SO(4, C) SL(2, C) SL(2, C) SL(2, C) positive chirality spinor : ψ a, negative chirality spinor : ψȧ. (1) SL(2,

Size: px
Start display at page:

Download "SO(4, C) SL(2, C) SL(2, C) SL(2, C) positive chirality spinor : ψ a, negative chirality spinor : ψȧ. (1) SL(2,"

Transcription

1 h = Cech h = +1/ h = N = 4 SYM hcs MHV MHV (disconnected prescription) ,,, MHV (connected prescription) i 1

2 SO(4, C) SL(2, C) SL(2, C) SL(2, C) positive chirality spinor : ψ a, negative chirality spinor : ψȧ. (1) SL(2, C) ɛ ψ a = ɛ ab ψ b, ψȧ = ɛȧḃ ψḃ. (2) ɛ 12 = ɛ 1 2 = ɛ 12 = ɛ 1 2 = 1 ɛ ab ɛ ab 4 (σ µ ) aḃ (σ µ ) aḃ = (1, iσ x, iσ y, iσ z ) (3) (σ µ )ḃa = (σ µ ) aḃ (σ µ )ȧa = ɛȧḃ (σµ )ḃb ɛ ba = (1, iσ x, iσ y, iσ z ) (4) ψ a χȧ 4 ( γ µ (σ µ ) aḃ ) =. (5) (σ µ )ȧb {γ µ, γ ν } = 2δ µν SO(4, C) Λ µν C T Λ = (1/4)Λ µν γ µν Λ µν SO(4)(= SO(4, R)) SU(2) SU(2) T Λ (T Λ ) = M 1 T Λ M, M = ( ɛ ɛ ). (6) ψ a χȧ 2

3 Λ 0m = Λ m0 m = x, y, z SO(3, 1) T ( ) (T Λ ) = M 1 ɛ T Λ M, M =. (7) ɛ ψ a χȧ Λ im = Λ mi m = x, z i = 0, y SO(2, 2) SL(2, R) SL(2, R) (T Λ ) = T Λ (8) ψ a χȧ 1: (+ + ++) (ψ a ) = (ψ ) a, (χȧ) = (χ )ȧ. (+ + + ) (ψ a ) = (ψ )ȧ, (χȧ) = (χ ) a. (+ + ) (ψ a ) = (ψ ) a, (χȧ) = (χ )ȧ. SO(3, 1) SO(3) S xy = 1 ( (σz ) a ) b (9) 2 ḃ (σ z )ȧ S yz S zx ψ, χ = ψ a χ a = ɛ ab ψ a χ b, [ ψ, χ] = ψȧ χȧ = ɛȧḃ ψȧ χḃ. (10) ɛ ab s ψ(x) = ζe ipx. (11) 3

4 p ψ ζ ζ ψ x e ipx ψ(p) 0 p 2 = 0 (12) (h = 0) ψ ζ ζ = 1 (h = ±1/2) s = 1/2 ψ a (x) = u a e ipx ψȧ(x) = vȧe ipx pȧa u a = 0, p aȧ vȧ = 0. (13) (13) z p 0 = p 3 = E pȧa = p µ σ µ ȧa = ( 2E ). (14) (13) (u 1, u 2 ) = (0, 1) (v 1, v 2) = (1, 0) ψ a h = 1/2 ψȧ h = +1/2 (h = ±1) s = 1 U(1) F µν F aȧb ḃ = F abɛȧḃ + F ȧḃɛ ab (15) F ab Fȧḃ F µν µ F µν = 0 [µ F νρ] = 0 F ab Fȧḃ pȧa F ab (p) = 0, p aȧ Fȧḃ (p) = 0. (16) z p (14) (16) F 1a = 0 F 2ȧ = 0 0 F 22 F 1 1 h = 1 h = +1 4

5 (h = ±3/2) ψµ a δψµ a = µ ɛ a ψµν a = 2 [µ ψν] a ψ c ab ψȧḃ c ψ c b ab γ- ψ ab 3 ψµν a : [(3, 1) (1, 3)] (2, 1) = (4, 1) (2, 1) (2, 3). (17) (σ µ ψ µν )ȧ = 0 (2, 2) (1, 2) = (2, 1) (2, 3) 0 (4, 1) ψ abc 3 [µ ψνρ] a = 0 ȧa ψ abc = 0. (18) z ψ 1ab = 0 0 ψ 222 h = 3/2 h = +3/2 (h = ±2) s = 2 R µνρσ 4 µ ν ρ σ F µν [(3, 1) (1, 3)] [(3, 1) (1, 3)] = (5, 1) (1, 5) (3, 3) (3, 1) (1, 3) (1, 1) (3, 3) (1, 1) (19) R [µνρ]σ = 0 (2, 2) (2, 2) = (3, 3) (3, 1) (1, 3) (1, 1) 0 (19) R µν = 0 (3, 3) (1, 1) 0 3 (5, 1) (1, 5) 4 R µνρσ (σ µ ) aȧ (σ ν ) b ḃ (σρ ) cċ (σ σ ) d d = ɛ ȧḃɛ ċ d R abcd + ɛ ab ɛ cd Rȧḃċ d (20) [λ R µν]ρσ = 0 R abcd Rȧḃċ d pȧa R abcd (p) = 0, p aȧ Rȧḃċ d (p) = 0. (21) z 0 R 2222 (p) R (p) h = 2 h = +2 5

6 h ȧa ψ ab c (x) = 0 (h 1/2), (22) aȧ ψȧḃ ċ (x) = 0 (h 1/2), (23) aȧ aȧ ψ(x) = 0 (h = 0). (24) ψ ab c (x) 2h = 2 h ψȧḃ ċ (x) 2h z p aȧ = λ a λȧ (25) λ, λ [ λ, λ] 0 (25) on-shell (12) p (12) (25) (25) (11) ζ ab c = λ a λ b λ c (h < 0), (26) ζȧḃ ċ = λȧ λḃ λċ (h > 0). (27) (25) p µ (λ, λ) η µν = diag( + ++) λ = λ η µν = diag( ++) λ = λ λ = λ tree (27) (26) ζ deg λ [ζ] deg λ[ζ] = 2h (28) deg X [F ] F X h = 0 ζ = (25) ζ 2h λ αλ, λ 1 α λ. (29) ζ F µν R µνρσ ɛ (28) 6

7 U(1) A µ (x) = ɛ µ e ipx Maxwell p µ ɛ µ = p a ḃ ɛaḃ = 0 (30) h = ±1 ɛ h λ λ ɛ aḃ +1 = µa λḃ µ, λ, ɛaḃ 1 = µḃλ a [ µ, λ] (31) µ µ 0 ɛ ±1 (28) µ µ µ µ ɛ +1 µ µ 2 µ, λ = 0 µ λ δµ = αµ + βλ α µ ɛ +1 β δɛ +1 p ɛ +1 µ ɛ µ ɛ µ ±1 ±1 (27) (26) F µν = p µ ɛ ν p ν ɛ ν F aȧb ḃ (p) = F µν(σ µ ) aȧ (σ ν ) b ḃ (p) = p [a {ȧ ɛ b] ḃ} + p {a [ȧ ɛ b} ḃ] (32) (25) (31) ɛ +1 p ɛ +1 λ 0 (32) F aȧb ḃ (p) = 1 λ, µ λ [aµ b] λȧ λḃ = 1 2 ɛ ab λȧ λḃ (33) Fȧḃ (p) = (1/2) λȧ λḃ h = +1 (27) µ h µν = g µν η µν ɛ aȧbḃ +2 = µa λȧµ b λḃ µ, λ, 2 ɛaȧbḃ 2 = µȧλ a µḃλ b [ µ, λ] 2 (34) µ µ 0 (28) 7

