main.dvi

Size: px
Start display at page:

Download "main.dvi"

Transcription

1 Ver ( )

2 1 4 2 Effective Theory Effective theory massless 2-flavor QCD Standard model Supersymmetry Supersymmetry Superspace Chiral superfield Inflationary Vacua Slow-roll inflation Supersymmetric inflation Supergravity corrections Quantum fluctuations Dynamical inflation Inflation Dilaton Higher Dimensions Effective theory Cosmological Constant Adjustment mechanism

3 6.4 Changing gravity Traceless gravity Quantum theory form fields Extra dimensions Kaluza-Klein reduction Brane world Spacetime inflation Quintessence

4 1 20 ( ) framework standard model standard model Standard model effective theory 4

5 2 Effective Theory effective theory ( 2.6 ) 2.1 Effective theory effective theory effective theory partition function : Z[J] = Dϕ e i(s[ϕ] +J ϕ). (2.1) ϕ source J N Z[J] ϕ χ : Z[J] = Dχ e is eff [χ,j]. (2.2) ϕ χ action S eff effective theory integrating out massless 2-flavor QCD effective theory massless 2-flavor QCD 5

6 ϕ gauge (gluon) 2-flavor up quark down quark QCD massless 2-flavor QCD pion effective theory massless QCD dimensional transmutation Gauge-invariant hadron mass massive integrate out massless pion symmetry symmetry massless QCD symmetry (2.3) SU(2) L SU(2) R U(1) B. SU(2) F quark chiral symmetry baryon number symmetry pion SU(2) L SU(2) R SU(2) F flavor symmetry 3 π a (a =1, 2, 3) χ SU(2) L SU(2) R SO(4) SU(2) F SO(3) SO(3) 3 chiral symmetry massless symmetry massive mass mass matrix : ( (ū d) m u d ). (2.4) m constant chiral symmetry ( dynamical ) 6

7 m symmetry m symmetry m symmetry massless symmetry pion action symmetry SO(4) pion SO(3) 3 SO(4) SO(4) 4 ϕ i (i =1,, 4) SO(4)-invariant constraint : ϕ 2 i = Λ 2. (2.5) SO(4) symmetry Λ QCD dynamical scale dimensional transmutation QCD scale Λ µ : Λ µe 8π 2 bg 2 (µ). (2.6) b β g running gauge coupling ϕ i 4 invariant Lagrangian : L eff = V (ϕ 2 i ) µϕ i µ ϕ i +. (2.7) effective Lagrangian ϕ 2 i =Λ 2 π a : L eff = 1 µ π a µ π a +. (2.8) π2 b Λ 2 (2.5) constraint ϕ 4 π a : π a ϕ a 1 + ϕ2 b 4Λ 2. (2.9) ϕ 2 b 3 (2.7) V ϕ2 i Λ2 dynamics 7

8 exact effective theory [ ] ϕ 2 i =Λ 2 [ ] π a SO(3) 3 SO(4) symmetry nonlinear SO(4)-invariant action SO(4) 4 linear ϕ i linear invariant action SO(4) symmetry SO(4) symmetry ϕ 2 i =Λ2 Lagrangian 3 nonlinear SO(4)-invariant action effective theory QCD strong dynamics pion pion interaction π a Lagrangian action massless massless 8

9 massless pole singular singular pion nonsingular Lagrangian implicit nontrivial gauge theory effective theory QCD nontrivial effective theory effective theory (effective) 2.3 partition function exact effective theory nontrivial picture exact chiral Lagrangian chiral perturbation theory Λ QCD Λ cutoff Cutoff regularization cutoff Λ integrate out 9

10 Λ cutoff effective theory effective theory higher-dimensional term derivative expansion chiral perturbation theory ( ) higher-dimensional term effective theory exact 2.4 Standard model standard model Standard model effective theory standard model higher-dimensional term effective theory standard model standard model effective theory standard Einstein chiral perturbation theory standard model 10

11 derivative expansion effective theory background effective theory ( ) effective theory framework framework standard model 2.5 QED Yang-Mills Einstein motivation effective theory Weinberg-Salam model weak boson massive 4-Fermi Weinberg-Salam model fermion 4-Fermi higher-dimensional term 4-Fermi higher-dimensional term Weinberg-Salam model higher-dimensional term Weinberg-Salam model 11

12 weak boson 4-Fermi higher-dimensional term asymptotic freedom (Weinberg-Salam model asymptotically free ) 4-Fermi 1 1 gauge boson Higgs 1 derivative expansion gauge Higgs 12

13 2 : 2 asymptotically free [ ] Effective theory? [ ] effective theory relevant operator, irrelevant operator relevant operator dominant operator effective theory 2.6 effective theory standard model 13

14 Effective theory standard model field content coupling consistency unique configuration space ( ) effective theory background configuration background configuration effective theory ( 2.1 ) 14

15 3 Supersymmetry supersymmetric supersymmetric effective theory ( 3.7 ) 3.1 Supersymmetry Supersymmetry supersymmetry 2 Hamiltonian H = ω(a a + b b) (3.1) a b symmetry a b b a Q : Q = ω(a b + b a). (3.2) convention ω [H, Q] =0 (3.3) Q symmetry a b bosonic fermionic Q bosonic symmetry bosonic fermionic Q fermionic {Q, Q} =2H (3.4) fermionic symmetry supersymmetry 4 fermionic Q Q Hamiltonian 4 P µ {Q α,q β } = 2Γ µ αβp µ (3.5) 15

16 Γ µ αβ α, β =1, 2, 3, 4 µ Q 4 Hamiltonian Q H Q 2 H supersymmetry Q Hamiltonian supersymmetry supercharge 3.2 Superspace supersymmetry superspace supersymmetry P µ ( ) a µ {x µ } x µ = x µ +a µ ϕ(x µ ) ϕ (x µ ) ϕ(x µ ) ϕ (x µ )=ϕ(x µ ). (3.6) action ϕ Lagrangian : S = d 4 x L(ϕ(x µ )). (3.7) supersymmetry Supersymmetry [P µ,p ν ]=0 Q 4 {Q α,q β } =0 16

17 P µ {x µ } P µ =0 superspace Q α Grassmann ξ α superspace {θ α } θ α = θ α + ξ α Superspace superfield Φ(θ α ) Φ(θ α ) Φ (θ α )=Φ(θ α ). (3.8) supersymmetric Lagrangian L = d 4 θ F(Φ(θ α )) (3.9) action superspace dθ 1 f(θ 1 )=f 1 ; f(θ 1 )=f 0 + θ 1 f 1 (3.10) Berezin 3.3 Chiral superfield superfield Φ(θ α ) 4 Grassmann supercharge 4 θ α 2 θ (2 ) θ θ superfield Φ(θ, θ ) θ supersymmetry Φ(θ, θ ) chiral superfield Φ(θ) Grassmann odd θ 2 θθθ =0 Φ(θ) Φ(θ) =φ + θψ + θ 2 F. (3.11) 17

