Size: px
Start display at page:

Download ""

Transcription

1

2 Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1

3 N = 2 Yang-Mills SU(2) one-loop Duality BPS N =

4 1 SU(3) QCD (quantum chromodynamics) QCD QCD QCD QCD 3

5 1994 N = 2 N = 2 N = 2 SU(2) Yang-Mills 4

6 2 2.1 (Lorentz) (Poincare) 5

7 ϕ j ϕ i(x) = U j i (x)ϕ j(x) = [exp(igθ a (x)t a )] j i ϕ j(x) (2.1) T a θ a g charge ϕ i (x + dx) = ϕ i + ig(a µ ) j i ϕ j (x)dx µ (2.2) A µ = (A µ ) j i A µ T a A G dim G (A µ ) j i (x) = a=1 A a µ(x)(t a ) j i (2.3) ϕ µ φ ϕ D µ ϕ = ( iga µ )ϕ (2.4) D µ φ ( covariant derivative ) iga µ ϕ A µ ϕ g (gauge coupling) D µ ϕ D µ ϕ U(x)D µ ϕ(x) (2.5) (D µ ϕ) (D µ ϕ) D µ ϕ (D µ ϕ) (D µ ϕ) U 1 (2.6) (D µ ϕ) D µ ϕ (D µ ϕ) (U 1 U)D µ ϕ = (D µ ϕ) D µ ϕ (2.7) 6

8 ( ) 1 4 F a µνf aµν = 1 4 ( Aa µ A a ν + gf abc A b µa c ν)( A aµ A aν + gf ade A dµ A eν ) (2.8) 1 4 F a µνf aµν = 1 4 N 1 tr(f µν F µν ) (2.9) N T a tr(t a T b ) = Nδ ab F µν T a F µν Fµν a F µν F µν = F a µνt a (2.10) F µν U(x)F µν (x)u 1 (x) (2.11) tr(f µν F µν ) tr[(uf µν U 1 )(UF µν U 1)] = tr[u 1 UF µν F µν ] = tr[f µν F µν ] (2.12) 1F a 4 µνf aµν ϕ Lagrangian L = 1 4 F a µνf aµν + (D µ ϕ) D µ ϕ m 2 (ϕ ϕ) + L int (ϕ) (2.13) ϕ L int (ϕ) Yang-Mills Higgs QCD (Quantum chromodynamics) 7

9 QCD SU(3) 2.2 Wilson ( Wilsonian effective action ) Z = [dψ]e is(ψ) (2.14) [ ] Λ 0 Z = [dψ]e is(ψ) p Λ 0 (2.15) Z Wilsonian effective action S eff Λ Λ 0 Z = (2.16) p Λ 0 [dψ]e is eff (Ψ;Λ) Λ Λ 0 Wilsonian effective action Wilsonian effective action Wilsonian effective action Lagrangian Lagrangian Wilsonian effective action Lagrangian Wilsonian effective action Λ 0 8

10 Wilsonian effective action Wilsonian effective action ( Law energy effective action - LEEA ) N = 2 ( Wilsonian low energy effective theory) Lagrangian Wilsonian effecive theory N = 2 Wilsonian effective theory Lagrangian Seiberg [8] Seiberg-Witten [2] N = (assymptotic free) 9

11 N = 2 2 (supercharge - Noether charge ) N = 2 instanton [8] [9] 1 [2] N = 2 1 [9] [10] [11] 10

12 3 N = 2 Yang-Mills 3.1 N = 2 Yang-Mills ( Super Yang-Mills SYM ) Lagrangian adjoint L = 1 4 F aµν F a µν i λ a α σ µ αα D µ λ a α Da D a θ 32π F aµν a F µν (D µ φ a ) D µ φ a i ψ a α σ µ αα D µ ψ a α + f a f a (3.1) 2gf abc φ a λb α ψc α + 2gf abc φ a ψ bα λ c α + igf abc D a φ b φ c g, f abc (structure constant) Fµν a (field strength) φa (complex scalar) (ψ a λ a ) Weyl (spinor) D, f a, b, c µ, ν Lorentz α, α φ covariant derivative D µ φ a = µ φ a ig(ta b)a ca b µφ c (ψ a λ a ) (T A ) A (adjoint representation) field strength (T b A ) c a = if abc (3.2) F a µν = µ A a ν A a + gf abc A µ A ν (3.3) F µν a F aµν = 1 2 ɛµνρσ F a ρσ (3.4) 11