8 1.3 h < 0 (22) ψ ab c (x) 2h 1.2 p (11) ζ (26) ψ ab c (x) = λ a λ b λ c f(x). (35) λ a 0 (35) (26) f(x) λ a aȧ f(x) = 0. (36) g f(x) = g(λ a x aȧ ) δ f (λ,µ) (x) = δ 2 (λ a x aȧ + µȧ) (37) δ 4 α-plane 2 α-plane (λ, µ) α-plane (λ, µ) (αλ, αµ) (38) CP 3 projective twistor space twistor T (37) x (λ, µ) λ a = 0 twistor T CP 3 CP 3 λ a = 0 V 1 = {z λ 1 0}, V 2 = {z λ 2 0}. (39) V 1 V 2 C 3 V 1 V 2 V 12 α-plane δ (37) twistor space ϕ(λ, µ) x ψ ab c (x) = Ωλ a λ b λ c δ 2 (λ a x aȧ + µȧ)ϕ(λ, µ) (40) T Ω twistor space 3 z I = (λ a, µȧ) Ω = 1 4! ɛ IJKLz I dz J dz K dz L (41) T projective space (λ, µ) 4 3 8

9 (40) twistor deg z [ϕ(z)] = 2h 2 (42) (37) δ x twistor T x D x D x T P 1 λ 1 λ 2 0 D x (39) V i U i = V i D x. (43) U 12 = U 1 U 2 (40) x x D x ϕ(z) (40) Ω = λ, dλ d 2 µ µ δ ψ ab c (x) = λ, dλ λ a λ b λ c ρ x ϕ(z) (44) C λ, dλ D x ρ x ϕ(z) ϕ(z) D x ρ x ϕ(z) = ϕ(λ a, λ a x aȧ ). (45) λ a (44) U 12 C U h = 0 subsection h 1/2 h 0 (42) twistor h = 0 twistor space 2 ϕ(z) (24) φ(x) φ(x) = 1 ρ x ϕ(z) λdλ (46) 2πi C measure λ, dλ 2 ϕ(z) 2 0 P 1 well-defined 9

10 (46) φ(x) φ(x) x aȧ ρ x ϕ(z) x (45) aȧ φ(x) = 1 2πi x aȧ ϕ(λa, x aȧ λ a ) λdλ = 1 λ a 2πi ϕ(λa, µȧ) λdλ (47) µȧ b ḃ aȧφ(x) = 1 λ b λ a 2πi ϕ(λa, µȧ) λdλ (48) µḃ µȧ a b ȧ ḃ 0 φ(x) (24) ϕ(z) (46) φ(x) φ(x) ϕ(z) φ(x) ϕ(z) ϕ (z) = ϕ(z) + h 1 (z) h 2 (z). (49) h i (z) V i ϕ(z) ϕ (z) ϕ(z) twistor space Cech co-homology Ȟ1 (T, O(n)) 1.5 Cech X Cech cohomology 1. U = {U i } 2. {f i } 0 co-chain 0 co-chain C 0 (U) twistor n C 0 (U, O(n)) 3. U i U j {f ij } f ij = f ji 1 co-chain C 1 (U) 4. U i0 U ip {f i0 i p } p co-chain C p (U) 5. ρ i f U f U i U C 0 (U) C 1 (U) δ f ij = ρ i f j ρ j f i (50) 10

11 6. C p 1 (U) C p (U) δ f i jk = (p + 1)ρ [k f i j]. (51) 7. δ co-cycle co-boundary δ co-homology Cech co-homology Ȟ p (U) 8. cover U Ȟ p (U) U cohomology Ȟp (X) P 1 Cech cohomology z 1 z 2 z i 0 U i U = {U 1, U 2 } U i f i f 1 (z 1, z 2 ) = a k z1 n k z2, k f 2 (z 1, z 2 ) = b k z1z k 2 n k. (52) k=0 co-chain {f 1, f 2 } C 0 (U) co-cycle U 1 U 2 f 12 = f 1 f 2 = 0 (52) n 1 a k = b k = 0 Ȟ 0 (U, O(n)) = 0 n 0 z 1 z 2 n f 1 (z 1, z 2 ) = f 2 (z 1, z 2 ) = a k z1 n k z2. k (53) k=0 Ȟ 0 (U, O(n)) (a 0,, a n ) C n+1 Ȟ 1 U 1 U 2 f 12 (z 1, z 2 ) f 12 (z 1, z 2 ) = a k z1 n k z2. k (54) k= 2 co-chain 1 co-cycle (52) f 1 f 2 co-homology 0 n 1 Ȟ 1 = 0 n 2 f 12 (z 1, z 2 ) = n 1 k=1 k=0 a k z n+k 1 z k 2. (55) z 1 z 2 f 1 f 2 Ȟ 1 (a n+1,..., a 1 ) C 1 n n Ȟ 0 (P 1, O(n)) C C 2 C 3 Ȟ 1 (P 1, O(n)) C 3 C 2 C (56) Cech cohomology Ȟ 1 (X, O(n)) = H 1 (X, O(n)) (57) 11

12 1.6 h = +1/2 h = +1/2 twistor space Ȟ1 (T, O( 1)) ϕ(λ, µ) D x g(λ, x) g(λ, x) = ρ x ϕ(z) = ϕ(λ, xλ). (58) H 1 (D x, O( 1)) = 0 g(λ, x) = g 1 (λ, x) g 2 (λ, x) (59) g 1 U 1 λ 1 0 g 2 U 2 λ 2 0 g 1 (λ, x) = 1 λ, dλ 2πi C 1 λ, λ g(x, λ ), g 2 (λ, x) = 1 λ, dλ 2πi C 2 λ, λ g(x, λ ) (60) C 1 C 2 )+*-,/."0213*-4(5 "!$#%&(' 6 * *-4(5 1: C 1 C 2 C 1 C 2 λ C 1 C 2 g(λ, x) g (58) chain rule λ a aȧ g(x, λ) = λ a λ a ρ x ϕ(z) = 0. (61) µȧ λ a aȧ g 1 (x, λ) = λ a aȧ g 2 (x, λ) g 1 g 2 D x 0 λ λ x x ψȧ ψȧ(x) = λ a aȧ g 1 (x, λ). (62) Dirac 12

13 ψȧ (62) (60) ψȧ ψȧ(x) = λ a aȧ g 1 (λ, x) = 1 λ, dλ 2πi C 1 λ, λ λa aȧ g(x, λ ) = 1 λ, dλ 2πi C 1 λ, λ λ, λ ρ x f(λ, µ) µȧ = 1 λ, dλ ρ x 2πi f(λ, µ) (63) C µȧ λ = λ pole C 1 C 2 b ḃ ψ a(x) = 1 2πi λ b f(z) λ, dλ (64) µḃ µȧ ȧ ḃ 0 Dirac aȧψȧ = 0 h 1/2 (23) (42) ϕ(z) ψȧ ḃċ (x) = 1 2πi C ρ x ϕ(z) λ, dλ (65) µȧ µḃ µċ 1.7 h = +1 F ab = 0 GL(N) A aȧ F ab = 0 A [28] anti-self dual GL(N) A(x) D x trivial P T N holomorphic vector bundle E (λ, µ) α-plane v aȧ = λ a ηȧ λ a λ b ɛȧḃ α-plane z 13

14 α-plane ψ N λ a D aȧ ψ = 0. (66) N z P 1 P 1 x P 1 D x D x x α-plane x ψ α-plane D x N (39) V 1 λ 1 0 (λ 1, λ 2, µ 1, µ 2 ) = (0, 1, 0, 0) p α-plane xȧ2 = 0 p V 1 z α-plane z xȧa λ a + µȧ = 0 p z (xȧ1, xȧ2 ) = ( µȧ/λ 1, 0) p z p α-plane p p 0 p 0 v i (i = 1,..., N) z x v i ( ) v i (x) = P exp v i (67) x p z p 0 A V 2 (λ 1, λ 2, µ 1, µ 2 ) = (1, 0, 0, 0) q α-plane q ( ) w i (x) = P exp A w i (68) x q z q 0 w i (x) = M ij (x)v i (x) (69) ( ) P exp w i = M ij (x)v i (70) p 0 p z x q z q 0 A M ij (x) z x z M ij V 12 holomorphic transition matrix U(λ, µ) GL(N) vector bundle E 14

