=\frac{\partial}{\partial X(r)}+\cdot u\frac{\partial g}{\partial X(r)}=f^{-u}\frac{\partial}{\partial X(r)}f^{u},$ ( ). $\phi=\phi(s)=\phi(s_{11}, \ldots, S_{m_{O},m_{O}})$ $1\leq r\leq l$ (1) $\frac{\partial\phi}{\partial X(r)}(u)=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}\phi}{\overline{\partial}s}(u)t(x^{(r+1,l)}y^{t}x^{(1,l)})$ (2) $\frac{\overline{\partial}\phi}{\overline{\partial}y}(u)=tx^{(1,l)}\frac{\overline{\partial}\phi}{\overline{\partial}s}(u)x^{(1.l)}$ (3) $t( \frac{\partial\phi}{\partial X(r)}(u))=2\cdott(X^{(1,l)}YtX^{(r+1,l)})\frac{\overline{\partial}\phi}{\overline{\partial}S}(u)tX^{(1,r-1)}$ Proof (1) $\frac{\partial}{\partial X^{(r)}}(u-\frac{m_{r}}{2})tX^{(1,r)}=2\cdot tx^{(1,r-1)}\frac{\overline{\partial}}{\overline{\partial}s}(u-\frac{m_{0}+1}{2})^{t}s$

17 51 (2) $\frac{\overline{\partial}}{\overline{\partial}y}(u-\frac{m_{l}}{2})t(x^{(1.l)}y)=tx^{(1,l)}\frac{\overline{\partial}}{\overline{\partial}s}(u-\frac{m_{0}}{2})^{t}s$ (3) $t( \frac{\partial}{\partial X(r)}(u-\frac{m_{r-1}}{2}))t(X^{(1,l)}Y^{t}X^{(r,l)})=2\cdott(X^{(1,\iota)}Y^{t}X^{(r+1,l)})\frac{\overline{\partial}}{\overline{\partial}S}(u-\frac{m_{0}}{2})tS$ Proof ( ). $2^{2l} \cdot\frac{\overline{\partial}}{\overline{\partial}s}(u_{1}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(u\iota-\frac{m_{0}}{2})\cdot ts\frac{\overline{\partial}}{\overline{\partial}s}(v)ts\cdot\frac{\overline{\partial}}{\overline{\partial}s}(w_{l}-\frac{m_{0}}{2})^{t}s\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(w_{1}-\frac{m_{0}}{2})$ $= \frac{\partial}{\partial X(1)}(u_{1}-\frac{m_{1}-1}{2})\cdots\frac{\partial}{\partial X(l)}(u_{l}-\frac{m_{l}-1}{2})\cdot\frac{\overline{\partial}}{\overline{\partial}Y}(v-\frac{m_{l}}{2})$ $\cross t(\frac{\partial}{\partial X(\iota)}(w_{l}-\frac{m_{l-1}}{2}))\cdots t(\frac{\partial}{\partial X(1)}(w_{1}-\frac{m_{0}}{2}))$ Proof $f= (X^{(1)}X^{(2)}\cdots X^{(l)})Yt(X^{(1)}X^{(2)}\cdots X^{(l)}) $ $( S ^{s+1} )$ $ S ^{s+1}$ $ \frac{\partial}{\partial X(1)}\cdots\frac{\partial}{\partial X(l)}\cdot\frac{\overline{\partial}}{\overline{\partial}Y}.$ $tt ( S ^{s+1})$ $14_{2^{2lm_{0}}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2})$. $ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}}{2})^{t}s$. $\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2})^{t}s\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2})\cdots ts\frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2})( S ^{s+1})$ $1_{2^{2lm_{0}}} \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{1}-m_{0}-1}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{2}-m_{0}-1}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}-1}{2}) $. $ ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l}-m_{0}}{2}) ts $. $ \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-1}-m_{0}}{2}) ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{l-2}-m_{0}}{2}) \cdots ts \frac{\overline{\partial}}{\overline{\partial}s}(\frac{m_{0}-m_{0}}{2}) ( S ^{s+1})$