13 1 Lagrangian field (A a µ ψ a λ a φ a ) adjoint A µ N = 2 (Pure) SYM Yang-Mills adjoint Lagrangian Yang-Mills adjoint (fundamental representation) Pure Yang-Mills η µν = diag( + ++) field Euler-Lagrange Lagrangian (D, f) Euler-Lagrange f = f = 0, D = igf abc φ b φ c (3.6) (φ a ψ a λ a A a µ) N = 2 multiplet( ) A µ (vector multiplet) N = 2 Super Yang-Mills vector multiplet 3.1 ψ φ A µ λ supercharge : Q 1 N = 2 supercharge : Q 2 A µ ψ λ φ (N = 2 hypermultiplet) Seiberg Witten (Non-abelian gauge group) Pure Yang-Mills 1 ef mn = 1 2 ɛ mnpqf pq (3.5) ( ) ( ) 12

14 3.1: N =2 vector multiplet Non-Abelian gauge theory SU(2) [2] SU(2) 3.2 SU(2) N = 2 SUSY U(1) R SU(2) R U(1) R SU(2) R R-symmetry (global symmetry) U(1) R φ a e i2α φ a λ a e iα λ a (3.7) ψ a e iα ψ a φ ψ λ 2 U(1) R charge 2 SU(2) R φ a φ a ( ) ψ a λ a e i τ i 2 θ i ( ψ a λ a ) (3.8) (i = 1, 2, 3) τ i Pauli Spin ψ a λ a (supercharge - Noether charge ) Q 1 Q 2 SU(2) R U(1) R U(1) R anomalous U(1 R ) anomaly Z 4Nc 2N f N f 13

15 (fundamental matter) (flavor) N f f N c color SU(N c ) N c SU(2) N c = 2 Pure Yang-Mills fundamental matter N f = 0 SU(2) R Z 8 SU(2) R Z 8 Z 8 φ e i 2π 4 α φ λ e i 2π 8 α λ (3.9) ψ e i 2π 8 α ψ φ U(1) R charge ψ λ charge 2 Z 8 ψ (λ U(1) R charge ) α ψ ψ e i π 4 ψ iψ e i 3 4 π ψ ψ e i 5π 4 ψ iψ e i 7π 4 ψ α = 4 φ φ ψ ψ λ λ (3.10) SU(2) R θ 1 = θ 2 = 0, θ 3 = 2π Z 2 SU(2) R Z 8 /Z 2 N = 2 SU(2) N = 2 (3.1) N = 2 SYM V (φ) = g 2 tr ( [φ, φ ] 2) (3.11) if abc = 2 tr ( T a[ T b, T c]) φ a T a φ 0 φ = 0 0 a 0 14

16 φ a SU(2) U(1) SU(2) Pauli-Matrix τ SU(2) τ 3 3 SU(2) 2 Pauli-Matrix τ (4-)Pauli-Matrix σ φ φ = a τ 3 2 (3.12) V (φ) = 0 (3.13) φ a C a a 0 SU(2) U(1) a = 0 SU(2) massless U(1) massless massless a (3.11) 0 a φ = a τ 3 (3.14) 2 SU(2) iτ 2 SU(2) Weyl group 15