15 D x D x C N x α-plane α-plane x y D x D y x y α-plane W (λ, x) U(z) D x W (λ, x) = U(λ, xλ). (71) U degree 0 W λ degree 0 W chain rule λ a aȧ W = 0. (72) D x triviality U 12 W = W 1 W2 1 (72) W1 1 (λ a aȧ )W 1 = W2 1 (λ a aȧ )W 2 λ 2 = 0 regular λ 1 = 0 regular regular 1 λ A aȧ (x) W 1 1 (λ a aȧ )W 1 = λ a A aȧ (λ, x). (73) A λ a D aȧ = λ a aȧ + λ a A aȧ (x) (74) (73) λ a λ b F ab ɛȧḃ = [λa D aȧ, λ b D b ḃ ] = 0 (75) F ab = 0 A anti-selfdual vector bundle E 3 bector bundle F G H F G injective linear map A G H surjective linear map B F A G B H (76) BA = 0 vector bundle E E = KerB/ Im A (77) F = k O( 1) H = k O(+1) G 2k + N trivial bundle A k (2k + N) B (2k + N) k z A a z a B a z a dim Im A = k dim KerB = k + N E N vector bundle E ADS ADHM [27] [28] 15

16 1.8 (25) d 4 pδ(p 2 ) = d3 p E = λ, dλ d2 λ (78) 4 3 (78) (29) λ 1 = c c p off-shell p 1ȧ = c λȧ, p 2ȧ = λ 2 λȧ + ɛκȧ. (79) κȧ [ λ, κ] 0 ɛ mass-shell p µ 4 (ɛ, λ 2, λ 1, λ 2 ) δ(p 2 ) d 4 p = c 2 [ λ, κ]dɛdλ 2 d 2 λ, δ(p 2 ) = δ(ɛ) c[ λ, κ] (80) ɛ (78) (79) δ 2 (ξ a p aȧ ) = δ(p 2 )δ( ξ, λ )(λ/ξ) (81) ξ 0 (λ/ξ) δ( ξ, λ ) λ ξ well-defined (78) δ E 1 δ 3 (p 1 p 2 ) = δ( λ 1, λ 2 )(λ 2 /λ 1 )δ 2 ( λȧ1 (λ 2 /λ 1 ) λȧ2) (82) p aȧ i = λ a i λȧi i = 1, 2 δ( λ 1, λ 2 ) λ, dλ δ( λ, λ )f(λ) = f(λ ) (83) well-defined f(λ) λ 1 16

17 1.9 twistor ϕ(z) ψ(p) ψ(x) h 0 ψ ab c (x) λ a λ b λ c δ 2 (λx + µ) ϕ(z) ψ ab c (x) e ipx ψ ab c (p) ψ ab c (p) λ λ ψ ab c (p) = λ a λ b λ c δ(p 2 )φ(λ, λ) (84) (deg λ deg λ)[φ(λ, λ)] = 2h (85) twistor ϕ(z) ψ ab c (p) φ(λ, λ) (27) (44) λ (26) (65) λȧ µȧ (86) λ µ (29) (38) (86) f(x) f(p) deg x [f] + deg p [ f] = 1 (87) (85) (42) ϕ(z) δ δ(p 2 )F (p ; λ, µ) = d 4 xe ip x δ 2 (λ a x aȧ + µȧ) (88) p p λ (λ, λ ) massless δ(p 2 ) F (p ; λ, µ) x x aȧ = λ a yȧ + ζ a zȧ, d 4 x = λ, ζ 2 d 2 yd 2 z. (89) 17

18 ζ a λ a δ(p 2 )F (p ; λ, µ) = d 2 yd 2 z λ, ζ 2 exp(iλ a p aȧ yȧ + iζ a p aȧ zȧ)δ 2 ( λ, ζ zȧ µȧ) ( = d 2 y exp iλ a p aȧ yȧ + i ζ ap aȧ ) µȧ λ, ζ ( = δ 2 (λ a p aȧ ) exp i ζ ap aȧ ) µȧ λ, ζ = δ(p 2 )δ( λ, λ )(λ /λ)e i(λ /λ)[ λ,µ]. (90) (81) λ λ p on-shell λ /λ δ( λ, λ ) λ λ well-defined F (p ; λ, µ) F (p ; λ, µ) F (λ, λ ; λ, µ) = δ( λ, λ )(λ /λ)e i(λ /λ)[ λ,µ]. (91) helicity h twistor ψ ab c (p ) = ΩF (λ, λ ; λ, µ)λ a λ b λ c ϕ(λ, µ) (92) φ(λ, λ ) (84) φ(λ, λ ) φ(λ, λ ) = ΩF (λ, λ ; λ, µ)(λ /λ) 2h ϕ(λ, µ) = d 2 µe i[ λ,µ] ϕ(λ, µ). (93) φ(λ, λ) ϕ(λ, µ) λ µ F (p; λ, µ) ΩF (λ λ ; λ, µ)f (λ λ ; λ, µ) = δ( λ, λ )(λ /λ )δ 2 ( λ ȧ (λ /λ ) λ ȧ ) (94) (82) δ (93) ϕ(λ, µ) = λ, dλ d 2 λ F (λ, λ ; λ, µ)(λ /λ) 2h φ(λ, λ ) (95) twistor p aȧ i = λ a i λȧi ϕ i(z) i ϕ i (λ, µ) = F (λ i, λ i ; λ, µ)(λ i /λ) 2h i = (λ i /λ) 1 2h i δ( λ, λ i ) exp(i(λ i /λ)[µ, λ i ]) (96) 18

19 1.10 twistor conformal spinor conformal generator twistor conformal λ a λȧ J ab = i ( ) λ a 2 λ + λ b b, λ a Jȧḃ = i ( ) λȧ + λḃ (97) 2 λḃ λȧ p p a ḃ = λ a λḃ (98) λ λ mass dimension 1/2 conformal boost mass dimension P 1 K a ḃ = λ a λḃ dilatation D λ λ mass dimension 1/2 D = i ( λ a 2 λ + ) λȧ a + 2 (100) λȧ K P amplitude (120) O (99) deg λ [O] deg λ[o] = 0 (101) twistor λ = i, µȧ = iµ ȧ. (102) λȧ deg λ[o] = deg µ [O] (101) deg λ [O] + deg µ [O] = 0 (103) O (λ, µ) J ab = i ( ) λ a 2 λ + λ b b, λ a Jȧḃ = i ( ) µȧ 2 + µ ḃ, µḃ µȧ p aȧ = iλ a, K aȧ = iµȧ µȧ λ, D = i ( λ a a 2 λ ) a µȧ. (104) µȧ 4 (λ, µ) SL(4) twistor conformal 19

20 1.11 twistor Yang-Mills super twistor space N = 4 N = R- SU(4) R δf ab = ξ Iċ Dċa χ Ib, δχ Ia = F ab ξ I b ɛijkl D aḃφ JK ξ L ḃ, δφ IJ = ɛ IJKL ξ K a χ al + ξ [Iȧ χȧj] δχ Iȧ = Fȧḃ ξḃ I + Dȧb φ IJ ξ Jb, δfȧḃ = ξ Ic D cȧ χ I ḃ. (105) I, J,... R- (F ab, χ Ia, φ IJ, χȧi, F ȧḃ) on-shell (G, χ I, φ IJ, χ I, A) F ab = λ a λ b G, χ Ia = λ a χ I, φ IJ = φ IJ, χȧi = λȧχ I, F ȧḃ = λȧ λḃa (106) on-shell λ λ δg = ξ Iȧ λȧχ I, δχ I = ξ Ia λ a G ɛijkl ξ Kȧ λȧφ IJ, δφ IJ = ɛ IJKL ξ K a λ a χ L + ξ [Iȧ λȧχ J], δχ I = ξȧ I λȧa + ξ Ja λ a φ IJ, δa = ξ Ia λ a χ I. (107) R- 4 ψ I ϕ(λ, λ, ψ) = A + ψ I χ I + ψ I ψ J φ IJ + ɛ IJKL ψ I ψ J ψ K χ L + ɛ IJKL ψ I ψ J ψ K ψ L G. (108) ( ) δϕ(λ, λ, ψ) = ξ Ia λ a ψ + ξiȧ λȧψ I ϕ(λ, λ, ψ). (109) I ψ I R- η I (108) G A ϕ(λ, λ, η) = G + η I χ I + ɛ IJKL η I η J φ KL + ɛ IJKL η I η J η K χ L + ɛ IJKL η I η J η K η L A. (110) 20