18 $\mathfrak{g}$ $\lambda$ : 52 $ S ^{s+1}$ $2^{2lm_{0}} \cdot b(s+\frac{m_{1}-m_{0}-1}{2})b(s+\frac{m_{2}-m_{0}-1}{2})\cdots b(s+\frac{m_{l}-m_{0}-1}{2\prime})$. $b(s+ \frac{m_{l}-m_{0}}{2})\cdot b(s+\frac{m_{l-1}-m_{0}}{2})\cdots b(s+\frac{m_{1}-m_{0}}{2})\cdot b(s+\frac{m_{0}-m_{0}}{2}) S ^{s}$ $b(s)$ (8) $f$ $k$ $b_{f}(s)=(s+ \frac{m_{1}}{2})^{((m_{0}))}(s+\frac{m_{2}}{2})^{((m_{0}))}\cdots(s+\frac{m_{l}}{2})^{((m_{0}))}$ $\cross(s+\frac{m_{l}+1}{2})^{((mo))}(s+\frac{m_{l-1}+1}{2})^{((m_{0}))}\cdots(s+\frac{m_{0}+1}{2})^{((m_{o}))}$ 5 $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{2n}$ $\mathfrak{g}=\mathfrak{s}\mathfrak{p}_{2n}$ $\mathfrak{g}=\mathfrak{k}\oplus(\mathfrak{n}^{+}+\mathfrak{n}^{-})$ $\mathfrak{p}arrow $\mathfrak{p}=\mathfrak{k}\oplus \mathfrak{n}^{+}$ \mathbb{c}$ $\mathfrak{g}$ $\mathfrak{p}$ 1 $\lambda$ $M(\lambda):=U(\mathfrak{g})\otimes_{U(\mathfrak{p})}\mathbb{C}_{\lambda}$ $\mathbb{c}_{\lambda}$ $\lambda$ $M(\lambda)\simeq U(\mathfrak{n}^{-})\simeq$ $\mathbb{c}[\mathfrak{n}^{+}]$ $U(\mathfrak{g})arrow \mathbb{c}[\mathfrak{n}^{+}]\pi_{\lambda}$ 5.1 Capelli $)$ Capelli (2) $\mathfrak{g}=\mathfrak{g}$ 12n $(\mathbb{c}$ $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{2n},$ $\mathfrak{k}=\{(\begin{array}{ll}a 00 D\end{array}) A,$ $D\in$ Mat $(n)\}\simeq \mathfrak{g}\mathfrak{l}_{n}\oplus \mathfrak{g}\mathfrak{l}_{n},$ $\mathfrak{n}^{+}=\{(\begin{array}{ll}0 B0 0\end{array}) B\in$ Mat $(n)\},$ $\mathfrak{p}=\{(\begin{array}{ll}a B0 D\end{array}) A,$ $B,$ $D\in$ Mat $(n)\}=\mathfrak{k}\oplus \mathfrak{n}^{+},$ $\mathfrak{n}^{-}=\{(\begin{array}{ll}0 0C 0\end{array}) C\in$ Mat $(n)\}.$ $e_{ij}\in \mathfrak{g} _{}2n$ $\{e_{ii}\}$ $\mathfrak{g}b_{n}$ $\mathbb{c}e_{11}+\mathbb{c}e_{22}+\cdots+\mathbb{c}e_{2n,2n}$ $\{\epsilon_{i}\}$ $\mathfrak{p}$ 1 $\lambda_{1},$ $\lambda_{2}\in \mathbb{c}$ $\lambda=\lambda_{1}(\epsilon_{1}+\cdots+\epsilon_{n})+\lambda_{2}(\epsilon_{n+1}+\cdots+\epsilon_{2n})$

19 $(\mathfrak{g}\mathfrak{l}_{2n}, \mathfrak{g}\mathfrak{l}_{n}\oplus \mathfrak{g}\mathfrak{l}_{n})$ $\mathfrak{n}^{+}$ 53 $\mathfrak{g}\mathfrak{l}_{2n}$ $\mathbb{c}[\mathfrak{n}^{+}]$ $\pi_{\lambda}(e_{ij})$ 15. $T_{ij}(1\leq i,j\leq n)$ $\mathfrak{n}^{+}$ $\pi_{\lambda}(e_{ij})=-\sum_{k=1}^{n}t_{jk}\frac{\partial}{\partial T_{ik}}+\lambda_{1}\delta_{ij},$ $\pi_{\lambda}(e_{n+i,n+j})=\sum_{k=1}^{n}t_{ki}\frac{\partial}{\partial T_{kj}}+\lambda_{2}\delta_{ij},$ $\pi_{\lambda}(e_{n+j,i})=t_{ij},$ $\pi_{\lambda}(e_{i,n+j})=-\sum_{k,l=1}^{n}t_{lk}\frac{\partial}{\partial T_{ik}}\frac{\partial}{\partial T_{lj}}+(\lambda_{1}-\lambda_{2})\frac{\partial}{\partial T_{ij}}$ $=-( \frac{\partial}{\partial T}(\lambda_{2}-\lambda_{1}-h)^{t}T\frac{\partial}{\partial T})_{(i,j)}$ 15 $\pi_{\lambda}(\det(e_{i,n+j}))=\det(\pi_{\lambda}(e_{i,n+j})))$ $= - \frac{\partial}{\partial T}(\lambda_{2}-\lambda_{1}-n)^{t}T\frac{\partial}{\partial T} = -\frac{\partial}{\partial T}(\lambda_{2}-\lambda_{1}-n) tt \frac{\partial}{\partial T} $ $[\pi_{\lambda}(\det(e_{i,n+j}))](\det(t)^{s+1})=(-1)^{n}b(s+\lambda_{2}-\lambda_{1}-n)b(s)\det(t)^{s}$ $(\det(t)^{s+1})$ $\det(t)^{s+1}$ $b(s)=(s+1)(s+2)\cdots(s+n)$ $M(\lambda)$ ( $7])$ $b(s+\lambda_{2}-\lambda_{1}-n)$ $[$5, 6, Capelli (2) $l=2$ ( )