17 φ adjoint φ φ (iτ 2 ) φ (iτ 2 ) 1 = (iτ 2 ) φ ( iτ 2 ) = a 2 τ 2 τ 3 τ 2 = a 2 τ 3 (3.15) = φ φ a u = trφ 2 a a 0 SU(2) U(1) Z 8 φ a Z 8 φ φ e i 2π 4 α φ, (N = 0, 1, 2 8) (3.16) α φ φ iφ φ iφ φ iφ φ iφ φ α = 0, 4 (3.17) Z 8 Z 2 φ Z 8 Z 2 SU(2) Weyl Weyl φ φ φ Z 8 α = 2, 6 (3.18) φ φ (3.19) < φ > Z 8 (α = 0, 4) (α = 2, 6) + ( Weyl ) Z 8 Z 2 Z 4 SU(2) R SU(2) R 16

18 SU(2) R Z 4 Z 2 (3.20) N = 2 a Z 4 φ 2 a U(1) charge 2 u u u Z 2 3.2: u- Z 2 17

19 3.3: a- Z 4 4 Z

20 3.3 one-loop Seinberg [8] Wilsonian Lagrangian [ 1 4π Im d 4 θ F(A) A Ā + d 2 θ 1 ] 2 F(A) W α W 2 A 2 α (3.21) W W α (y, θ) = iλ α (y) + [δ β αd 1 2 (σµ σ ν ) β αf µν (y)]θ β + θθσ µ α α D µ λ α (y) (3.22) U(1) (field strength superfield ) A A(y, θ) = φ(y) + θψ(y) + θθf(y) (3.23) N = 2 vector multiplet N = 1 chiral multiplet superfield y θ θ y µ = x µ + iθ α σ µ α α θ α (3.24) SU(2) U(1) massless N = 2 U(1) vector multiplet : N =2 U(1) vector multiplet F(A) A Ā N = 2 Wilsoninan 19

21 F 0 A F one loop (non-perturbative) F non pert F 0 (A) + F one loop (A) + F non pert (A) (3.25) N = 2 vector multiplet A [8] F non pert (instanton) F non pert F instanton F 0 F 0 (A) = 1 2 τ cla 2 (3.26) τ cl = θ + i 4π 2π g 2 N = 2 1-loop 1-loop F one loop 1-loop g eff F one loop (A) = 1 4π (i )A 2 (3.27) 2 geff 2 g eff g 2 eff 4π = α (3.28) µ dα dµ = 1 2π bα2 (3.29) b β SU(N c ) 1-loop β b = 11 3 C 2(adj) + r n F r C 2(r) + r n B r 1 3 C 2(r) (3.30) n F r n B r : ( fermion ) : ( scalar boson ) (3.31) 20

22 C 2 2 adj adjoint (3.30) adjoint (3.30) r (representation) representation r fermion scalar boson adjoint C 2 (r) C 2 (adj) C 2 (F ) F fundamental representation SU(N c ) C 2 (adj) = N c C 2 (F ) = 1 2 (3.32) U(1) C 2 (adj) = 0 C 2 (F ) = 1 (3.33) U(1) β- N = 2 SU(2) Yang-Mills α N = 2 vector multiplet adjoint fermion 2 scalar boson 1 b = g 2 eff (A) 4π = 1 4 2π ln A Λ = 4 (3.34) (3.35) A φ µ F one loop (A) = i A2 A2 ln (3.36) 2π Λ 2 α(µ) 3.5 SU(2) U(1) 21

23 3.5: 1-loop SU(2) U(1) φ a β- 0 SU(2) 1-loop Λ a λ SU(2) U(1) a Λ a Λ a Λ a F F instanton (A) = ( 4k Λ F k A A) 2 (3.37) k=1 k 1 Seiberg Witten [2] 22

24 F 3.4 φ a 0 a u a u = a = 0 SU(2) : a = 0 1-loop a Λ 1-loop 3.7 a a ( 3.21) ( ) F(A) K = Im A Ā (3.38) 23

25 3.7: 1-loop a Λ Kähler A A(y, θ) = φ + θψ + θθf (3.39) a ā 2 Kähler Kähler (ds) 2 = Im 2 F(a) da dā (3.40) a 2 τ τ(a) = 2 F (3.41) a 2 τ(a) holomorphic( ) Im τ(a) da dā (3.42) Im τ(a) a a = 0 (positive definite) a 1-loop QCD scale strong coupling 24