21 ϕ(λ, λ, ψ) ϕ(λ, λ, η) ϕ(λ, λ, ψ) = d 4 ηe iψi η I ϕ(λ, λ, η). (111) deg ψ [ f(ψ)] + deg η [f(η)] = 1. (112) (87) dη η 1 δ δ(η) = η 1 ϕ(z, η) ( δϕ(λ, λ, η) = ξ Ia λ a η I + ξ ) Iȧ λȧ ϕ(λ, λ, η). (113) η I λ µ (deg λ + deg µ + deg ψ )[ϕ(λ, µ, ψ)] = 0, (114) (deg λ + deg µ deg η )[ϕ(λ, µ, η)] = 4. (115) ψ µ ψ (λ, µ, ψ) 0 λ αλ, µ αµ, ψ A αψ A. (116) super twistor space 4 (λ, µ) 4 ψ A (116) P 3 4 Q Ia = λ a ψ, I Qİ a = ψ I. (117) µȧ R- L I J = ψ I ψ 1 J 4 δi Jψ K ψ. (118) K PSU(4 4) h i (96) super twistor space ϕ i (λ, µ, ψ A ) = (ψ A ) 2 2h i (λ i /λ) 1 2h i δ( λ, λ i ) exp(i(λ i /λ)[µ, λ i ]) (119) (ψ A ) 2 2h i 4 ψ A 2 2h i h i 4C 2 2hi vector multiplet helicity 21

22 2 2.1 n tree 1 n color ordering color tr(t a1 T a2 T an ) CPT h h p i ɛ i A = A(p i, ɛ i ) λ i λ i A = A(λ i, λ i ) A(p i, ɛ i ) ɛ i i λ i λ i (28) deg λi [A] deg λi [A] = 2h i (120) Amplitude A(λ i, λ i ) twistor A(λ i, µ i ) = n ( i=1 d 2 λ ) i e i[µ i, λi ] A(λ i, λ i ) (121) (87) (120) deg λi [A] + deg µi [A] = 2 2h i (122) (λ i, µ i ) A 2 2h i amplitude A(z 1, z 2,..., z n ) twistor ϕ i (z i ) M = ( ) Ω i ϕ i (z i ) A(z 1, z 2,..., z n ) (123) i Ω i z i (41) SL(4) well defined (38) ϕ A (42) (122) η A η deg η [A(λ i, λ i, η i,a )] = 2 2h i. (124) 22

23 η A component field amplitude (120) (124) deg λi [A] deg λi [A] deg η [A] = 2 (125) amplitude A(λ i, µ i, ψi A ) deg λi [A] + deg µi [A] + deg ψi [A] = 0 (126) ψ(λ, µ, ψ) supert wistor space P 3 4 measure (41) Ω = ɛ abcd z a dz b dz c dz d dψ 1 dψ 2 dψ 3 dψ 4 (127) (116) well-defined M = ( ) Ω i ϕ i (z i, ψ i ) A(z i, ψ i ) (128) i Yang-Mills on-shell 3 p 1 p 2 p 3 (3, 1) 3 (2, 2) (2, 2) 3 0 = λ a 1( p iaȧ ) λȧ2 = λ 1, λ 3 [ λ 3, λ 2 ] (129) i=1 λ 1, λ 3 = 0 [ λ 3, λ 2 ] = 0 i j λ i, λ j = 0 λ i (i = 1, 2, 3) p [µ 1 p ν] 2 ɛȧḃ[ λ 1, λ 2 ]λ {a 1 λ b} 2 (130) (null-plane) [ λ 3, λ 2 ] = 0 i j [ λ i, λ j ] = I 3 = I I I 312, I ijk = tr(f µν (i) A (j) µ A (k) ν ) (131) 23

24 λȧ2µ a I 123 = (ɛ ab λ 1ȧ λ 1 ḃ ) 2 λ 2, µ 2 λḃ3µ b 3 λ 3, µ 3 = [ λ 1, λ 2 ][ λ 1, λ 3 ] µ 2, µ 3 λ 2, µ 2 λ 3, µ 3 (132) µ i µ 1 = µ 2 = µ 3 (132) µ 2, µ 3 0 µ i (132) 0 3 I I I 231 = [ λ 1, λ 2 ]([ λ 1, λ 3 ] λ 1, µ 1 µ 2, µ 3 [ λ 2, λ 3 ] λ 2, µ 2 µ 3, µ 1 ) λ 1, µ 1 λ 2, µ 2 λ 3, µ 3 = [ λ 1, λ 2 ][ λ 1, λ 3 ]( λ 1, µ 1 µ 2, µ 3 λ 1, µ 2 µ 1, µ 3 ) λ 1, µ 1 λ 2, µ 2 λ 3, µ 3 = [ λ 1, λ 2 ][ λ 1, λ 3 ] λ 1, µ 3 µ 2, µ 1 λ 1, µ 1 λ 2, µ 2 λ 3, µ 3 = [ λ 3, λ 2 ][ λ 3, λ 1 ] µ 1, µ 2 λ 1, µ 1 λ 2, µ 2 = I 312 (133) tree level gluon amplitude 1 F µν ± h = 1 A = F a1 b 1 (x 1 )F a2 b 2 (x 2 ) F an b n (x n ) (134) N = 1 {Q a, λ b } = F ab, [Q a, F bc ] = 0. (135) A = {Q a1, λ b1 (x 1 )F a2 b 2 (x 2 ) F an b n (x n )} (136) Q 0 = 0 Q =

25 h 1 = h 2 = +1 h 3 = 1 I ijk λȧ2µ a I 123 = (ɛ ab λ 1ȧ λ 1 ḃ ) 2 λ b 3 µḃ3 λ 2, µ 2 [ λ 3, µ 3 ] = [ λ 1, λ 2 ] [ λ 1, µ 3 ] λ 3, µ 2 [ λ 3, µ 3 ] λ 2, µ 2, (137) λḃ1µ b 1 I 231 = (ɛ ab λ 2ȧ λ 2 ḃ ) λa 3 µȧ3 [ λ 3, µ 3 ] λ 1, µ 1 = [ λ 1, λ 2 ] [ λ 2, µ 3 ] λ 3, µ 1 [ λ 3, µ 3 ] λ 1, µ 1, (138) λȧ1µ a 1 I 312 = (ɛȧḃ λ 3aλ 3b ) λ 1, µ 1 λḃ2µ b 2 λ 2, µ 2 = [ λ 1, λ 2 ] λ 3, µ 1 λ 3, µ 2 λ 1, µ 1 λ 2, µ 2 [ λ 1, λ 2 ] 0 λ i λ 3, µ 1 / λ 1, µ 1 λ 3 /λ 1 (139) I I 231 = [ λ 1, λ ( 2 ] [ λ 1, µ 3 ] λ 1λ 3 + [ λ 2, µ 3 ] λ ) 2λ 3 = [ λ 1, λ 2 ] λ 3λ 3 = I 312 (140) [ λ 3, µ 3 ] λ 1 λ 2 λ 1 λ 2 λ 1 λ 2 I I I 312 = 2I 312 λ 3 = λ 3 [ λ 3, λ 2 ] λ 1 λ 1 [ λ 3, λ 2 ] = λ 1 [ λ 1, λ 2 ] λ 1 [ λ 3, λ 2 ] = [ λ 1, λ 2 ] [ λ 3, λ (141) 2 ] 1 2 [ λ 1, λ 2 ] 3 I I I 312 = 2 [ λ 2, λ 3 ][ λ 3, λ 1 ] (142) 0 λ 1, λ 2 3 I( +) = 2 λ 2, λ 3 λ 3, λ 1 (143) x µ P 1 D x 4 D x (+, +, )

26 2: null plane λ D x (+, +, ) (+ + ) (+ + ) Yang-Mills ( ) S = d 4 x tr F ab G ab + g2 2 G2 ab (144) F ab F = da + A 2 G ab F ab G ab + + Yang-Mills G ab G ab = g 2 F ab S = 1 2gYM 2 d 4 x tr(f +2 ) = 1 4gYM 2 d 4 x[tr(f +2 + F 2 ) + tr(f +2 F 2 )] (145) F F (144) GdA GAA g 2 G 2 3 g (144) Yang-Mills 3: F -G ( + +) ( +) 26