20 $\mathfrak{s}\mathfrak{p}_{2n}$ $\pi_{\lambda}$ Capelli $\mathfrak{g}=\mathfrak{s}\mathfrak{p}_{2n}(\mathbb{c})$ Capelli (4) $\mathfrak{g}=\{(\begin{array}{ll}a BC -ta\end{array}) A\in$ Mat $(n),$ $B,$ $C\in$ Sym $(n)\}=\mathfrak{s}\mathfrak{p}_{2n},$ $\mathfrak{k}=\{(\begin{array}{ll}a 00 -ta\end{array}) A\in$ Mat $(n)\}\simeq \mathfrak{g}\mathfrak{l}_{n},$ $\mathfrak{n}^{+}=\{(\begin{array}{ll}0 B0 0\end{array}) B\in Sym(n)\},$ $\mathfrak{n}^{-}=\{(\begin{array}{ll}0 0C 0\end{array}) C\in$ Sym $(n)\},$ $\mathfrak{p}=\{(\begin{array}{ll}a B0 -ta\end{array}) A\in$ Mat $(n),$ $B\in$ Sym $(n)\}=\mathfrak{k}\oplus \mathfrak{n}^{+}.$ $e_{ij}\in \mathfrak{g}\mathfrak{l}_{2n}$ $\mathfrak{s}\mathfrak{p}_{2n}$ $\mathbb{c}(e_{11}-e_{n+1,n+1})+\mathbb{c}(e_{22}-$ $e_{n+2,n+2})+\cdots+\mathbb{c}(e_{nn}-e_{2n,2n})$ $\lambda_{0}\in \mathbb{c}$ 1 $\{\epsilon_{i}\}$ $\{e_{ii}-e_{n+i,n+i}\}$ $\mathfrak{p}$ $\lambda=\lambda_{0}(\epsilon_{1}+\cdots+\epsilon_{n})$ $\mathfrak{s}\mathfrak{p}_{2n}$ $\mathbb{c}[\mathfrak{n}^{+}]$ $n^{+}$ 16. $S_{ij}(1\leq i\leq j\leq n)$ $\mathfrak{n}^{+}$ $S_{ji}=S_{ij}$ $\pi_{\lambda}(e_{ij}-e_{n+j,n+i})=-2\sum_{k=1}^{n}s_{jk}\frac{\overline{\partial}}{\overline{\partial}s_{ik}}+\lambda_{0}\delta_{ij},$ $\pi_{\lambda}(e_{n+i,j}+e_{n+j,i})=s_{ij},$ $\pi_{\lambda}(e_{i,n+j}+e_{j,n+i})=-4\sum_{k,l=1}^{n}s_{kl}\frac{\overline{\partial}}{\overline{\partial}s_{il}}\frac{\overline{\partial}}{\overline{\partial}s_{jk}}+4\lambda_{0}\frac{\overline{\partial}}{\overline{\partial}s_{ij}}$ $=-4( \frac{\overline{\partial}}{\overline{\partial}s}(-\lambda_{0}-\frac{n+1}{2})^{t}s\frac{\partial}{\partial S})_{(i,j)}$ $\Re$ 16 $\pi_{\lambda}(\det(e_{i,n+j}+e_{j,n+i}))=\det(\pi_{\lambda}(e_{i,n+j}+e_{j,n+i})))$ $= -4 \frac{\overline{\partial}}{\overline{\partial}s}(-\lambda_{0}-\frac{n+1}{2})^{t}s\frac{\partial}{\partial S} = -4\frac{\overline{\partial}}{\overline{\partial}S}(-\lambda_{0}-\frac{n+1}{2}) ts \frac{\partial}{\partials} $ $\det(ts)^{8+1}$ $[ \pi_{\lambda}(\det(e_{i,n+j}+e_{j,n+i}))](\det(ts)^{s+1})=(-4)^{n}b(s-\lambda_{0}-\frac{n+1}{2})b(s)\det(ts)^{s}$

21 55 $b(s)=(s+1)(s+3/2)\cdots(s+(n-1)/2)$ (8) $b(s- \lambda_{0}-\frac{n+1}{2})$ ( [5,6,7]) $M(\lambda)$ Capelli (4) $l=2$ ( ) $(\mathfrak{s}\mathfrak{p}_{2n}, \mathfrak{g}\mathfrak{l}_{n})$ [1] Roger Howe and Toru Umeda. The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann., $290(3): $, [2] Fumihiro Sato and Kazunari Sugiyama. Multiplicity one property and the decomposition of -functions. Internat. J. Math., $17(2): $, [3] H. W. Turnbull. Symmetric determinants and the Cayley and Capelli operators. Proc. Edinburgh Math. Soc. (2), 8:76-86, [4] Akihito Wachi. Logarithmic derivative and Capelli identities. [5] Akihito Wachi. Contravariant forms on generalized Verma modules and $b$-functions. Hiroshima Math. $J$., $29(1): $, [6] Akihito Wachi. Capelli type identities on certain scalar generalized Verma modules. J. Math. Kyoto Univ., $40(4): $, [7] Akihito Wachi. Capelli type identities on certain scalar generalized Verma modules. II. J. Math. Soc. Japan, $56(2): $, 2004.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i,