18 φ = Φ(0) Φ(θ) complex field φ complex scalar field ψ 2 chiral fermion F complex scalar field φ ψ φ = Φ(0) Φ 1 2 θ 1 F 2 2 chiral superfield Φ(θ) supersymmetric Lagrangian 2 d 2 θd 2 θ K(Φ, Φ ) (Kähler potential ) Lagrangian : L K = d 2 θd 2 θ K(Φ, Φ ). (3.12) Chiral superfield θ Φ W (Φ) (superpotential ) d 2 θ : L W = d 2 θw(φ) + h.c. (3.13) Lagrangian Lagrangian Kähler potential K(Φ, Φ )=ΦΦ (3.14) superpotential W (Φ) 3 W (Φ) = Λ 2 Φ+ 1 2 mφ λφ3. (3.15) potential Berezin fermion ψ =0 Φ =φ+θ 2 F : L K = FF, L W = F W(φ) φ +h.c. (3.16) superpotential W (Φ) θ Berezin W (φ) kinetic term F 2 F ( kinetic term ) F : V = W(φ) φ 2 = Λ 2 + mφ + λφ 2 2. (3.17) 18

19 superpotential supersymmetry φ 4 supersymmetric interaction fermion interaction Supersymmetry φ V supersymmetric supersymmetry φ ( V ) supersymmetry φ V m = λ =0 Λ 2 0 V > 0 supersymmetry 3.4 Supersymmetric Lagrangian supersymmetry interaction massless massless chiral symmetry Supersymmetry fermion interaction fermion supersymmetry complex scalar field phase rotation φ exp(iζ)φ m 2 φ 2 supersymmetry chiral superfield superpotential Φ Φ d 2 θ supersymmetric standard model Higgs ( ) supersymmetry ( ) R supersymmetry R phase rotation Φ superfield Φ component φ ψ scalar fermion 19

20 phase chiral superfield φ ψ θ : Φ(θ) Φ (θ) =e iqζ Φ(e iζ θ). (3.18) R (U(1) R ) R R θ superpotential : W (Φ (θ)) = e 2iζ W (Φ(e iζ θ)). (3.19) superpotential R supersymmetry Φ R charge q =2 W (Φ) = Λ 2 Φ Φ 2 Φ 3 R symmetry superpotential 3.5 Supersymmetry symmetry supersymmetry supersymmetry supercharge linear fermion boson supersymmetry ( ) Supercharge H = Q 2 Q gauge constraint Q constraint gauge supersymmetry Gauge symmetry supersymmetry superpotential W (Φ) = Λ 2 Φ Φ linear constant positive supersymmetry interaction ( inflation ) 20

21 Φ chiral superfield X(θ) Y (θ) : W (Φ,X,Y) = Φ(Λ 2 X 2 )+MXY. (3.20) Λ M 1 constant Φ superpotential φ x y : V = Λ 2 x Mx 2 + 2φx My 2. (3.21) X(0) = x Y (0) = y φ Λ 2 x 2 2 y Mx 2 x V supersymmetry 3.6 supersymmetry supersymmetry supersymmetry Planck scale supersymmetry effective theory cutoff Planck scale supersymmetry Planck scale physics supersymmetry effective theory supersymmetry Planck scale physics supersymmetry dimensional transmutation dynamical scale NonSUSY QCD quark chiral symmetry supersymmetry 21

22 SU(2) doublet 4 4 chiral superfield Q α i (θ) α =1, 2 gauge gauge theory (Supersymmetric gauge theory gauge theory supersymmetric matter chiral superfield ) QCD dynamical scale condensation gaugeinvariant Gauge-invariant Φ ij Q α i Q β j ɛ αβ SU(2) ɛ αβ i j gauge-invariant 6 Q i chiral superfield 4 4 SU(4) chiral symmetry SO(6) 6 Φ ij condensation SU(4) SO(6) chiral symmetry condensation ( doublet 4 doublet 2 6 gauge theory global anomaly 4 condense 4 ) [ ] Gauge-invariant Φ ij [ ] Gauge theory gauge invariant operator Gauge-dependent gauge order parameter gauge-invariant Φ ij chiral Lagrangian massless supersymmetric QCD Φ ij pion gauge- 22

23 invariant effective Lagrangian symmetry supersymmetric QCD asymptotically free dynamical scale condensation condense Φ ij Φ ij chiral symmetry SO(6) 6 gauge interaction dynamics condense SO(6) symmetry chiral Lagrangian QCD pion Supersymmetric supersymmetry effective theory superpotential gauge interaction dynamics 6 Φ ij SO(6) condense superpotential Φ ij 6 Φ Φ a (a =1,, 5) gauge singlet chiral superfield Z Z a 6 a Φ a a 1 5 superpotential W (Q α i,za )=Z a Φ a superpotential Z a (chiral superfield Z a scalar field Z a (0) ) Φ a Φ a =0 6 Φ, Φ a dynamical scale condense superpotential Φ dynamical scale condense superpotential supersymmetric gauge theory Φ =Λ 2 dynamical scale [ ] Φ condence [ ] gauge SU(2) doublet 4 Q i (θ) (i =1,, 4) superpotential supersymmetric gauge theory dynamics condensation QCD chiral symmetry breaking 23

24 condensation gauge-invariant (Q i Q j ) order parameter Doublet 4 flavor symmetry SU(4) SO(6). (3.22) Gauge-invariant (Q i Q j ) flavor symmetry (Q i Q j ) (Φ, Φ a ); a =1,, 5. (3.23) (Φ, Φ a ) condence SO(6) symmetry symmetry SO(6)-invariant : Φ 2 +Φ 2 a =Λ 4. (3.24) 6 dynamical scale Λ 2 (3.24) condence (Q i Q j ) ɛ ijkl (Q i Q j )(Q k Q l ) (Φ, Φ a ) condensation (Q i Q j ) condense superpotential chiral superfield Q i superpotential massless supersymmetric QCD superpotential W = Z a Φ a. (3.25) superpotential supersymmetric gauge theory superpotential Z a (0) V = Φ a 2 +. (3.26) Supersymmetry Φ a (3.24) : Φ =Λ 2. (3.27) 24

25 gauge theory supersymmetry dynamics Planck scale Gauge theory dynamics ( inflation ) superpotential W (Φ α i,z a,z)=z a Φ a + λzφ (3.28) superpotential λzφ Φ symmetry superpotential λ Φ a Φ ( )condense Φ Λ 2 condence Q i W (Z) =λλ 2 Z supersymmetry effective effective theory dynamical supersymmetry breaking supersymmetry V = W(φ) φ 2 (3.29) 3.7 effective theory supersymmetry effective theory Supersymmetry 25