26 1-loop a a a D a a D 25

27 4 4.1 Duality Low energy effective Lagrangian Kähler metric classical loop 3.7 Kähler metric (ds) 2 = Im τ(a) dadā (4.1) a τ(a) (3.41) τ = 2 F ā (4.2) a 2 a (holomorphic) (3.36) 1-loop τ(a) τ(a) i π a2 (ln( ) + 3) (4.3) Λ2 a a D = F a a D (ds) 2 = Imda D dā = i 2 (da Ddā dada D ) (4.4) a a D u u = 1 2 a2 (4.5) (ds) 2 = Im da D du dā dū du dū = i 2 (da D du da du 26 dā D )dudū (4.6) dū

28 a α = (a D, a), α = 1, 2 (4.7) (ds) 2 = i 2 ɛ da α αβ du dā β dudū (4.8) dū 2 2 U a α U α β aβ (4.9) ā α U α βāβ U U SL(2, R) (4.10) SL(2, R) v ( ) a D v = (4.11) a M SL(2, R) 2 2 v Mv + c (4.12) c 2 1 N = 2 (Pure) SYM M SL(2, R) SL(2, Z) c 0 SL(2, R) 1 SL(2, R) ( ) 1 b T b = 0 1 ( ) (4.13) 0 1 S =

29 b b R a α = (a D, a) (α = 1, 2) (4.14) T b a D a a D a D + ba a a (4.15) a D = F a (3.21) θ θ + 2πb b b b Z T b S SL(2, R) SL(2, Z) a D SL(2, Z) S U(1) ( QED ) F µν dual field strength F F µν = 1 2 ɛµνρσ F ρσ (4.16) F F 2 µν = ( F ) 2 µν (4.17) 1 32π Im τ(a) (F + i F ) 2 = 1 16π I τ(a) (F 2 + i F F ) (4.18) ( (4.17) F 2 = (F ) 2 ) F D F F F F integral out F F 28

30 F U(1) A F = da df = 0 F F 1 2 F µνdx µ dx ν (4.19) df = 1 2 ρf µν dx ρ dx µ dx ν (4.20) dx ρ, dx µ, dx ν df = 0 [ρ F µν] = 0 ( ) df = 0 ɛ µνρσ ν F ρσ = 0 (4.21) Lagrange V Dµ Lagrange 1 V Dµ ɛ µνρσ ν F ρσ = 1 F D F = 1 8π 8π 16π Re ( F D if D )(F + i F ) (4.22) F Dµν F Dµν = µ V Dν ν V Dµ V D field strength (4.18) (F + i F ) F D F D (4.18) (4.18) F D 1 32π Im 1 τ (F D + i F D ) 2 = 1 16π Im 1 τ (F 2 D + i F D F D ) (4.23) U(1) F D N = 1 U(1) N = 1 N = 1 field strength vector super field field strenth W α W field strength F µν (y) λ(y) D(y) W α = iλ α (y) + [δ β αd(y) i 2 (σµ σ ν ) β α F µν (y)]θ β + θθσ µ α β µ λ β(y) (4.24) y µ = x µ + iθσ µ θ θ chiral coodinate superspace Lagrangian 1 8π Im d 2 θτ(a)w 2 (4.25) 29

31 A N = 1 chiral superfield df = 0 N = 1 Im DW = 0 (4.26) D supercovariant derivative D α = + 2iɛ αβ σ µ β θ α θ α (4.27) α y µ Im DW = 0 chiral coordinate (y, θ) (x, θ, θ) ɛ µνρσ ν F ρσ = 0 Im DW = 0 df = 0 Lagrange vector superfield V D Lagrange 1 4π Im d 4 xd 4 θv D DW = 1 4π Im d 4 xd 2 θd 2 θ(dvd )W = 1 16π Im d 4 xd 2 θ D DDV D = 1 4π Im d 4 xd 2 θw D W (4.28) W Dα N = 1 U(1) vector superfield field strength W α = 1 4 D DD α V (4.29) D chiral coordinate D α = θ α (4.30) W Dα W Dα = 1 4 D DD α V D (4.31) W D W WD αw α [ 1 4π Im d 4 xd 2 θ 1 ] 2 τ(a)w W d 4 xd 2 θwd W (4.32) 30