LDU (Tomoyuki YOSHIDA) 1. [5] ( ) Fisher $t=2$ ([71) $Q$ $t=4,6,8$ $\lambda_{i}^{j}\in Z$ $t=8$ REDUCE $\det[(v-vs--ki+j)]_{0\leq i, Title 組合せ論に現れたある種の行列式と行列の記号的 LDU 分解 ( 数式処理における理論と応用の研究 ) Author(s) 吉田, 知行 Citation 数理解析研究所講究録 (1993), 848 27-37 Issue Date 1993-09 URL http//hdl.handle.net/2433/83664 Right Type Departmental Bulletin Paper

More information

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W

$w_{ij}^{\infty}(t)=\delta_{ij},$ $i\leq j,$ $w_{ij}^{0}(t)=0,$ $i>j$ $w_{ii}(t)\neq 0,$ $i=1,$ $\ldots,$ $n$ $W_{\infty}(t),$ $W_{0}(t)$ (14) $L(f)=W , 2000 pp72-87 $\overline{n}b_{+}/b_{+}$ e-mail: ikeka@math scikumamoto-uacjp September 27, 2000 \S 1 Introduction $\#_{dt}^{1}d^{2}=\exp(q_{2}-q_{1})$ $arrow_{dt}^{d^{2}}2=\exp(q_{3}-q_{2})-\exp(q_{2}-q_{1})$

More information

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2

,, ( ), ( ), ( ), ( ) 2, ( 2 ) $L^{2}$ ( ) I, $L^{2}(-\infty, \infty)$ II, I, $L^{\infty}(-\infty, \infty)$ I 1 $n$ $f(t)\in L^{2 Title ヘビサイドケーブル, トムソンケーブルと関連するソボレフ型不等式の最良定数 ( 可積分数理の新潮流 ) Author(s) 亀高, 惟倫 ; 武村, 一雄 ; 山岸, 弘幸 ; 永井, 敦 ; 渡辺, Citation 数理解析研究所講究録 (2009), 1650: 136-153 Issue Date 2009-05 URL http://hdlhandlenet/2433/140769

More information

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて)

カルマン渦列の消滅と再生成 (乱流研究 次の10年 : 乱流の動的構造の理解へ向けて) 1771 2011 34-42 34 Annihilation and reincamation of Karan s vortex street (Hiroshi Al anine) (Jiro Mizushima) (Shunsuke Ohashi) (Kakeru Sugita) 1 1 1 2 2 $h$ 100 B\ enard[1] $a$ $a/h>0.366$ Kirm$4n[2]$

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA

$\bullet$ A Distributed Sorting Algorithm on a Line Network: Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASA 1120 1999 68-77 68 $\bullet$ A Distributed Sorting Algorithm on a Line Network Adopting the Viewpoint of Sequential and Parallel Sorting Atsushi SASAKI NTT $=$ 619-0237 2-4 $\mathrm{n}\mathrm{t}\mathrm{t}\mathrm{c}\mathrm{o}$

More information

○広島大学職員任免規則\(案\)

○広島大学職員任免規則\(案\) 1 (14 2 1 (58 2 (9 3 (1012 4 (13 5 (1415 6 (1622 3 1 (23 2 (2425 3 (2627 4 (2829 4 (3033 5 (34 36 6 (37 1641 81 1 ( 1 ( 1641 78 ( 1641 79 ( 1641 80 ( 2 ( 22 49 ( 2 ( 3 101 Hiroshima University (1 ( ( (2

More information

○広島大学船員就業規則

○広島大学船員就業規則 1 (14 2 1 (58 2 (9 3 (10 4 (1112 5 (1316 6 (1720 7 (2123 8 (2425 3 (26 4 (27 37 5 (38 6 (3959 7 (60 8 (6166 9 (67 78 10 (79 11 (80 12(81 13 (82 14 (83 15 (84 1641 79 1 ( 1 ( 1641 121 2 ( ( ( 2 ( 22 100

More information

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a

5 / / $\mathrm{p}$ $\mathrm{r}$ 8 7 double 4 22 / [10][14][15] 23 P double 1 $\mathrm{m}\mathrm{p}\mathrm{f}\mathrm{u}\mathrm{n}/\mathrm{a double $\mathrm{j}\mathrm{s}\mathrm{t}$ $\mathrm{q}$ 1505 2006 1-13 1 / (Kinji Kimura) Japan Science and Technology Agency Faculty of Science Rikkyo University 1 / / 6 1 2 3 4 5 Kronecker 6 2 21 $\mathrm{p}$

More information

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年) 1776 2012 28-42 28 (Yukio Takemoto) (Syunsuke Ohashi) (Hiroshi Akamine) (Jiro Mizushima) Department of Mechanical Engineering, Doshisha University 1 (Theodore von Ka rma n, l881-1963) 1911 100 [1]. 3 (B\