26 supersymmetry configuration space ( ) supersymmetry Supersymmetry standard model Higgs supersymmetry standard model inflaton inflation supersymmetric physics inflationary vacua supersymmetry gauge symmetry ψ 3 Gauge symmetry( 3 ) 1 26

27 2 QED quark lepton strong interaction week interaction 3 gauge symmetry deep inelastic scattering gauge symmetry J/ψ ( anomaly cancellation ) 4 standard model ( effective theory standard model effective theory ) gauge symmetry supersymmetry ( 3 ) supersymmetry supersymmetry gauge gauge supersymmetry 1 supergravity Supergravity QED standard model standard model supersymmetry supersymmetric 2 minimal (MSSM) quark lepton dark matter strong interacton weak interacton inflation dynamics Dark matter R Inflation inflaton supersymmetry supersymmetry dynamics framework 3 dynamical supersymmetry breaking effective theory dynamical effective theory dynamical breaking supersymmetry ( supersymmetric inflation ) 27

28 ( ) Higgs supersymmetry( inflation) ( 3 Higgs supersymmetry standard model ) supersymmetry inflaton Higgs supersymmetry 3 standard model 4 supersymmetry supersymmetry supersymmetry ( 3.1 ) 28

29 4 Inflationary Vacua supersymmetry ( 4.8 ) 4.1 Slow-roll inflation Supersymmetry inflation inflaton ϕ GeV (reduced Planck scale) 1 effective theory cutoff cutoff scale V (ϕ) V (ϕ) < 1 (4.1) reduced Planck scale inflation( ) slow-roll inflation inflation supersymmetry (ϕ >0,λ>0): V (ϕ) = λϕ n. (4.2) n effective theory ( ) ϕ n : ϕ > n. (4.3) reduced Planck scale n 29

30 effective theory V inflation effective theory 0 ϕ n V 1 λ 1 (λ 1) effective theory ϕ cutoff scale cutoff scale effective theory V ( ) effective theory n 1 ϕ large-field type inflation model building 1 field ϕ 1 small-field type inflation n =0 V constant : V (ϕ) = λ. (4.4) ϕ small field λ effective theory effective theory slow-roll inflation 4.2 Supersymmetric inflation small-field type supersymmetry φ chiral superfield v 2 superpotential : W = v 2 φ. (4.5) φ (Kähler potential effective theory 30

31 ) v 4 constant : V v 4. (4.6) supersymmetry ( ) inflation inflation Friedmann phase Slow-roll inflation φ v 2 φ φ n : W = v 2 φ φ n. (4.7) W φ V v 2 nφ n 1 2 (4.8) φ ( ) φ χ : W = φ(v 2 χ n ), (4.9) V v 2 χ n 2 + nφχ n 1 2. (4.10) v 2 φ χ n v 2 condense (4.5 ) inflation supersymmetry 31

32 4.3 Supergravity corrections superpotntial rigid supersymmetry inflation supergravity supergravity : { ( ) } V = e K 2 1 K F 2 3 W 2. (4.11) φ φ F superpotential : F = W φ + K W. (4.12) φ K Kähler potential dθ 4 kinetic term tree-level φ 2 effective theory : K = φ 2 +. (4.13) Supergravity negative 3 W 2 Rigid supersymmetry Hamiltonian Q 2 V ( Hamiltonian ) negative supersymmetry positive cosmological constant 3 W 2 supersymmetry supersymmetry effective supersymmetry gravity effective theory 32

33 supergravity φ superpotential n =5 : W = v 2 φ λ 5 φ5. (4.14) φ 5 5 Kähler potential φ 2 φ 4 : K = φ 2 + κ 4 φ 4 +. (4.15) reduced Planck scale 1 cutoff effective theory φ 4 cutoff scale κ 1 supergravity φ slow-roll inflation : ( V v 2 λ ) 2 4 ϕ4 κ 2 v4 ϕ 2. (4.16) ϕ chiral superfield φ real : ϕ 2Reφ. (4.17) Kähler potential (4.16) 2 ϕ 2 v 4 inflation κ κ Kähler potential reduced Planck scale Planck scale physics effective inflation dynamics cutoff 4.4 Quantum fluctuations slow-roll parameter ɛ η slow-roll condition ɛ 1 ( ) V 2, η V 2 V V, (4.18) 33

34 slow-roll parameter 1 ɛ, η < 1, (4.19) slow-roll condition 1 slow-roll inflation inflation inflation inflation Inflation inflaton inflation inflation inflation ( ) 2.7K 10 5 K 10 5 K slow-roll inflation inflaton 34

35 slow-roll inflation : V 1 4 /ɛ GeV. (4.20) horizon ϕ v 10 2 κe 30κ (4.21) index spectral index : n s 1 6ɛ + 2η 1 2κ. (4.22) n s 1 n s 1 slow-roll parameter κ 0.1 n s 1 slow-roll parameter ɛ slow-roll inflation 1 (4.20) V inflation energy scale GUT scale effective theory Planck scale inflation inflation sector picture 4.5 inflation : W = Λ 2 Z(λ λ φ 2 ) (4.23) v 2 Z(1 gφ 2 ). (4.24) 35

36 Z φ chiral superfield λ, λ g coupling Λ 2 ( ) reduced Planck scale 1 Λ 2 1 v 2 coupling superpotential Kähler potential : K = Z 2 + φ 2 + k 1 Z 2 φ 2 k 2 4 Z 4 +. (4.25) Z φ mixing term 4 4 k 1 k 2 1 coupling superpotential Kähler potential supergravity : V = e K (K AB F A F B 3 W 2 ). (4.26) F superpotential : F A W φ A + K φ A W. (4.27) (4.26) K AB Kähler potential 2 2 K, (4.28) φ A φ B field 1 supergravity W W : W φ A = W = 0 = V φ A = V = 0. (4.29) F gravity ridid supersymmetry F V supergravity F supersymmetry order parameter rigid supersymmetry 36

37 (4.24) superpotential superpotential : W Z = v2 (1 gφ 2 ), (4.30) W = 2v 2 gzφ. (4.31) φ Z φ condense Z superpotential : Z = 0, (4.32) φ = ± 1. g (4.33) superpotential Kähler potential supergravity : V v 4 1 gφ (1 k 1 )v 4 φ 2 + k 2 v 4 Z 2 (4.34) v 4 κ 2 v4 ϕ 2. (4.35) κ 2g + k 1 1, (4.36) ϕ 2Reφ. (4.37) Z Z inflation (hybrid inflation) Z φ inflation v 4 ϕ 2 Kähler potential coupling coupling 1 1 ϕ inflaton slow-roll inflation supersymmetry 37