27 G ab F ab G ab 1 GdA F ab = 0 A +1 ( + +) (144) GAA ( +) F -G GAA GG ( + +) g ( +) g 2 g 0 G g 1 G A ga g = 0 ( +) S = d 4 x tr(f ab G ab ) (146) A G ϕ A ϕ G (42) ϕ A 0 ϕ G 4 O O( 4) I int = Ω 3 ϕ A ϕ A ϕ G. (147) 0 well-defined (96) h i I int = Ω 3 ϕ h 1 ϕ h 2 ϕ h 3. (148) 0 h 1 + h 2 + h 3 = 1. (149) (147) h 1 = h 2 = +1 h 3 = 1 (96) M = 3 Ω 3 i=1 [ (λi /λ) 1 2h i δ( λ, λ i ) exp(i(λ i /λ)[µ, λ i ]) ] (150) Ω 3 = λ, dλ d 2 µ µ δ ( ) 3 A = λ, dλ (λ i /λ) 1 2h i δ( λ, λ i ) δ 2 ( (λ i /λ) λȧi ) (151) i i=1 27

28 λ 0 λ 2 = 1 ( 3 ) A = dλ 1 3 (λ 2 i ) 1 2h i δ(λ 1 i λ 1 λ 2 i ) δ 2 ( λ 2 i λȧi ) (152) i=1 λ 1 δ(λ 1 3 λ 1 λ 2 3) amplitude ( ) λ 2 1 2h1 ( ) A = 1 λ 2 1 2h2 2 3 (λ 2 λ 2 3 λ 3) 2 δ( λ 2 3, λ 1 )δ( λ 3, λ 2 )δ 2 ( λ 2 i λȧi ) (153) 3 i=1 δ 3 λ i δ 3i=1 λ a i λȧi = 0 δ δ 4 ( 3 i=1 λ a i λȧi ) (153) δ i=1 2 λȧi λ 2 i = λȧ3λ 2 3 (154) i=1 λ 2 1 λ2 2 λ 2 1 = [2, 3] [1, 2] λ2 3, λ 2 2 = [3, 1] [1, 2] λ2 3. (155) [1, 2]2 δ( 3, 1 )δ( 3, 2 ) = (λ 2 3) 2 δ(λ1 1[1, 2] + λ 1 3[3, 2])δ(λ 1 2[2, 1] + λ 1 3[3, 1]). (156) [1, 1] = [2, 2] = 0 [1, 2]2 3 3 δ( 3, 1 )δ( 3, 2 ) = (λ 2 3) δ( λ 1 2 i [i, 2])δ( λ 1 i [i, 1]). (157) i=1 i=1 δ argument δ( 3, 1 )δ( 3, 2 ) = [1, 2] 3 (λ 2 3) 2 δ2 ( λ 1 i λȧi ) (158) i=1 (153) (155) amplitude 3 A = [2, 3] 1 2h 1 [3, 1] 1 2h 2 [1, 2] 1 2h 3 δ 4 ( λ a i λȧi ) (159) i=1 h 1 = h 2 = +1 h 3 = 1 (142) 4 (146) (147) Cech cohomology ϕ A ϕ G (0, 1)- A G 28

29 H 1 Cech Ȟ 1 [4] appendix A(z, z) = ϕ A (z) i θ(z, z)dz i, G(z, z) = ϕ G (z) i θ(z, z)dz i. (160) A G H 1(CP 3, O) H 1(CP 3, O( 4)) (147) 3 I int = Ω 3 tr(a A G) (161) Ω 3 CP 3 holomorphic 3- (160) (147) I = Ω 3 tr[(da + A A) G] (162) δa = dλ A + [A, λ A ], δg = [G, λ A ] + dλ G + [A, λ G ]. (163) λ A λ G N = 4 SYM hcs Witten B-model D1-brane N = 4 Yang-Mills + + N = 4 holomorphic CS R- SU(4) ξ Ia ξȧ I F ab, χ Ia, φ IJ, χ Iȧ, Fȧḃ. (164) + ++ (F ab ) = Fȧḃ, (χia ) = χȧi, (φ IJ ) = 1 2 ɛijkl φ KL (165) ++ R- SL(4, R) ξ Ia ξȧ I (164) ξ ξ 29

30 {Q, Q} = P ξ I g 1/2 ξ I, ξ I g 1/2 ξ I. (166) g 0 (105) F ab Fȧḃ (166) Fȧḃ F ȧḃ, χ Iȧ g 1/2 χ Iȧ, φ IJ gφ IJ, χ I a g 3/2 χ I a, F ab g 2 F ab (167) F ab Fȧḃ F ab = G ab G ab F µν F µν, G ab g 2 G ab. (168) N = 4 G ab L = 1 g 2 tr ( F ab G ab G2 ab + ɛ IJKL D µ φ IJ D µ φ KL + ɛɛφφφφ +χ Ia D aȧ χȧi + χ Ia φ IJ χ J a ɛijkl χȧiφ JK χ Lȧ ) (169) (167) (168) g g 2 L = tr ( ) F ab G ab + ɛ IJKL D µ φ IJ D µ φ KL + χ Ia D aȧ χȧi + ɛ IJKL χȧiφ JK χ Lȧ ( ) 1 +g 2 tr 2 G2 ab + ɛɛφφφφ + χ Ia φ IJ χ J a (170) A G (144) massless on-shell (170) 0 g 0 L = tr ( ) F ab G ab + ɛ IJKL D µ φ IJ D µ φ KL + χ Ia D aȧ χȧi + ɛ IJKL χȧiφ JK χ Lȧ (171) 4 tree 0 3 (171) GAA φ IJ (p) = 1, χ Ia (p) = λ a, χȧi(p) = λȧ, A aȧ (p) = µ a λȧ λ, µ. (172) 30

31 R- tr( φ[a, φ]) : (p µ 1 p µ 2)A µ (p 3 ) = λ a µ a λ 1 λȧ1 3ȧ λ 3, µ [23][31] (1 2) =, [12] tr(χ[a, χ]) : λ a µ a λ 3ȧ 1 λȧ2 = [23]2 λ 3, µ [12], tr(χ[φ, χ]) : λ a 1λ 2a = [12] (173) (148) (159) A G χ I χ I φ IJ ϕ A ϕ G ϕ I ϕ I ϕ IJ I int = Ω 3 (ϕ G ϕ A ϕ A + ɛ IJKL ϕ IJ ϕ KL ϕ A + ϕ I ϕ I ϕ A + ϕ I ϕ J ϕ IJ ) (174) ϕ(z, ψ) = ϕ A (z) + ϕ I (z)ψ I + ϕ IJ (z)ψ I ψ J + ɛ IJKL ϕ I (z)ψ J ψ K ψ L + ϕ G (z)ψ 1 ψ 2 ψ 3 ψ 4 (175) I int = Ω 3 dψ 1 dψ 2 dψ 3 dψ 4 ϕ(z, ψ) 3 (176) H 1 Ȟ1 ϕ(z, ψ) (0, 1) A A(Z, Z, ψ) = dz I( A I + ψ A χ IA ψa ψ B φ IAB + 1 3! ɛ ABCDψ A ψ B ψ C χ D I + 1 4! ɛ ABCDψ A ψ B ψ C ψ D G I ) (177) (0, 1)- H 1 Ȟ1 ϕ(z, ψ) A I int = Ω 3 dψ 1 dψ 2 dψ 3 dψ 4 A A A (178) H 1 holomorphic-chern-simons I = 1 Ω 3 dψ 1 dψ 2 dψ 3 dψ 4 tr (A A + 2 ) 2 3 A A A. (179) truncated N = 4 holomorphic CS in super twistor space (180) 31

32 2.5 MHV n tree n +1 1 helicity helicity 2 n 2 n 2 + n n 2 4 n n gluon n n 2 tree level ±n ±(n 2) 4 0 [1, 2] n = 4 gluon scattering gluon 1 helicity 4 ±(n 4) maximally helicity violating (MHV) n 2 + MHV n 2 + MHV MHV googly amplitude MHV amplitude [3] A(λ i, λ i ) = δ 4 ( i λ a i λḃi) λ r, λ s 4 ni=1 λ i, λ i+1 r s n = 3 (143) δ λ MHV MHV λ λ A(λ i, λ i ) = δ 4 ( i λ a i λḃi) [ λ r, λ s ] 4 ni=1 [ λ i, λ i+1 ] n = 3 (142) (120) N = 4 MHV amplitude scattering amplitude MHV amplitude η I A(λ i, λ i, η i ) = δ 4 ( i λ a i λḃi)δ 8 ( i η i,a λ a 1 i ) ni=1 λ i, λ i+1 (181) (182) (183) MHV ψ I A(λ i, λ i, ψ i ) = δ 4 ( i λ a i λḃi)δ 8 ( i ψi A 1 λȧi ) ni=1 [ λ i, λ i+1 ] (184) 1 Peskin Prob.17.3(b) 32