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+

(Kohji Matsumoto) 1 [18] 1999, $- \mathrm{b}^{\backslash }$ $\zeta(s, \alpha)$ Hurwitz, $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+ 1160 2000 259-270 259 (Kohji Matsumoto) 1 [18] 1999 $- \mathrm{b}^{\backslash }$ $\zeta(s \alpha)$ Hurwitz $\Re s>1$ $\Sigma_{n=0}^{\infty}(\alpha+n)^{-S}$ $\zeta_{1}(s \alpha)=\zeta(s \alpha)-\alpha^{-}s$

More information

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録

Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木, 達夫 Citation 数理解析研究所講究録 Explicit form of the evolution oper TitleCummings model and quantum diagonal (Dynamical Systems and Differential Author(s) 鈴木 達夫 Citation 数理解析研究所講究録 (2004) 1408: 97-109 Issue Date 2004-12 URL http://hdlhandlenet/2433/26142

More information

<966B91E58C6F8DCF8A77959493AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E9790462E696E6464>

<966B91E58C6F8DCF8A77959493AF918B89EF89EF95F18E8F5F8DC58F495F8B5E8E9790462E696E6464> 1 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 2 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 3 Hokkaido University Faculty of Economics ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

More information

\S 1. $g$ $n$ $\{0\}=$ $\subset\alpha\subset\cdots\subset r_{n-1}\subset$ $=r,$ $\dim_{c}r_{j}=j(0\leq j\leq n)$ $A_{j+1}/A_{j}(0\leq j\leq n-1)$ $\la

\S 1. $g$ $n$ $\{0\}=$ $\subset\alpha\subset\cdots\subset r_{n-1}\subset$ $=r,$ $\dim_{c}r_{j}=j(0\leq j\leq n)$ $A_{j+1}/A_{j}(0\leq j\leq n-1)$ $\la , 2000 pp.19-32 1950 Mackey Dixmier = 50 Pukanzsky, Duflo, Pedersen $\text{}$ 60 Kirillov Dixmier = Mackey 62 Kirillov Auslander-Kostant 1 Pukanzsky 1 70 $ $) $-$ = = Corwin, Pedersen - $-$ 19 \S 1. $g$

More information

(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav

(Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcav 762 1991 78-88 78 (Tamiki Umeda) (Hisao Nakajima) (Hirokazu Hotani) Liposomes, vesicles oflipid bilayer, have a variety of shapes: a circular biconcave form, a thin tubular filament and other regular shape

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu) $\mathrm{s}$ 1265 2002 209-219 209 DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ) (Jinghui Zhu) 1 Iiitroductioii (Xiamen Univ) $c$ (Fig 1) Levi-Civita

More information

Ann. Phytopath. Soc. Japan 43 (3). July, 1977 325 Ann. Phytopath. Soc. Japan 43 (3). July, 1977 327 Ann. Phytopath. Soc. Japan 43 (3). July, 1977 329 Ann. Phytopath. Soc. Japan 43 (3). July, 1977 331

More information

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory)

A generalized Cartan decomposition for connected compact Lie groups and its application (Topics in Combinatorial Representation Theory) $\bullet$ $\bullet$ $\bullet$ $\prime \mathcal{h}$ 1795 2012 117-134 117 A generalized Cartan decomposition for connected compact Lie groups and its application Graguate School of Mathematical Sciences,

More information

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y 09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,

More information

カルマン渦列の消滅と再生成のメカニズム

カルマン渦列の消滅と再生成のメカニズム 1822 2013 97-108 97 (Jiro Mizushima) (Hiroshi Akamine) Department of Mechanical Engineering, Doshisha University 1. [1,2]. Taneda[3] Taneda 100 ( d) $50d\sim 100d$ $100d$ Taneda Durgin and Karlsson[4]

More information

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu

Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu 870 1994 153-167 153 Predator-prey (Tsukasa Shimada) (Tetsurou Fujimagari) Abstract Galton-Watson branching process 1 $\mu$ $\mu\leq 1$ 1 $\mu>1$ $\mu$ Galton-Watson branching process $\mu$ Galton-Watson

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or

BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro : $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $or 1218 2001 15-25 15 BPZ (Survey) ( ) Virasoro [FeEhl] Belavin- Polyakov-Zamolodchikov (BPZ) 1 Virasoro $\text{ }$ $\mathrm{v}i\mathrm{r}$ 11viras $oro$ $\mathbb{c}$-vector space Vir $=\oplus \mathbb{c}l_{n}n\in

More information

$\bullet$ $\wedge$ $\Lambda$ 1310 2003 16-28 16 -Combinatorial aspects of box-ball systems - (Kaori Fukuda) Graduate School of Science and Technology

$\bullet$ $\wedge$ $\Lambda$ 1310 2003 16-28 16 -Combinatorial aspects of box-ball systems - (Kaori Fukuda) Graduate School of Science and Technology Title 箱 玉 系 の 組 合 せ 論 的 側 面 ( 組 合 せ 論 的 表 現 論 とその 周 辺 ) Author(s) 福 田 香 保 理 Citation 数 理 解 析 研 究 所 講 究 録 (2003) 1310: 16-28 Issue Date 2003-04 URL http://hdlhandlenet/2433/42896 Right Type Departmental