38 4.6 Dynamical inflation supersymmetric inflaton v 2 effective theory Einstein gravity inflation effective theory cutoff inflation inflation dynamical inflation supersymmetry supersymmetry breaking inflation inflation small-field type : ϕ ( ) ( 4 2 ) 38

39 big bang v 4 1 dimensional transmutation [ ] Supersymmetric inflation model superpartner [ ] supersymmetry inflation inflaton : 5 ( 5 1 ) inflation inflation 2 big bang ( 5 3 ) supersymmetry inflaton inflation scale GUT scale 4 supersymmetry weak scale superpartner supersymmetry inflaton inflatino (inflaton superpartner) inflation inflation 39

40 4.7 Inflation supersymmetric inflation dynamical inflation Slow-roll inflation inflaton ϕ ϕ cosmological constant inflation inflation Hubble parameter H : ṙ = Hr. (4.38) Hubble radius 1 1 = Hr H, (4.39) r H = H 1. (4.40) 1 r H Einstein Hubble parameter Einstein : H 2 = V = v4 3 3, (4.41) H = v2. 3 (4.42) inflation Hubble radius 1/v 2 v inflation inverse inflation ϕ inflation 40

41 inflationary phase Einstein singularity Planck scale Einstein gravity t E 1. (4.43) Planck Planck energy inflaton inflaton : E 1 2 ( ϕ)2 + V (ϕ). (4.44) ϕ E Planck energy inflation V E energy scale chaotic ϕ slow-roll inflation ϕ inflation primary inflation GUT scale inflation Planck scale inflation primary inflation inflation primordial inflation primary inflation large-field inflation Planck scale field inflation primary inflation primordial inflaton primordial inflation primordial inflation ( ) inflation supersymmetric inflation [D.H. Lyth and A. Riotto, arxiv:hep-ph/ ] 41

42 4.8 Dilaton dimensional transmutation coupling gauge coupling variable coupling gauge coupling dilaton Φ chiral superfield dilaton Φ gauge field kinetic term coupling ( real part) gauge coupling 1 : Φ = 1 g 2. (4.45) e 8π2 Φ = e 8π 2 g 2 (4.46) dilaton dilaton dilaton : 6 42

43 dilaton gauge coupling free interaction interaction runaway type free Free consistency effective theory dilaton toy model dilaton moduli field 6 1 effective theory runaway type effective theory( 6 2 ) gauge coupling interaction 7 43

44 chaotic dilaton dynamical inflation dilaton sector 7 Φ dilaton ϕ inflaton inflaton 7 1 dilaton inflaton dynamical scale runaway type coupling dynamical scale inflaton dilaton gauge coupling dynamical scale gauge coupling ( 7 2 ) inflaton chaotic initial condition dilaton ( ) ( geometric classical patch ) inflaton dilaton Free theory free 7 2 inflation chaotic initial condition fluctuation ( ) dilaton coupling superpotential ( ) dynamical inflation supersymmmetry inflation (inflationary vacuum selection) chaotic initial condition inflation effective theory dilaton gauge coupling 44

45 moduli ( ) ( ) moduli dynamical inflation Gauge theory ( ) 4 asymptotic freedom 5 asymptotically free CFT inflationary dynamics dynamical inflation inflation 5 inflation 4 dynamical inflation 4 inflation inflationary 4 supersymmetry N Supersymmetry 4 supersymmmetry (N =1) N =2 4 supersymmetry dynamical scale Supersymmetry N 1 SUSY [ ] effective theory SUSY model? [ ] MSSM MSSM running coupling 45

46 flavor ( 4.1 ) 46

47 5 Higher Dimensions ( 5.3 ) 5.1 effective theory framework effective theory vacuum selection supersymmetric inflation inflationary vacuum dynamical inflation gauge coupling dilaton moduli 3 Minkowski 3 4 Minkowski MODERN KALUZA-KLEIN THEORIES Nordström On the Posibility of Unification of the Electromagnetism and Gravitation ( interaction ) scalar potential Minkowski ( ) 5 5 electromagnetic theory 5 Abstract It is shown that a unified treatment of the electromagnetic and gravitational fields is possible if one views the four-dimensional space time as a surface in a five-dimensional world. subspace 4 brane world Brane world 4 picture Nordström 47

48 Kaluza-Klein Einstein gravity Kaluza-Klein 5.2 ( Newton ) crossover (string theory) string ( point theory ) conformal field theory picture Hilbert string picture worldsheet perturbation M Theory : type IIA string M theory 10D N=2 11D SUGRA. S 1 48

49 11 supergravity supersymmetry maximal S 1 10 N =2 supersymmetry Kaluza-Klein reduction : ( ) g MN A M. φ A N 11 metric 10 metric g MN A M φ (10D N = 2 supergravity) effective theory type IIA string evidence ( ) coupling dilaton coupling supergravity paralell 11 string picture M theory type IIA M theory M theory S 1 Type IIA string dilaton strong coupling string/m theory( ) effective theory standard model standard model GUT model standard model 11 supergravity full M theory 11 supergravity unique fundamental unique standard model standard model 49

50 effective theory standard model full ( ) unique Hamiltonian observable type IIA,B (II) heterotic SO(32),E 8 E 8 (H) type I (I) M theory (M) : 8 9 II M 10 N =2 supersymmetry (supercharge 32 ) I H 50

51 N =1 supersymmetry (supercharge 16 ) 8 supersymmetry Supersymmetry heterotic M theory M theory 9 2 orbifold S 1 /Z 2 Z 2 S orbifold R 10 S 1 /Z 2 S 1 /Z 2 (Z 2 ) (bulk) : 10 effective theory bulk 11 supergravity supersymmetry 10 N =2 Z 2 (Z 2 ) supersymmetry 10 N =1 10 N = 1 supergravity field content anomalous anomaly cancellation field content string twisted sector string perturbation effective theory anomaly cancellation 51

52 E 8 E 8 E 8 10 E 8 E 8 heterotic string M theory/s 1 type IIA string M theory/(s 1 /Z 2 ) E 8 E 8 heterotic string effective theory (duality) heterotic M theory heterotic string Heterotic M theory S 1 /Z 2 R boundary brane world picture heterotic string 10 effective 11 picture effective theory Brane world effective theory brane Nordström heterotic M theory toy model realistic effective theory brane world 5.3 Effective theory effective theory α (gauge ) i : ϕ i α( x, t) ϕ i α, x(t). (5.1) gauge 0 1 gauge gauge gauge nontrivial

53 R 3 nontrivial ϕ i α( x, t) i α x content (ϕ i α, x (t)) field content field content brane world effective theory brane world cosmological constant ( 5.1 ) 53