33 η ψ 3 (184) ψ δ 8 ( i ψi A λȧi ) 8 ψ 3 A(λ i, λ i, ψ i ) = δ 4 ( i λ a i λḃi) h 1 +h 2 +h 3 =1 (ψ 1 λ 1 ) 2+2h 1 (ψ 2 λ 2 ) 2+2h 2 (ψ 3 λ 3 ) 2+2h 3 ni=1 [ λ i, λ i+1 ] (185) ψ (108) λ i A(λ i, λ i, ψ i ) = δ 4 ( i λ a i λḃi) h 1 +h 2 +h 3 =1 (ψ 1 ) 2+2h 1 (ψ 2 ) 2+2h 2 (ψ 3 ) 2+2h 3 [ λ 2, λ 3 ] 2 2h 1 [ λ 3, λ 1 ] 2 2h 2 [ λ 1, λ 2 ] 2 2h 3 ni=1 [ λ i, λ i+1 ] (186) (142) (173) MHV amplitude (183) twistor space amplitude A(λ i, µ i, ψ i ) MHV amplitude δ λ A(λ i, λ i, η i,a ) = δ 4 ( i λ a i λḃi)δ 8 ( i η i,a λ a i )F (λ i ) (187) F λ F (λ i ) = 1 ni=1 λ i, λ i+1 (188) (187) (λ, µ, ψ) A(λ i, µ i, ψi A ) = d 2n λe i i [µ i, λi ] d 4n ηe i i η i,aψi A δ 4 ( λ a λḃi)δ i 8 ( η i,a λ a i )F (λ i ) i i = = d 2n λ d 4n η d 4 x d 4 x exp ( i i ( λȧi (µ i,ȧ + x aȧ λ a i ) d 8 θ exp i η i,a (ψi A + θa A λ a i ) F (λ i ) i [ ] d 8 θ δ 2 (µ i,ȧ + x aȧ λ a i )δ 4 (ψi A + θa A λ a i ) F (λ i ) (189) i δ n (λ i, µ i, ψi A ) µ i,ȧ = x aȧ λ a, ψi A = θa A λ a. (190) 33 ) )

34 super twistor space holomorphic P 1 ϕ i (λ i, µ i, ψi A ) M µ ψ M = d 4 x d 8 θ i [ ] λ i, dλ i ϕ i (λ i, x aȧ λ a i, θa A λ a i ) F (λ i ) (191) twistor f(λ) = 1 ɛ abcd z a dz b dz c dz d = λ, dλ d 2 µ λ 1 = 1 (191) P 1 λ λ µ λ µ P 1 (σ 1, σ 2 ) λ λ a = u a pσ p u a p (190) σ twistor σ λ a (σ i ) = u a pσ p i, µȧ(σ i ) = x pȧσ p i, ψ A (σ i ) = θ A p σ p i. (192) x pȧ = x aȧ u a p, θ A p = θ A a u a p. (193) F (λ i ) = (det u) n 1 i σ i σ i+1, d 4 xd 8 θ = (det u) 2 d 4 x d 8 θ, λ, dλ = (det u)σ dσ. (194) M M = (det u) 2 d 4 x d 8 θ i [ ] σ i dσ i ϕ i (λ a (σ i ), µȧ(σ i ), ψ A 1 (σ i )) (195) i σ i σ i+1 (195) u x θ λ µ (det u) 2 d d 4 x d 8 θ 4 ud 4 x d 8 θ = vol GL(2) µ λ 1/ vol GL(2) P 1 SL(2) (λ, µ, ψ) GL(2) u a p u FP-determinant (det u) 2 (196) ϕ i (λ a (σ i ), µȧ(σ i ), ψ A (σ i )) ϕ i (σ i ) (195) d 4 ud 4 x d 8 θ [ ] σi dσ i M = ϕ i (σ i ) (197) vol GL(2) σ i σ i+1 i 34 (196)

35 2.6 moduli D1-brane A i D1-brane D5-brane J A D1-brane J J D1-brane D1-brane I D1 = dzα( + A)β (199) P 1 α β 1-5 string 1/(σ i σ j ) 1 1/(σ i σ j ) i σ i σ i+1 contraction contraction multi-trace amplitude conformal gravity 2.7 MHV (disconnected prescription) truncated N = 4 super twistor holomorphic CS truncate N = 4 IIB D3- brane super twistor holomorphic CS super twistor B-model B-model Calabi-Yau N = 4 CP 3 4 Calabi-Yau B-model U(N) N D5-brane D(5 8)-brane [4] D5-brane (0, 1) A (0, 1)- BRS ψ D5- (z, z, ψ) ψ ψ = A Witten B-model truncate full N = 4 MHV (197) Witten twistor space holomorphic D1-brane [4] D-instanton D5-brane A amplitude moduli A 1(Z(σ 1 ))A 2 (Z(σ 2 )) A n (Z(σ n )) J(σ 1 )J(σ 2 ) J(σ n ) (198) D C instanton connected instanton disconnected instanton twistor 35

36 [12] MHV amplitude p 1 λ λ (25) p on-shell [12] p p 2 λ a = p aȧ ηȧ (200) ηȧ η p on-shell (200) (25) λ a [ λ, η] 2.8,,,+ + (a) 4:,,,+ I (a) = λ 2, λ q 3 1 λ 3, λ 4 3 λ 1, λ 2 λ q, λ 1 q 2 λ 4, λ q λ q, λ 3 (201) λ q λ q = qη = (p 1 + p 2 )η = λ 1 [ λ 1, η] λ 2 [ λ 2, η] = λ 3 [ λ 3, η] + λ 4 [ λ 4, η] (202) 36

37 I (a) I (a) = φ3 1 φ 2 φ 3 φ 4 1 q 2 λ 1λ 2 λ 3 λ 4 (203) q 2 = (p 1 + p 2 ) 2 = 2p 1 p 2 = λ 1, λ 2 [ λ 1, λ 2 ] I (a) = φ3 1 φ 2 φ 3 φ 4 1 q 2 λ 3, λ 4 [ λ 1, λ 2 ] (204) I (b) I (a) 2 4 I (a) I (b) φ 3 ( 1 1 λ3, λ 4 I (a) + I (b) = φ 2 φ 3 φ 4 q 2 [ λ 1, λ 2 ] + λ ) 3, λ 2 [ λ 1, λ 4 ] = φ3 1 1 λ 3, λ 4 [ λ 4, λ 1 ] + λ 3, λ 2 [ λ 2, λ 1 ] φ 2 φ 3 φ 4 q 2 [ λ 1, λ 2 ][ λ 1, λ 4 ] = φ i=1 λ 3, λ i [ λ i, λ 1 ] φ 2 φ 3 φ 4 q 2 [ λ 1, λ 2 ][ λ 1, λ 4 ] (205) 4i=1 λ i λ i 0 amplitude 0 amplitude [16] MHV vertex googly amplitude vertex [13] 2.9 amplitude η 3 amplitude 5: 3 r s t I Γ = λ r, λ s 4 1 λ, λ t 4 λi, λ i+1 P 2 λj, λ j+1 = 1 g(λ) (206) P 2 37

38 MHV λ a = P aḃηḃ 1/P 2 g(λ) λ a 0 (200) λ g(λ) λ amplitude η I Γ η 1 I Γ = λ, dλ [ λ, d λ] g(λ) (207) (P λ λ) 2 0 meromorphic 2-form CP 2 CP 2 2-cycle λ [ λ, d λ] (P λ λ) = 1 2 (P λη) d λ ( ) [ λ, η] λ (P λ λ) (208) λ (207) I Γ = λ, dλ g(λ) (P λη) d λ ( ) [ λ, η] λ (P λ λ) 2-cycle λ λ 2-cycle P timelike P λ λ 0 timelike P I Γ = λ, dλ g(λ) ( (P λη) d λ λ + ) ( ) [ λ, η] (210) λ (P λ λ) λ λ 0 z (1/z) δ(z) pole δ P λ λ 0 / λ + / λ λ = λ 2-cycle 2-cycle λ λ / λ + / λ / λ (209) I Γ = λ, dλ [ λ, η] (P λ λ) d λ λ 38 g(λ) (P λη) (211)