32 W W 1 8π Im d 2 θ 1 τ(a) W DW D (4.33) F F D τ(a) 1 τ(a) field strength F µν F µν = 1 2 ɛµνρσ F ρσ (4.34) field strength N = 2 F(A) A = h(a) (4.35) Im d 4 θh(a)ā (4.36) Im A D = h(a) (4.37) d 4 θ h D (A D )ĀD (4.38) h D (h(a)) = A h (A) = τ(a) (4.39) D 1 τ(a) = 1 h (A) = h D(A D ) = τ D (A D ) (4.40) τ D (A D ) = 1 τ D (A) (4.41) 31

33 S a a D τ 1 S a a D S (duality transformation) dual a a D τ D 4.2 BPS a a D BPS BPS saturated states (BPS ) Bogomolny [4] Prasad-Sommerfield [5] Bogomolny BPS Prasad-Sommerfield dyon dyon monopole monopole ( ) U(1) U(1) U(1) t Hooft-Polyakov monopole dyon Witten-Olive [6] N 2 BPS 32

34 monopole dyon a charge Z( ) Z Z = an e + a D n m (4.42) BPS BPS (BPS saturated state) charge Z M 2 = 2 Z 2 (4.43) [6] SU(2) U(1) monopole, dyon a D charge Z cl = a(n e + τ cl n m ) (4.44) τ cl = θ + i 4π n 2π g 2 e n m BPS M 2 2 Z 2 (4.45) a D = F (4.46) a a D Z = a n e + a D n m (4.47) τ cl a D a D a, a D n e, n m BPS N = 2 hypermultiplet massive 2 2N = = 16 massless N = 2 2 N = 2 2 = 4 BPS massive N = 2 massless hypermultiplet 33

35 5 5.1 a a D u a D = F a (3.21) a a D a a D u u a a D u-plane u (a(u), a D (u)) u e i2π u a a D a a D u-plane u e i2πu a a D M ( ) ( ) a D a D M (5.2) a a (5.1) M a a D SL(2, Z) SL(2, Z) M (a D, a) v Kähler v Mv + c (5.3) 34

36 c BPS states BPS states charge Z = n e a + n m a D (5.4) Z charge (n e, n m ) Z (a, a D ) c (n e, n m ) [3] Z c N = 2 u a a D u u 1 2 u Z 2 1 a u 0 u u Z 2 u 3 35

37 1+2n(n 1; n Z) U(1) massless vector superfield massless massless massless massless singular ( ) 2 massless U(1) SU(2) massless massless massless u = tr(φ 2 ) = 0 2 massless BPS state massless monopole massless 36

38 5.3 a D a D = F a 2ia ( a ) π ln + ia (5.5) Λ π a u 1 2 a2 (5.6) u e 2πi u (5.7) ln a ln a + iπ (5.8) a D a D + 2aa a (5.9) ( ) M = P T = (5.10) 0 1 P ( P = ) (5.11) a D = F (a) a = τ cl a (5.12) u e 2πi u (5.13) a a (5.14) a D a D 37

39 P T T = ( ) (5.15) P T M 1 massless monopole monopole 2 nm a D (5.16) a D (u 0 ) = 0 (5.17) u 0 dual τ τ D a magnetic photon dual electron N = 2 U(1) electron electron 2 2 U(1) hypermultiplet U(1) vectormultiplet (3.30) b = 2 (5.18) τ D i π ln a D (5.19) u 0 a D a D c 0 (u u 0 ) ( c 0 ) (5.20) τ D = da da D (5.21) 38