54 6 Cosmological Constant naturalness ( 6.5 ) 6.1 Effective theory framework naturalness cosmological constant supersymmetry supersymmetry weak scale superpartner weak scale effective theory supersymmetry Einstein : G µν = T µν = Λg µν. (6.1) Einstein : G µν = R µν 1 2 g µνr (6.2) stress-energy tensor T µν Bianchi identity cosmological constant Λ background geometry background (6.1) traceless part trace part 2 : G µν 1 4 g µνg =0, G = R = 4Λ. (6.3) traceless part cosmological constant trace part cosmological constant background 54

55 background 0 naive effective theory weak scale contribution : Λ m W 4. (6.4) effective theory framework effective theory framework cosmological constant background Effective theory cutoff background nontrivial Poincaré invariance background effective theory framework flat background effective theory background effective theory framework effective theory effective theory picture 6.2 Cosmological constant Weinberg [S. Weinberg, Rev. Mod. Phys. 61 (1989) 1] : 55

56 supersymmetry, supergravity, superstrings; anthoropic considerations; adjustment mechanisms; changing gravity; quantum cosmology. supersymmetry etc. SUSY effective theory anthropic consideration anthropic principle ( ) Anthropic principle correlation function anthropic principle Cosmological constant cosmological constant negative positive inflation ( ) cosmological constant cosmological constant logical ( 6.9 ) quantum cosmology cosmological constant adjustment mechanism changing gravity effective theory 56

57 6.3 Adjustment mechanism effective theory adjustment mechanism Adjustment mechanism Cosmological constant background ϕ : S ϕ = d 4 x ( g U(ϕ)R + 1 ) 2 µϕ µ ϕ V (ϕ). (6.5) V (ϕ) U(ϕ) : U (ϕ)r = V (ϕ). (6.6) background ϕ : µ ϕ =0. (6.7) U (ϕ) 0, V (ϕ) 0 (6.8) ϕ R (adjustment) backgound Minkowski : g µν η µν. (6.9) cosmological constant V fine tuning V (ϕ) statement U(ϕ) metric φ Weyl 1 V field redefinition statement 57

58 standard model action contribute : S = S ϕ + S standard. (6.10) Einstein Einstein background trace part : U(ϕ)R =4Λ. (6.11) ϕ R 0 : R 0. (6.12) (Λ fine tune ) U(ϕ) : U(ϕ). (6.13) U(ϕ) background value Planck scale interaction decouple decouple Λ background flat 6.4 Changing gravity effective theory changing gravity Changing gravity : 1. traceless gravity, 2. 3-form fields, 3. extra dimensions. ( ) 58

59 6.4.1 Traceless gravity traceless gravity ( ) Einstein Einstein cosmological constant static cosmological constant static cosmological constant motivation (Einstein ) Einstein Einstein traceless part : G µν 1 4 g µνg = T µν 1 4 g µνt. (6.14) Einstein cosmological constant trace part traceless part traceless gravity trace part Einstein Einstein gravity Einstein gravity gauge theory redundant G µν, T µν D µ G µν = D µ T µν =0 (6.15) traceless gravity D µ : ν G = ν T. (6.16) G = T + const. (6.17) Einstein trace part Einstein cosmological constant traceless gravity 59

60 traceless gravity Einstein gravity cosmological constant Einstein cosmological constant Lagrangian traceless gravity traceless gravity flat Einstein cosmological constant flat Hamilton : q =, (6.18) ṗ = (6.19) ( q,p ) 1 ( ) : q(t) =q(q 0,p 0,t), (6.20) p(t) =p(q 0,p 0,t). (6.21) q 0,p 0 (6.18),(6.19) : q 0 = q 0 (q, p, t), (6.22) p 0 = p 0 (q, p, t). (6.23) q 0,p 0 q(t),p(t) q 0 (t),p 0 (t) q 0 =0, (6.24) ṗ 0 =0 (6.25) q 0,p 0 cosmological constant 60

61 given traceless gravity effective theory Quantum theory Lagrange (6.14) Lagrangian Einstein gravity concept Einstein gravity spin 2 massless 2 : g µν = g νµ. (6.26) Lorentz covariance Lorentz metric negative norm gauge theory Gauge symmetry diffeomorphism: ε µ, Weyl Weyl transrormation: λ Einstein garvity Weyl gauge δ λ g µν = λ(x)g µν. (6.27) φ δ λ φ =0 (6.28) 61

62 topological gravity ɛ µ λ gauge symmetry Einstein gravity diffeomorphism gauge symmetry gauge symmetry ϕ diffeomorphism-invariant : ϕ 2 = d 4 x g ϕ 2. (6.29) ϕ Dϕ diffeomorphism diffeomorphism diffeomorphism invariance Einstein gravity diffeomorphism gauge symmetry Weyl diffeomorphism Weyl (6.29) Weyl g µν Weyl diffeomorphism invariance Weyl invariance Weyl anomaly 5 gauge symmetry 4 diffeomorphism Lorentz volume-preserving diffeomorphism : µ ε µ =0. (6.30) volume-preserving g µν : δ ε det g µν =0. (6.31) 1 1 Weyl volume-preserving diffeomorphism gauge symmetry 2 gauge symmetry 62

63 : ϕ 2 = d 4 x ϕ 2. (6.32) Einstein gravity (6.29) g Weyl diffeomorphism g volume-preserving diffeomorphism gauge symmetry 4 gauge symmetry g µν massless spin 2 2 Weyl volume-preserving diffeomorphism gauge symmetry Weyl invariance 2 g µν Weyl : g µν g 1/4 g µν. (6.33) g µν Weyl : det g µν = 1. (6.34) Einstein gravity Lagragian : L = U(ϕ)R gµν µ ϕ ν ϕ V (ϕ). (6.35) Weyl invariance Volume-preserving diffeomorphism Einstein gravity g g =1 (6.35) g µν Einstein gravity cosmological constant V (ϕ) constant Lagragian constant : δl δg µν = g 1/4 ( δl δg µν 1 4 gµν g ρσ δl δg ρσ ) =0. (6.36) traceless (6.14) (6.33) Einstein 1 gauge traceless Einstein 63

64 Einstein recover cosmological constant background ( flat ) Einstein gravity cosmological constant Einstein gravity cosmological constant Lagragian flat background flat cosmological constant background background form fields traceless gravity Einstein gravity Einstein gravity 3-form field : F µνρσ = [µ A νρσ]. (6.37) 3 gauge field strength Einstein gravity action : 1 S = d 4 x gf µνρσ F µνρσ. (6.38) : µ ( gf }{{ µνρσ } )=0. (6.39) ϕɛ µνρσ 4 4 field strength 1 1 [R. Bousso and J. Polchinski, arxiv:hep-th/ ] 64