39 dλ 1 λ ζ, λ = 2πδ( ζ, λ ) (212) I Γ = λ, dλ [ λ, η] δ(p λη)g(λ) + (213) (P λ λ) g(λ) pole Γ 0 λ, dλ δ( ζ, λ )B(λ) = B(ζ) (214) I Γ = [ λ, η] 1 P λ, g(p η) = g(p η) (215) P η P 2 (206) 2.10 twistor space holomorphic CS [4] A A λ 1 = λ 1 = 1 G = 1 (2π) δ(λ 2 λ 2 )δ(µ 1 µ 1 )δ(µ 2 µ 2 ) (216) G = 1 (2π) 2 δ(λ 2 λ 2 )δ(µ 1 µ 1 1 ) µ 2 µ 2 (217) δ 4 (ψ A ψ A ) 3 f = 0 G line (µ 1, µ 2 ) = const λ 2 (λ 2, µ 2 ) = const µ 1 line λ 2 µ 1 (217) δ line 1/(µ 2 µ 2 ) 39

40 G line line pole line µȧ = x aȧ λ a, µ ȧ = x aȧ λ a. (218) (217) δ λ 2 λ a = λ a dλ 2 G = δ(µ 1 µ 1 1 ) µ 2 = δ(y1 1 λ 2 y ) µ 2 y 1 2 λ 2 y 2 2 (219) y = x x λ 2 dλ 2 dλ 2 G = 1 1 y 1 1 y 1 2 (y 2 1 /y 1 1 ) y = y aḃy a ḃ (220) exp(i[µ, λ i ]) (190) exp(ixp ix P ) y = x x G(P ) = d 4 y y 2 eiyp (221) P y curve moduli y d 4 y/y 2 pole G(P ) = tdt λ, dλ [ λ, d λ]e iyp (222) pole y 2 = 0 y = tλ λ SL(2) y = tλ λ t λ λ scaling weight 1 t 0 (207) 1 G(P ) = λ, dλ [ λ, d λ] (223) (P λ λ) MHV (connected prescription) Witten 1 MHV amplitude MHV [4] M = moduli n i=1 [ ] σi dσ i ρ C ϕ i (σ i ) σ i σ i+1 40 (224)

41 i = 1,..., n n ρ C curve λ a (σ), µȧ(σ), ψ A (σ). (225) (225) 3 σ = (σ 1, σ 2 ) d P 1 d super twistor P 3 4 d = 1 MHV amplitude moduli (225) σ d + 1 (225) P 1 SL(2) 3 moduli parameter d λ a (σ) = P a (σ) = Pk a u k (σ), k=0 d µȧ(σ) = Qȧ(σ) = Qȧku k (σ), k=0 d ψ A (σ i ) = R A (σ) = Rk A u k (σ). (226) k=0 Pk a Qȧk RA k d = 1 ua p x pȧ θ p A d + 1 u k (σ) (k = 0,..., k) P 1 d u k (σ) = (σ 1 ) k (σ 2 ) d k u k (224) measure d 2(d+1) P d 2(d+1) Qd 4(d+1) R d amplitude Rk A n ψ 4(d + 1) h i ψ 2 2h i n (1 h i ) = 2(d + 1) (227) i=1 d = 1 MHV bosonic δ (119) n δ d 2d+2 Qȧk exp 2d + 2 δ 2d n δ moduli d 2d+2 P d n σ 4 4 δ 41

42 h i = ±1 h i = 1 d p 1 q p + q = n, q = d + 1. (228) 1. Witten [4] amplitude A(λ i, µ i ) 0 n (λ i, µ i ) q 1 curce (p, q) MHV [4] curve 0 F (λ i, µ i ) F (λ i, / λ i )A(λ, λ) = 0 (229) (p, 2) MHV p (p, q) = (2, 3), (3, 3) (3, 3) 2. [10, 11] (p, q) = (2, q) MHVamplitude (224) amplitude moduli A(λ, µ) A(λ, λ) moduli (p, q) = (2, 3) [10] [11] q 3. witten [15] (224) (p, q) amplitude p q MHV (224) MHV (224) [10, 11] MHV + 1 p = 2 q = 1 (224) q = 0 0 small d = 0 λ a (σ) = P a, µȧ(σ) = Qȧ, ψ A (σ) = R A, (230) σ (224) R ( ) 1 3 σ i dσ i M = Ω 3 ϕ 1 (z)ϕ 2 (z)ϕ 3 (z). (231) vol SL(2) σ i σ i+1 i=1 42

43 σ (147) 2.12 Yang-Mills MHV amplitude d = 1 curve MHV amplitude d = n 3 curve MHV amplitude (λ, λ) amplitude (λ, µ) d = 1 [4] moduli A(λ, λ) A(λ, µ) (232) MHV amplitude λ amplitude curve moduli moduli MHV amplitude moduli A(λ, λ) (233) moduli (p, q) = (2, 3) [10] [11] q amplitude MHV amplitude [15] Parity (224) (119) (λ i, λ i, h i ) amplitude A(λ i, λ i, h i ) (224) u k moduli u k q u k h = index I u k k I moduli moduli u k (σ i ) = δ k,i, k, i I. (234) σ i σ i curve u k q 1 q u k Pk a σ k (k I ) P a (σ k ) Qȧk Rk A R A (σ) ϕ i (i I ) 4 R A k 43

44 (119) R (224) A(λ i, λ d 2q P d 2q ( ) Q 1 2hi σi dσ i, h i ) = i λi δ( P (σ i ), λ i ) exp(i(λ i /P (σ i ))[Q(σ i ), λ i ]) vol GL(2) i n σ i σ i+1 P (σ i ) (235) σ i σ i dσ i δ( P (σ i ), λ i ) = d 2 σ i δ 2 (P (σ i ) λ i ) (236) σ i λ i rescale λ i αλ i σ i α 1/(q 1) σ i q > 1 λ(σ i )/λ i 1 (235) A(λ i, λ i, h i ) = d 2q P d 2q Q vol GL(2) i n [ d 2 σ i σ i σ i+1 δ 2 (P (σ i ) λ i ) exp(i[q(σ i ), λ i ]) ] (237) + P Q measure (234) Q Q d 2d+2 Q exp(i[q(σ i ), λ i ]) (238) i n 2q u k (σ i ) λȧi = 0. (239) i λȧi i n k q (239) p Witten p 1 P [15] 2 λȧi = P ȧ(σ i ) k i(σ k σ i ) (240) P p p 1 P ȧ(σ) = P ȧk ũk(σ) (241) + p λ(σ) ũ k ũ k (σ i ) = δ k,i, k, i I +. (242) 2 P [4] T 44

45 (239) (240) f(σ i ) Q (238) d 2q Q i exp(i[q(σ i ), λ i ]) = f(σ i ) d 2p P δ ( λȧi 2 i n P ȧ(σ i ) k i(σ k σ i ) f(σ i ) 2q λ i (243) d λ = d 2q Q exp(i[µ(σ i ), λ i ]) δ 2 (µȧ(σ i )) = 1 (244) i p i q (243) ) (243) ( 2p P d λ = f(σ i ) d P ȧ(σ ) δ 2 i ) λȧi = f(σ i ) ( ) 2 1 i I + k i(σ k σ i ) i p k i(σ k σ i ) (245) (244) (245) f(σ i ) f(σ i ) = k i(σ k σ i ) 2 (246) i I + 1 (243) (237) A(λ i, λ i, h i ) = d 2q 2p P d P vol GL(2) i n i n [ d 2 σ i σ i σ i+1 ] [ δ 2 (λ i P (σ i ))δ 2 ( λȧi 1 i I + k i(σ k σ i ) 2 P ȧ(σ ) i ) ] (247) k i(σ k σ i ) σ i I σ i (σ k σ i ) 1/(q 1), σ i I+ σ i, k i P P, P P (σ k σ i ) 1/(q 1). (248) j I,k j A(λ i, λ i, h i ) = d 2q 2p P d P [ d 2 σ ] i 1 vol GL(2) i σ i σ i+1 l k(σ l σ k ) 2 ( [ δ 2 λ i P (σ ) i) δ 2 ( λȧi P ȧ(σ i ) ) ] i I + M i ( [ P ȧ(σ ) δ 2 (λ i P (σ i ))δ 2 i ) ] λȧi (249) i I M i 45