40 a a(u) a 0 + i π a D ln a D a 0 + i π c 0(u u 0 ) ln(u u 0 ) (a 0 ) (5.22) u u 0 e 2πi (u u 0 ) a a D a D a D a a 2a D (5.23) ( ) 1 0 M 1 = 2 1 (5.24) M 1 u u 0 u 0 = 1 3 u = M 1 u = 1 Z 2 u = 1 u M 1 M 1 = M (5.25) (5.10) (5.24) M, M 1 M 1 ( ) M 1 = (T S)T 2 (T S) = (5.26) 2 3 A ( ) 1 1 A = T M 1 = 2 1 (5.27) 39

41 5.1: u- M 1 M 1 M 1 = AM 1 A 1 (5.28) M 1 M 1 q = (n m, n e ) (5.29) v = ( a D a ) (5.30) M v Mv (5.31) q qm 1 40

42 A v Av (5.32) q qa 1 u = 1 q = (1, 0) u = 1 ( ) ( ) qa = 1, 0 = (1, 1) (5.33) 2 1 massless dyon M q qm = q (5.34) M 1 q 1 = (1, 0) (5.35) q 1 M 1 = q 1 (5.36) M 1 q 1 = (1, 1) (5.37) dyon massless 41

43 6 6.1 ( ) 1 2 M = 0 ( 1 ) M 1 = 2 ( ) (6.1) M 1 = a a D Im (τ) > 0 (6.2) a, a D a = 2 2π dx x u 2 γ 2 x2 1 = π 2 u a D = 2π dx x u x2 1 dx x u x2 1 (6.3) (6.4) 42

44 6.2 2 a = π 2 a D = π 1 1 u 1 dx x u x 2 1 dx x u x2 1 u 2u 1 dx a π 1 x = 2u (6.6) 2 1 (6.5) a D x = uz 2u 1 dz z 1 a D = (6.7) π z 2 u 2 1/u u log 2u ln u a D i (6.8) π a a D u = 1 a D 2u 1 dz z 1 a D = π z 2 u 1 1 dz z 1 = i 2 π z u 1 2 (1 1 i(u 1) ) (6.9) u 2 1/u 1/u a u = 1 u = 1 a u = 1 a(u = 1) = da 2 du = 2π π 1 1 dx x + 1 = 4 π (6.10) dx (x + 1)(x 1)(x u) (6.11) a a = 4 (u 1) ln(u 1) (6.12) π 2π u = 1 43

45 7 F µν (self-dual equation) F µν = ɛµνρσ F ρσ (7.1) Seiberg-Witten [2] N = 1 D-term N = 1 N = trivial N = 4 running 44

46 N = 1 F instanton 2002 N.Nekrasov k F k [9] Okounkov Nekrasov [10] 2 45

47 46

48 [1] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, (1983), (second edition: 1992). [2] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nucl.Phys.B426:19-52,1994 (arxiv:hep-th/ ). [3] N. Seiberg and E. Witten, Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmetric QCD, Nucl.Phys.B431: ,1994 (arxiv: hepth/ ) [4] E.B.Bogomolny, The stability of classical solutions,sov.j.nucl.phys.24:449,1976. [5] M.K.Prasad and Charles M. Sommerfield, Exact Classical Solution for the t Hooft Monopole and the Julia-Zee Dyon, Phys.Rev.Lett.35: ,1975. [6] E. Witten and D. Olive, Supersymmetry algebras that include topological charges, Phys.Lett.B78:97,1978. [7] E. Witten, Dyons of Charge eθ 2π, Phys.Lett.B86: ,1979. [8] N. Seiberg, Phys.Lett. 206B (1988) 75. [9] N.A.Nekrasov, SEIBERG-WITTEN PREPOTENTIAL FROM INSTANTON COUNTING, Adv.Theor.Math.Phys.7: ,2004 (arxiv: hep-th/ ). [10] Nikita Nekrasov and Andrei Okounkov, SEIBERG-WITTEN THEORY AND RANDOM PARTITIONS, (arxiv hep-th/ ). [11] Hiraku Nakajima and Kota Yoshioka, INSTANTON COUNTING ON BLOWUP. 1., (arxiv: math.ag/ ). 47