More information

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1

cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 1398 2004 137-148 137 cubic zeta 1ifting (Tomoyoshi IBUKIYAMA) (Department of Math., Graduate School of Sci., Osaka Univ. 1 \Re $\Phi^{\mathrm{J}}$ 1 W. Kohnen } $SL_{2}(\mathbb{Z})$ 1 1 2 1 1 1 \sigma

More information

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin)

(Team 2 ) (Yoichi Aoyama) Faculty of Education Shimane University (Goro Chuman) Professor Emeritus Gifu University (Naondo Jin) 教科専門科目の内容を活用する教材研究の指導方法 : TitleTeam2プロジェクト ( 数学教師に必要な数学能力形成に関する研究 ) Author(s) 青山 陽一 ; 中馬 悟朗 ; 神 直人 Citation 数理解析研究所講究録 (2009) 1657: 105-127 Issue Date 2009-07 URL http://hdlhandlenet/2433/140885 Right

More information

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}

(Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 3,4 ) $O(1)$ $O(1)$ $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N} 745 1991 220-231 220 - - (Yoshimoto Onishi) 1. Knudsen $Kn$ ) Knudsen 1-4 ( 34 ) $O(1)$ $O(1)$ 5 6 7 $\epsilon$ BGK Boltzmann $\epsilon^{k}\ll Kn^{N}$ ( $N$ ) ( Reynolds $Re$ ) Knudsen (1) ( Stokes ) ;(2)

More information

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用)

離散ラプラス作用素の反復力学系による蝶の翅紋様の実現とこれに基づく進化モデルの構成 (第7回生物数学の理論とその応用) 1751 2011 131-139 131 ( ) (B ) ( ) ( ) (1) (2) (3) (1) 4 (1) (2) (3) (2) $\ovalbox{\tt\small REJECT}$ (1) (2) (3) (3) D $N$ A 132 2 ([1]) 1 $0$ $F$ $f\in F$ $\Delta_{t\prime},f(p)=\sum_{\epsilon(\prime},(f(q)-f(p))$

More information

中国古代の周率(上) (数学史の研究)

中国古代の周率(上) (数学史の研究) 1739 2011 91-101 91 ( ) Calculations ofpi in the ancient China (Part I) 1 Sugimoto Toshio [1, 2] proceedings 2 ( ) ( ) 335/113 2 ( ) 3 [3] [4] [5] ( ) ( ) [6] [1] ( ) 3 $\cdots$ 1 3.14159 1 [6] 54 55 $\sim$

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

:,, : - 7 -

:,, : - 7 - 31 ~ ~ - 6 - :,, : - 7 - (),,,,,,; ~ ~ *1 *2 6,,,~,,~ - 8-32 ,, ( );( ),,,,,, ~ ~ ~,,,, (),,,,, - 9 - 33 ~*~ ~~ ~, ~ ~ ~ ~ ~, ~~,,,, - 10 - BCG () g ) BCG BCG,, 34 ,,,, (),,,,,,,,,,,,,, () ( 3 90 [7 6

More information

$\mathrm{k}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{r}^{1}\mathrm{s}$ delta $-\cdota_{2}0\cdot\cdot\cdot$ 58 2 Co

$\mathrm{k}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{r}^{1}\mathrm{s}$ delta $-\cdota_{2}0\cdot\cdot\cdot$ 58 2 Co 1145 2000 57-69 57 Solving Linear Differential Equation through Companion Matrix Yoshimitsu IWASAKI ( ) 1 Department of Mathematical Information Science Faculty of Informatics Okayama University of Science

More information

橡6 中表紙(教育施設).PDF

橡6 中表紙(教育施設).PDF 10 i ii 14 1 2 52 53 55 56 57 63 2 3 5 6 13 13 14 14 15 1 3 10 3 4 50 11 7 6 1 45,813.68 19,120.95 3 17,979.75 63,793.43 2,501.74 1,458.27 23 4,226.95 76 2,277.28 17 1,264.41 5 1,768.60 26 2,378.96 9 2,126.92

More information

数理解析研究所講究録 第1921巻

数理解析研究所講究録 第1921巻 1921 2014 108-121 108 Local state, sector theory and measurement in AQFT 1 1 () $($local state) (quantum operation) ( RIMS ) () [25] ( [22] ) [5, 35, 36] 2 : $c*$ - $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq

More information

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA)

(SHOGO NISHIZAWA) Department of Mathematical Science, Graduate School of Science and Technology, Niigata University (TAMAKI TANAKA) Title 集合値写像の凸性の遺伝性について ( 不確実なモデルによる動的計画理論の課題とその展望 ) Author(s) 西澤, 正悟 ; 田中, 環 Citation 数理解析研究所講究録 (2001), 1207: 67-78 Issue Date 2001-05 URL http://hdlhandlenet/2433/41044 Right Type Departmental Bulletin