46 I + I λ λ (240) (239) P σ 1 q σ i 1 pole holomorphic differential 3 p 1 P P ȧ σ dσ (σ) = ni=1 P ȧ(σ) (250) (σ i σ) P ȧ (σ) 0 0 q 1 u 0 i u(σ i ) Res σ i P ȧ (σ) = 0 (251) (239) λ i = Res P σi (239) (240) 2.13 amplitude [17] MHV vertex line pole [17] connected instanton instanton line pole amplitude pole degree 2 curve curve C 2 : z A = β A 0 + β A 1 σ + β A 2 σ 2 (252) β A 0 0, β A 2 0. (253) βk A σ SL(2, R) P [4] P 46

47 curve Z 4 = 0 curve SL(2, R) β0 4 = β2 4 = 0 β 1 4 = 1 (253) Z A (σ = 0) = β0 A, Z A (σ = ) = β2 A, (up to rescaling) (254) Z 4 = 0 σ = 0 σ = C 0 : Z A = β A 0 σ 1 + β A 1, C : Z A = β A 1 + β A 2 σ. (255) C 0 σ = 0 curve C σ = curve β1 A βa 0 β A 2 6: β1 A, n A 0 = βa 0, n A β0 3 2 = βa 2. (256) β2 3 β0 3 = β2 3 τ β A k β A 1 = (β 1 1, β 2 1, β 3 1, 1 β 1 1, β 2 1, β 3 1, β 4 1 ), (257) β A 0 = τ(n 1 0, n 2 0, 1, 0 n 1 0, n 2 0, n 3 0, n 4 0 ), (258) β A 2 = τ(n 1 2, n 2 2, 1, 0 n 1 2, n 2 2, n 3 2, n 4 2 ). (259) 47

48 J dβk A δ(β 4 0/β )δ(β0)δ(β )δ(β2) 4 = τ 3 dτ dβ1 A k,a A =4 A 3,4 dn A 0 dn A 2. (260) curve ω(σ 1,, σ n ) = n i=1 dσ i σ i σ i+1 (261) curve τ 0 σ 1,, σ m σ m+1,, σ n σ i τ 0 Z A = β1 A σ i {1,2,...,m} = σ i /τ, σ i {m+1,...,n} = τ/ σ i. (262) up to rescaling z A i {1,...,m} = τ 2 n A 0 σ 1 i + β A 1 + n A 2 σ i, z A i {m+1,...,n} = n A 0 σ i + β A 1 + τ 2 n A 2 σ 1 i (263) τ 0 C 0 C (262) (261) dσ i {1,...,m 1} d σ i =, σ i σ i+1 σ i σ i+1 (264) dσ m d σ m =, σ m σ m+1 σ m τ 2 / σ m+1 (265) dσ {i m+1,...,n 1} σ i σ i+1 = d σ i σ i σ m+1 σ i+1, (266) σ i dσ n = τ 2 σ n σ 1 d σ n σ 1 σ n 2 τ 2 σ n. (267) ( m 1 ω(σ 1,..., σ n ) = τ 2 i=1 ) n 1 d σ i d σm d σ i d σ n σ i σ i+1 σ 1 σ m i=m+1 σ i σ i+1 σ m+1 σ n = τ 2 ω (0, σ 1,..., σ m )ω (0, σ m+1,..., σ n ) (268) (260) τ τ = 0 disconnected prescription [1] Parke, Taylor, PLB157(1985)81 48

49 [2] Grisaru, Pendelton, NPB124(1977)81 [3] Parke, Taylor, PRL56(1986)2459 [4] E. Witten, Perturbative Gauge Theory As A String Theory In Twistor Space, hep-th/ [5] N, Berkovits, An Alternative String Theory in Twistor Space for N=4 Super-Yang-Mills, hep-th/ [6] N. Berkovits, L. Motl, Cubic Twistorial String Field Theory, hep-th/ , JHEP 0404 (2004) 056. [7] A. D. Popov, C. Saemann, On Supertwistors, the Penrose-Ward Transform and N=4 super Yang-Mills Theory, hep-th/ [8] N. Berkovits, E. Witten, Conformal Supergravity in Twistor-String Theory, hep-th/ [9] O. Lechtenfeld, A. D. Popov, Supertwistors and Cubic String Field Theory for Open N=2 Strings, hep-th/ [10] R. Roiban, M. Spradlin, A. Volovich, A Googly Amplitude from the B-model in Twistor Space, hep-th/ , JHEP 0404 (2004) 012. [11] R. Roiban, A. Volovich, All Googly Amplitudes from the B-model in Twistor Space, hep-th/ [12] F. Cachazo, P. Svrcek, E. Witten, MHV Vertices And Tree Amplitudes In Gauge Theory, hep-th/ [13] C.-J. Zhu, The Googly Amplitudes in Gauge Theory, hep-th/ , JHEP 0404 (2004)

50 [14] R. Roiban, M. Spradlin, A. Volovich, On the Tree-Level S-Matrix of Yang-Mills Theory, hep-th/ [15] E. Witten, Parity Invariance For Strings In Twistor Space, hep-th/ [16] G. Georgiou, V. V. Khoze, Tree Amplitudes in Gauge Theory as Scalar MHV Diagrams, hep-th/ , JHEP 0405:070, [17] S. Gukov, L. Motl, A. Neitzke, Equivalence of twistor prescriptions for super Yang-Mills, hep-th/ [18] S. Giombi, R. Ricci, D. Robles-Llana, D. Trancanelli, A Note on Twistor Gravity Amplitudes, hep-th/ [19] J.-B. Wu, C.-J. Zhu, MHV Vertices and Scattering Amplitudes in Gauge Theory, hep-th/ [20] I. Bena, Z. Bern, D. A. Kosower, Twistor-Space Recursive Formulation of Gauge-Theory Amplitudes, hep-th/ [21] J.-B. Wu, C.-J. Zhu, MHV Vertices and Fermionic Scattering Amplitudes in Gauge Theory with Quarks and Gluinos, hep-th/ [22] F. Cachazo, P. Svrcek, E. Witten, Twistor Space Structure Of One-Loop Amplitudes In Gauge Theory, hep-th/ [23] A. Neitzke, C. Vafa, N=2 strings and the twistorial Calabi-Yau, hep-th/ [24] N. Nekrasov, H. Ooguri, C. Vafa, S-duality and Topological Strings, hep-th/

51 [25] M. Aganagic, C. Vafa, Mirror Symmetry and Supermanifolds, hep-th/ [26] S. P. Kumar, G. Policastro, Strings in Twistor Superspace and Mirror Symmetry, hep-th/ [27], ADHM/Nahm, ( ) 1. [28] R.S.Ward, R.O.Wells,Jr, Twistor Geometry and Field Theory, Cambridge University Press. [29] F. Hadrovich, Twistor Primer, [30] W. Siegel, N=2 (4) string theory is self-dual N=4 Yang-Mills theory, Phys.Rev.D 46(1992)R3235. [31] W. Siegel, Self-Dual N=8 Supergravity as Closed N=2(4) Strings, Phys.Rev. D47 (1993) 2504, hep-th/ [32] Ruth Britto, Freddy Cachazo, Bo Feng, New Recursion Relations for Tree Amplitudes of Gluons, hep-th/ [33] Ruth Britto, Freddy Cachazo, Bo Feng, Edward Witten, Direct Proof Of Tree-Level Recursion Relation In Yang-Mills Theory, hep-th/ [34] Freddy Cachazo, Peter Svrcek, Lectures on Twistor Strings and Perturbative Yang- Mills Theory, hep-th/

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) 1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1) X α α 1 : I X α 1 (s) = α(1 s) ( )α 1 1.1 X p X Ω(p)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information