65 ɛ µνρσ Levi-Civita g constant : gϕ = c. (6.40) c 3-form gauge constant 1 (6.39),(6.40) : S = d 4 x g c ɛ αβγδ g αµ g βν g γρ g δσ ɛ µνρσ c = d 4 x gc 2. (6.41) g g c 2 cosmological constant Einstein gravity cosmological constant changing gravity Extra dimensions extra dimension ( Weinberg review [V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B125 (1983) 139] ) toy model changing gravity Einstein gravity traceless gravity 3 6 action : S 6 = d 6 x g( 1 2 R Λ 6). (6.42) Lagrangian parameter cosmological constant 6 Λ 6 tune 6 background 6 effective 4 65

66 4 (6.42) background mertric warped compactification : ds 2 = σ(r)ḡ µν (x)dx µ dx ν dr 2 ρ(r)dθ 2. (6.43) 4 ḡ µν (x) 4 metric 2 (extra dimensions) (r, θ) θ 0 2π background Background θ σ(r) ρ(r) r dr 2 factor r rescaling 1 convention (6.43) effective 4 background (6.42) 6 Einstein 4 metric ḡ µν 4 parametrization 4 Einstein ḡ µν 4 Einstein 4 cosmological constant 6 Einstein (6.43) r ( θ) constant effective cosmological constant σ ρ 3 σ 2 σ + 3 σ ρ 4 σ ρ 1 ρ 2 4 ρ σ 2 2 σ + σ 2 σ ρ ρ ρ ρ = Λ 6 + Λ 4 σ, (6.44) = Λ 6 + 2Λ 4 σ, (6.45) 2 σ σ + 1 σ 2 = Λ 2 σ Λ 4 σ. (6.46) Λ 4 σ ρ Einstein gauge theory 66

67 Bianchi identity (6.44)-(6.46) z : σ z 4 5. (6.47) ρ z : ρ = C 2 z 2 z 6 5. (6.48) C z : V z = V z. (6.49) V (z) = 5 16 Λ 6z Λ 4z 6 5 (6.50) z(r) r V Einstein Newton z coordinate singularity smooth geometory factor ρ ( conical ) condition : boundary condition z ρ(0) = 0, (6.51) ( ρ) (0) = 1. (6.52) z (0) = 0, (6.53) z (0) = C, (6.54) z(0) = 1. (6.55) σ z convention (6.43) x (6.55) (6.53),(6.54) smoothness condition 67

68 (6.50) Λ 6 given parameter Λ 4 effective 4 cosmological constant Λ 4 Λ 4 =0 Λ 6 > 0 11 boundary condition ( 13 ) 12 θ 0 2π parametrize dθ 2 68

69 13 ρ(r) z =0 extra dimension effective 4 cosmological constant extra volume finite effective theory volume ( ) effective 4 noncompact extra 6 metric (determinant ) degenerate metric 4 metric ḡ µν (x) singularity 4 effective cosmological constant variable Einstein gravity physics cosmological constant toy model 6 cosmological constant pure gravity realistic 4 standard model matter 3-brane standard model field localize 3-brane : S = S 6 + d 4 x g 4 λ. (6.56) r=0 69

70 3-brane background constant energy density λ warped compactification σ ρ (6.44) : 3 σ 2 σ ρ 2 ρ = Λ 6 + Λ 4 σ λ 2πɛ Θ(ɛ r); (6.57) ρ ɛ +0. (6.58) 3-brane source (6.57) 3 Θ 3-brane source r =0 singularity regularize step function pure gravity brane 12 brane tension 14 : 14 boundary condition : z (ɛ) = 0, (6.59) z (ɛ) = C(1 λ ), 2π (6.60) z(ɛ) = 1. (6.61) pure gravity backgound brane tension background pure gravity 4 effective cosmological constant changing gravity 70

71 6.5 Kaluza-Klein reduction effective theory heterotic M theory brane world effective theory Kaluza-Klein reduction R 4 S 1 /Z 2 5 extra dimension action : S = dyd 4 x g 5 (R 5 Λ 5 ) + d 4 x g 4 L 1 + d 4 x g 4 L 2. (6.62) y=0 extra dimension y boundary 3-brane 1 5 (bulk) pure gravity brane matter action g 5 g metric R 5 Λ 5 5 cosmological constant y =0 brane effective 4 brane l brane effective theory regular 5 metric parametrize : ( ) g 4 (g 5 )=. (6.63) 1 g 4 zero mode Kaluza-Klein mode : y=l g 4 (x, y) =ḡ(x)a(y)+ n ḡ n (x)a n (y). (6.64) : a(0) = 1, a(l) =a l. (6.65) (6.62) action 4 schematic effective theory 71

72 : S eff V + d 4 x ḡ( R Λ) + d 4 x ḡl 1 d 4 x ḡa l4 L 2 + O(m 1 KK ); (6.66) V = l 0 dy a 4 a 1 = M Planck 2. (6.67) bulk gravity zero-mode 4 y (6.67) bulk effective 4 Einstein action 4 Planck scale (6.62) action 5 fundamental scale 1 (6.66) 2 brane a(0) 1 convention ḡ metric 3 brane a l warp factor metric Kaluza-Klein mode mass m KK (6.67) volume fundamental scale large-volume extra dimension 5 fundamental scale 4 Planck scale (6.67) volume extra dimension l warp factor a fundamental scale GUT scale weak scale ( energy scale ) 4 fundamental scale volume Witten heterotic M theory 15(a) MSSM gauge interaction coupling constant α 1,2,3 (GUT scale) dimensionless coupling constant α G Gauge unification point fundamental scale (string scale) GUT scale Planck scale bulk volume factor Coupling bulk 15(c) coupling GUT scale 5 brane gauge interaction 5 bulk 15(b) [J. Polchinski, arxiv:hep-th/ ] 72

73 Adjustment mechanism background Einstein fine tuning Planck decouple 73

74 flat background changing gravity cosmological constant (Einstein gravity input parameter ) dynamical variable (integration constant) flat background flat background flat effective theory Adjustment mechanism flat background changing gravity background flat traceless gravity Einstein gravity traceless gravity adjustment mechanism action : ( S 4 = d 4 x U(ϕ)R + 1 ) 2 µϕ µ ϕ V (ϕ). (6.68) R traceless gravity Weyl invariant : U (ϕ)r = V (ϕ). (6.69) background : µ ϕ =0. (6.70) constant background V (ϕ) flat background : U (φ) 0, V (φ) 0 R 0. (6.71) R Einstein gravity Einstein trace part decoupling unrealistic traceless gravity trace part R decouple background fine tuning V (ϕ) 74

75 R V /U U 0 fundamental scale V 0 tune Cosmological constant tuning fine tuning adjustment mechanism decouple statement Weyl rescaling statement definite 6.7 Brane world traceless gravity Weyl invariance brane world setup Cosmological constant variable 3-form field : 16 Brane world 16 5 bulk 4 effective 4 cosmological 75