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

1 発病のとき

1 発病のとき A A 1944 19 60 A 1 A 20 40 2 A 4 A A 23 6 A A 13 10 100 2 2 360 A 19 2 5 A A A A A TS TS A A A 194823 6 A A 23 A 361 A 3 2 4 2 16 9 A 7 18 A A 16 4 16 3 362 A A 6 A 6 4 A A 363 A 1 A A 1 A A 364 A 1 A

More information

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL

Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木, 貴 ; 久保, 明達 Citation 数理解析研究所講究録 (2001), 1216: 1-12 Issue Date URL Title 脳波を記述する積分方程式について ( 関数方程式の定性的理論とその現象解析への応用 ) Author(s) 鈴木 貴 ; 久保 明達 Citation 数理解析研究所講究録 (2001) 1216: 1-12 Issue Date 2001-06 URL http://hdlhandlenet/2433/41198 Right Type Departmental Bulletin Paper

More information

単純パラエルミート対称空間の等長変換群について (新しい変換群論とその周辺)

単純パラエルミート対称空間の等長変換群について (新しい変換群論とその周辺) 数理解析研究所講究録第 2016 巻 2017 年 142-147 142 単純パラエルミート対称空間の等長変換群について 東京理科大学大学院理学研究科 Dl 下川拓哉 Takuya Shimokawa Graduate School of Science Mathematics Tokyo University of Science 1 初めに 本稿の内容は杉本恭司氏 ( 東京理科大学大学院理学研究科

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析) 1748 2011 48-57 48 (Hiroshi Iwasaki) Faculty of Mathematics and Physics Kanazawa University quasi-static Biot 1 : ( ) (coup iniury) (contrecoup injury) 49 [9]. 2 2.1 Navier-Stokes $\rho(\frac{\partial

More information

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^

$\overline{\circ\lambda_{\vec{a},q}^{\lambda}}f$ $\mathrm{o}$ (Gauge Tetsuo Tsuchida 1. $\text{ }..\cdot$ $\Omega\subset \mathrm{r}^ $\overle{\circ\lambda_{\vec{a}q}^{\lambda}}f$ $\mathrm{o}$ (Gauge 994 1997 15-31 15 Tetsuo Tsuchida 1 $\text{ }\cdot$ $\Omega\subset \mathrm{r}^{3}$ \Omega Dirac $L_{\vec{a}q}=L_{0}+(-\alpha\vec{a}(X)+q(_{X}))=\alpha

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

20169 3 4 5003 n=3,000 61.8% 38.2% n=3,000 20 7.3% 30 21.3% 40 34.8% 50 36.6% n=3,000 3.0% 2.0% 1.5% 12.1% 14.0% 41.4% 25.9% n=3,000 37.7% % 24.8% 28.8% 1.9% 3.1% 0.2% n=3,000 500 64.0% 500 1,000 31.3%

More information

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad

X = E ij (1.3 L Eij = n x jν x ν=1 iν n n (1.4 (E ij = t ( ( x ij, x ij ( t ( t(l Eij = x ij. x ij g G U(g g m m=0 g X Y Y X [X, Y ] X, Y g g G U(g Ad 1. GL(n GL(n Lie GL(n, C Lie 1 Lie G = GL(n, R GL(n, C G G X M(n, C ϕ(x d dt ϕ(xetx t=0 = d dt ϕ(x + txx t=0 M(n, C C (i, j 1 0 E ij ( n ν, µ=1 x νµe νµ E ij = n ν=1 x νie νj (1.1 E ij = Lie n x νi x ν=1

More information

1 5 13 4 1 41 1 411 1 412 2 413 3 414 3 415 4 42 6 43 LU 7 431 LU 10 432 11 433 LU 11 44 12 441 13 442 13 443 SOR ( ) 14 444 14 445 15 446 16 447 SOR 16 448 16 45 17 4 41 n x 1,, x n a 11 x 1 + a 1n x

More information

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c

Connection problem for Birkhoff-Okubo equations (Yoshishige Haraoka) Department of Mathematics Kumamoto University 50. $\Lambda$ $n\c Title Connection problem for Birkhoff-Oku systems and hypergeometric systems) Author(s) 原岡 喜重 Citation 数理解析研究所講究録 (2001) 1239: 1-10 Issue Date 2001-11 URL http://hdl.handle.net/2433/41585 Right Type Departmental

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

Title 拡張クロスデータ行列法と共分散行列関数の不偏推定 Author(s) 矢田, 和善 ; 青嶋, 誠 Citation 数理解析研究所講究録 (2015), 1954: Issue Date URL

Title 拡張クロスデータ行列法と共分散行列関数の不偏推定 Author(s) 矢田, 和善 ; 青嶋, 誠 Citation 数理解析研究所講究録 (2015), 1954: Issue Date URL Title 拡張クロスデータ行列法と共分散行列関数の不偏推定 Author(s) 矢田, 和善 ; 青嶋, 誠 Citation 数理解析研究所講究録 (2015), 1954: 51-60 Issue Date 2015-06 URL http://hdl.handle.net/2433/224021 Right Type Departmental Bulletin Paper Textversion