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

N = , 4 Introduction 3 1 ADHM Construction Notation Yang-Mills Theory

N = , 4 Introduction 3 1 ADHM Construction Notation Yang-Mills Theory N = 2 2004 8 3, 4 Introduction 3 1 ADHM Construction 5 1.1 Notation..................................... 5 1.2 Yang-Mills Theory............................... 8 1.3 BPST Instanton................................

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( (Tokyo Institute of Technology) Seminar at Ehime University 2007.08.091 1 2 1.1..................... 2 2 ( ) 9 3 U(N C ), N F 11 4 1/2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23 1 1.1 GeV SU(3) SU(2) U(1): W

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T Yang-Mills 50 E-mail: kugo@yukawa.kyoto-u.ac.jp 2004 Yang-Mills 50 2004 Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge Theory O Raifeartaigh [1] I, II, III O Raifeartaigh

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

main.dvi

main.dvi Ver. 1.50 2001 ( ) 1 4 2 Effective Theory 5 2.1 Effective theory... 5 2.2 massless 2-flavor QCD... 5 2.3..................... 9 2.4 Standard model... 10 2.5... 11 2.6... 13 3 Supersymmetry 15 3.1 Supersymmetry...

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) : (Technocolor)...

( ) : (Technocolor)... ( ) 2007.5.14 1 3 1.1............................. 3 1.2 :........... 5 1.3........................ 7 1.4................. 8 2 11 2.1 (Technocolor)................ 11 2.2............................. 12

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

Confinement dual Meissener effect dual Meissener effect

Confinement dual Meissener effect dual Meissener effect BASED ON WORK WITH KENICHI KONISHI (UNIV. OF PISA) [0909.3781 TO APPEAR IN NPB] Confinement dual Meissener effect dual Meissener effect 1) Perturbed SU(N) Seiberg WiRen theory : 2) SU(N) with Flavors at

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T

Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. T Norisuke Sakai (Tokyo Institute of Technology) In collaboration with M. Eto, T. Fujimori, Y. Isozumi, T. Nagashima, M. Nitta, K. Ohashi, K. Ohta, Y. Tachikawa, D. Tong, M. Yamazaki, and Y. Yang 2008.3.21-26,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

N=1 N=1 QCD N=1 non-abelian QCD X 0

N=1 N=1 QCD N=1 non-abelian QCD X 0 2 945207 18 9 22 N=1 N=1 QCD N=1 non-abelian QCD X 0 1 3 2 7 2.1..................................... 7 2.2.................................. 8 2.3............ 10 2.4 moduli...............................

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0 9 O y O ( O ) O (O ) 3 y O O v t = t = 0 ( ) O t = 0 t r = t P (, y, ) r = + y + (t,, y, ) (t) y = 0 () ( )O O t (t ) y = 0 () (t) y = (t ) y = 0 (3) O O v O O v O O O y y O O v P(, y,, t) t (, y,, t )

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

SO(4, C) SL(2, C) SL(2, C) SL(2, C) positive chirality spinor : ψ a, negative chirality spinor : ψȧ. (1) SL(2,

SO(4, C) SL(2, C) SL(2, C) SL(2, C) positive chirality spinor : ψ a, negative chirality spinor : ψȧ. (1) SL(2, 1 2 1.1............................ 2 1.2.............................. 3 1.3................................. 8 1.4 h = 0.............................. 9 1.5 Cech............................... 10 1.6

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê .. 1 10-11 Nov., 2016 1 email:keiichi.r.ito@gmail.com, ito@kurims.kyoto-u.ac.jp ( ) 10-11 Nov., 2016 1 / 45 Clay Institute.1 Construction of 4D YM Field Theory (Jaffe, Witten) Jaffe, Balaban (1980).2 Solution

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information