76 constant variable setup y =0 3-form field A µνρ sector 4 effective theory cosmological constant variable adjustment mechanism brane scalar ϕ Kaluza-Klein reduction bulk brane l action y = l brane action brane adjusting scalar ϕ S l = d 4 x ( g U(ϕ)R + 1 ) 2 µϕ µ ϕ V (ϕ) (6.72) y=l g bulk induced metric g ϕ Weyl V ϕ bulk induced metric V statement setup y = l y =0 y = l sector Kaluza-Klein reduction effective theory y = l brane induced metric metric ḡ µν y = l warp factor a l : g µν =ḡ µν a l. (6.73) action S l = d 4 x ḡ y=l ( Ū( ϕ) R + 1 ) 2 µ ϕ µ ϕ V ( ϕ) (6.74) contribution ϕ ϕ a l, (6.75) Ū( ϕ) U(ϕ)a l, (6.76) V ( ϕ) 2 V (ϕ)a l (6.77) 76

77 y =0 warp factor 1 convention ḡ y = 0 brane quark lepton metric coupling U(ϕ) V (ϕ) Ū( ϕ) V ( ϕ) Kaluza-Klein reduction warp factor rescaling ((6.66) 3 ) U V rescale U R rescale rescale 4 effective theory action : Ū ( ϕ) R = V ( ϕ). (6.78) background ϕ : µ ϕ =0. (6.79) 4 R U V U (ϕ)a l R = V (ϕ)a l 2. (6.80) R a l U V 5 fundamental scale U V fine tuning order one U 0 V order one V (ϕ) U (ϕ) 1 (6.81) R a l (6.82) a l warp factor 4 adjustment mechanism fine tuning warp factor tuning 6.8 Spacetime inflation warp factor 77

78 inflation i) spatial inflation: 4 : ds 4 2 = dt 2 a(t) d x 2. (6.83) 3 scale factor( ) a(t) cosmological constant Λ : a(t) e t Λ. (6.84) de Sitter slice ii) spacetime inflation: 5 warped compactification : ds 5 2 = a(y)ḡ µν dx µ dx ν dy 2. (6.85) a(y) warp factor 5 bulk cosmological constant Λ analogous : a(y) e y Λ. (6.86) 3 4 background 5 extra dimension evolution cosmological constant negative anti-de Sitter slice spatial inflation evolution timelike spacelike extra spacelike evolution extra dimension l a l e l Λ (6.87) l warp factor exponential exponential warp factor large volume Randall Sundrum e +y Λ bulk warp factor volume Planck scale ((6.67) ) y = l brane warp factor ((6.66) 3 ) 78

79 warp factor l background flat effective theory configuration 16 inflation spatial inflation evolution 3 flatness cosmological constant background 4 spacetime flat flatness extra evolution 4 flat background evolution inflation flat fundamental scale 3 (effective theory ) flat effective theory spacetime inflation brane fundamental scale background 3-brane (effective theory ) 3-brane background flat effective theory adjustment mechanism effective theory effective theory SUSY flat background flat SUSY flat background moduli point effective theory 6.9 Quintessence supersymmetric background cosmological constant warp factor brane l depend extra 79

80 supernova cosmological parameter cosmological constant critical density cosmilogical constant quintessence photon neutrino baryonic matter dark matter 5 : 1. photons, 2. neutrinos, 3. baryonic matter, 4. dark matter, 5. quintessence. quintessence ( late inflation adjusting scalar ) dark energy spacetime inflation background curvature setup brane positive negative supernova positive [ ] Dark energy dark matter density [ ] coincidence ( ) effective theory dark energy cosmological constant dark matter order anthropic principle cosmological constant anthropic principle coincidence 80

81 coincidence cosmological constant ( ) spacetime inflation extra dimension standard model ( ) ( SUSY breaking ) dark energy coincidence energy density effective theory cosmological constant framework effective theory ( 6.1 ) 81

82 7 : 17 X ( ) Y X 4 i) ( ) (20 ) higher dimension index external ii) string theory ( ) higher dimension string iii) supersymmetry ( ) fermionic string X Grassmann Grassmann odd extra dimension 82

83 Y i) effective theory ( ) effective ii) vacuum structure ( ) background vacuum dynamics framework i) effective theory framework brane world scenario string theory heterotic M theory duality SUSY dynamical scale generation ii) vacuum structure spacetime inflatioary background string theory ( 8) SUSY dynamical inflation selection crossover topics crossover (higher dimension, string, SUSY, effective theory, vacuum structure) crossover Z Y effective theory vacuum selection effective theory 83

84 5/16, 2002: Ver /12, 2002: Ver /5, 2002: Ver /26, 2017: Ver

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices Grand Unification M.Dine, Supersymmetry And String Theory: Beyond the Standard Model 6 2009 2 24 by Standard Model Coupling constant θ-parameter 8 Charge quantization. hypercharge charge Gauge group. simple

More information

Seiberg Witten 1994 N = 2 SU(2) Yang-Mills 1 1 3 2 5 2.1..................... 5 2.2.............. 8 2.3................................. 9 3 N = 2 Yang-Mills 11 3.1............................... 11 3.2

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

重力と宇宙 新しい時空の量子論

重力と宇宙 新しい時空の量子論 Summer Institute at Fujiyoshida, 2009/08/06 KEK/ Conformal Field Theory on R x S^3 from Quantized Gravity, arxiv:0811.1647[hep-th]. Renormalizable 4D Quantum Gravity as A Perturbed Theory from CFT, arxiv:0907.3969[hep-th].

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

3 exotica

3 exotica ( / ) 2013 2 23 embedding tensors (non)geometric fluxes exotic branes + D U-duality G 0 R-symmetry H dim(g 0 /H) T-duality 11 1 1 0 1 IIA R + 1 1 1 IIB SL(2, R) SO(2) 2 1 9 GL(2, R) SO(2) 3 SO(1, 1) 8

More information

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T Yang-Mills 50 E-mail: kugo@yukawa.kyoto-u.ac.jp 2004 Yang-Mills 50 2004 Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge Theory O Raifeartaigh [1] I, II, III O Raifeartaigh

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

N = , 4 Introduction 3 1 ADHM Construction Notation Yang-Mills Theory

N = , 4 Introduction 3 1 ADHM Construction Notation Yang-Mills Theory N = 2 2004 8 3, 4 Introduction 3 1 ADHM Construction 5 1.1 Notation..................................... 5 1.2 Yang-Mills Theory............................... 8 1.3 BPST Instanton................................

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

( ) : (Technocolor)...