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac

$\mathfrak{u}_{1}$ $\frac{\epsilon_{1} }{1-\mathcal{E}_{1}^{J}}<\frac{\vee 1\prime}{2}$ $\frac{1}{1-\epsilon_{1} }\frac{1}{1-\epsilon_{\sim} }$ $\frac $\vee$ 1017 1997 92-103 92 $\cdot\mathrm{r}\backslash$ $GL_{n}(\mathbb{C}$ \S1 1995 Milnor Introduction to algebraic $\mathrm{k}$-theory $narrow \infty$ $GL_{n}(\mathbb{C}$ $\mathit{1}\mathrm{t}i_{n}(\mathbb{c}$

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

1 z q w e r t y x c q w 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 R R 32 33 34 35 36 MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR

More information

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2].

(Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science, Osaka University 1., [1].,., 30 (Rott),.,,,. [2]. 1483 2006 112-121 112 (Nobumasa SUGIMOTO) (Masatomi YOSHIDA) Graduate School of Engineering Science Osaka University 1 [1] 30 (Rott) [2] $-1/2$ [3] [4] -\mbox{\boldmath $\pi$}/4 - \mbox{\boldmath $\pi$}/2

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S

Archimedean Spiral 1, ( ) Archimedean Spiral Archimedean Spiral ( $\mathrm{b}.\mathrm{c}$ ) 1 P $P$ 1) Spiral S Title 初期和算にみる Archimedean Spiral について ( 数学究 ) Author(s) 小林, 龍彦 Citation 数理解析研究所講究録 (2000), 1130: 220-228 Issue Date 2000-02 URL http://hdl.handle.net/2433/63667 Right Type Departmental Bulletin Paper Textversion

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat

Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mat 1134 2000 70-80 70 Hierarchical model and triviality of $\phi_{4}^{4}$ abstract (Takashi Hara) (Tetsuya Hattori) $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{b}\mathrm{e}$ (Hiroshi

More information

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL

Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: Issue Date URL Title 地球シミュレータによる地球環境シミュレーション ( 複雑流体の数理解析と数値解析 ) Author(s) 大西, 楢平 Citation 数理解析研究所講究録 (2011), 1724: 110-117 Issue Date 2011-01 URL http://hdl.handle.net/2433/170468 Right Type Departmental Bulletin Paper

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}

(Kazuo Iida) (Youichi Murakami) 1,.,. ( ).,,,.,.,.. ( ) ( ),,.. (Taylor $)$ [1].,.., $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m} 1209 2001 223-232 223 (Kazuo Iida) (Youichi Murakami) 1 ( ) ( ) ( ) (Taylor $)$ [1] $\mathrm{a}1[2]$ Fermigier et $56\mathrm{m}\mathrm{m}$ $02\mathrm{m}\mathrm{m}$ Whitehead and Luther[3] $\mathrm{a}1[2]$

More information

$\omega_{j}$ ( ) ( ) 1. TOEFL ( [2],[3]) (Item Response Theory, IRT) TOFLE 2 2 1,0 $U$ $N\cross n$ $N$ $n$ $ $ $s_{i}$ $u_

$\omega_{j}$ ( ) ( ) 1. TOEFL ( [2],[3]) (Item Response Theory, IRT) TOFLE 2 2 1,0 $U$ $N\cross n$ $N$ $n$ $ $ $s_{i}$ $u_ Title 項目反応理論を用いたプロ野球選手の評価について ( 統計的モデルの新たな展望とそれに関連する話題 ) Author(s) 時光, 順平 ; 鳥越, 規央 Citation 数理解析研究所講究録 (2012), 1804: 21-29 Issue Date 2012-08 URL http://hdl.handle.net/2433/194387 Right Type Departmental

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

FA $*1$ $*$ 1, $*$2 : $*2$ : Takehiro Takano $*$ 1, Katsunori Ano*2 $*1$ : Graduate School of Engineering and Science, Shibaura Ins

FA $*1$ $*$ 1, $*$2 : $*2$ : Takehiro Takano $*$ 1, Katsunori Ano*2 $*1$ : Graduate School of Engineering and Science, Shibaura Ins Title マルコフ連鎖に基づく最適打順モデルによる FA 打者獲得戦略 ( 不確実 不確定性の下での数理意思決定モデルとその周辺 ) Author(s) 高野, 健大 ; 穴太, 克則 Citation 数理解析研究所講究録 (2016), 1990: 89-96 Issue Date 2016-04 URL http://hdl.handle.net/2433/224603 Right Type

More information

untitled

untitled -- -- -3- % % % 6% % % 9 66 95 96 35 9 6 6 9 9 5 77 6 6 5 3 9 5 9 9 55 6 5 9 5 59 () 3 5 6 7 5 7 5 5 6 6 7 77 69 39 3 6 3 7 % % % 6% % % (: ) 6 65 79 7 3 36 33 9 9 5 6 7 3 5 3 -- 3 5 6 76 7 77 3 9 6 5

More information