( ) : (Technocolor)... ( ) 2007.5.14 1 3 1.1............................. 3 1.2 :........... 5 1.3........................ 7 1.4................. 8 2 11 2.1 (Technocolor)................ 11 2.2............................. 12

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

Introduction 2 / 43

Introduction 2 / 43 Batalin-Vilkoviski ( ) 2016 2 22 at SFT16 based on arxiv:1511.04187 BV Analysis of Tachyon Fluctuation around Multi-brane Solutions in Cubic String Field Theory 1 / 43 Introduction 2 / 43 in Cubic open

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

0. Intro ( K CohFT etc CohFT 5.IKKT 6. E-mail: sako@math.keio.ac.jp 0. Intro ( K 1. 2. CohFT etc 3. 4. CohFT 5.IKKT 6. 1 µ, ν : d (x 0,x 1,,x d 1 ) t = x 0 ( t τ ) x i i, j, :, α, β, SO(D) ( x µ g µν x µ µ g µν x ν (1) g µν g µν vector x µ,y

More information

TeV b,c,τ KEK/ ) ICEPP

TeV b,c,τ KEK/ ) ICEPP TeV b,c,τ KEK/ ) ICEPP 2 TeV TeV ~1930 ~1970 ~2010 LHC TeV LHC TeV LHC TeV CKM K FCNC K CP violation c b, τ B-B t B CP violation interplay 6 Super B Factory Super KEKB LoI (hep-ex/0406071) SLAC Super B

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha Euler, Yang-ills Clebsch variable Helicity Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity i) Yang-ills 3 A T T A) Poisson Hamilton ii) Clebsch parametrization iii) Y- Y-iv) Euler,v)

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

untitled

untitled kajino@nao.ac.jp http://th.nao.ac.jp/~gkajino/? BIG-BANG! STARS SUPERNOVAE? R-PROCESS COSMIC-RAYS R S N=50) R S N=82) R S N=126) ++ + Actinide AGB STARS S-PROCESS 232 Th (14.05Gy) P 238 U (4.47 Gy) SUPERNOVA-γ

More information

D 2009 A * 1 ( ) *1 ( ) 0 1 1 6 2 32 2.1............................................. 32 2.2.................................. 41 2.3...................................... 47 3 65 3.1..............................................

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

susy.dvi

susy.dvi 1 Chapter 1 Why supper symmetry? 2 Chapter 2 Representaions of the supersymmetry algebra SUSY Q a d 3 xj 0 α J x µjµ = 0 µ SUSY ( {Q A α,q βb } = 2σ µ α β P µδ A B (2.1 {Q A α,q βb } = {Q αa,q βb } = 0

More information

Gauge Mediation at Early Stage LHC

Gauge Mediation at Early Stage LHC 白井智 (University of Tokyo) shirai@hep-th.phys.s.u-tokyo.ac.jp Plan 1. SUSY Standard Model と Mediation 機構 2. Gauge Mediation のシグナル 3. Low Scale Gauge Mediation と LHC 1. SUSY Standard Model と Mediation 機構

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

master.dvi

master.dvi pp-wave 003 0 4 AdS/CF T CFT 6. AdS/CF T..................................... 6. 4 Conformal Field Theory........................... 8.. Conformal............................... 8.. CFT...................................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 (

(Tokyo Institute of Technology) Seminar at Ehime University ( ) 9 3 U(N C ), N F /2 BPS ( ) 12 5 ( (Tokyo Institute of Technology) Seminar at Ehime University 2007.08.091 1 2 1.1..................... 2 2 ( ) 9 3 U(N C ), N F 11 4 1/2 BPS ( ) 12 5 ( ) 19 6 Conclusion 23 1 1.1 GeV SU(3) SU(2) U(1): W

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

TK-NOTE/04-04 since February 8, 004 (September st, 00 last update May 5, 006 Two-dimensional Gauge Field Theory and Mirror Symmetry School of Physics, Korea Institute for Advanced Study, 07-43, Cheongnyangni

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

宇宙の背景輻射 現在 150億年 50億年 星や銀河の 形成 自然界には4つの力 3つの分岐点が今回のシリーズの目標 3K LHC温度 1016K (10-12 ~ 10-14s) 10億年 (2) GUTへの挑戦 超対称性による大統一 3000K 30万年 原子 分子の形成 3分 原子核の形成 10-10 秒 弱い相互作用が分離 3つの力が分離する 量子重力の世界 10-34 秒 10-43 秒

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il

2 1 ds 2 = a 2 (η) ( dη 2 + γ ij dx i dx j ) (1.2) ( dt ) conformal time η η = a(t) a(t) (scale factor) t =const (3) R ijkl = K a 2 (t) (γ ikγ jl γ il 1 1.1 Robertson-Walker [ ds 2 = dt 2 + a 2 dr 2 ] (t) 1 Kr 2 + r2 (dθ 2 + sin 2 θdφ 2 ) sin 2 χ = dt 2 + a 2 (t) dχ 2 + χ 2 (dθ 2 + sin 2 θdφ 2 ) = dt 2 + sinh 2 χ a 2 (t) (1 + K 4 r2 ) [d r 2 + r (dθ

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

DaisukeSatow.key

DaisukeSatow.key Nambu-Goldstone Fermion in Quark-Gluon Plasma and Bose-Fermi Cold Atom System ( /BNL! ECT* ") : Jean-Paul Blaizot (Saclay CEA #) ( ) (SUSY) = b f b f 2 (SUSY) Q: supercharge b f b f SUSY: [Q, H]=0 Supercharge

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9 No.7, No.8, No.9 email: takahash@sci.u-hyogo.ac.jp Spring semester, 2012 Introduction (Critical Behavior) SCR ( b > 0) Arrott 2 Total Amplitude Conservation (TAC) Global Consistency (GC) TAC 2 / 25 Experimental

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

Flux compactifications, N=2 gauged supergravities and black holes

Flux compactifications, N=2 gauged supergravities and black holes : 2011 11 2 Flux Compactifications, N = 2 Gauged Supergravities and Black Holes based on arxiv:1108.1113 [hep-th] Introduction 4 10 Tetsuji KIMURA : Flux Compactifications, N=2 Gauged SUGRA and Black Holes

More information

25 7 31 i 1 1 1.1......................... 1 1.1.1 Newton..................... 1 1.1.2 Galilei................. 1 1.1.3...................... 3 1.2.......................... 3 1.3..........................

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

余剰次元のモデルとLHC

余剰次元のモデルとLHC 余剰次元のモデルと LHC 松本重貴 ( 東北大学 ) 1.TeraScale の物理と余剰次元のモデル.LHC における ( 各 ) 余剰次元モデル の典型的なシグナルについて TeraScale の物理と余剰次元のモデル Standard Model ほとんどの実験結果を説明可能な模型 でも問題点もある ( Hierarchy problem, neutrino mass, CKM matrix,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information