住宅ローン債権担保証券のプライシング手法について:期限前償還リスクを持つ金融商品の価格の算出

Size: px
Start display at page:

Download "住宅ローン債権担保証券のプライシング手法について:期限前償還リスクを持つ金融商品の価格の算出"

Transcription

1 MBS

2 Residential Mortgage-Backed SecuritiesRMBS Mortgage-Backed SecuritieMBS mortgageasset-backed SecuritiesABS Commercial Mortgage-Backed SecuritiesCMBSRMBSMBS MBSMBS MBSMBS MBS MBS MBS MBS MBSMBS MBS MBS MBS MBS MBS MBS MBSMBS

3 MBS ABS MBS MBS MBS MBS MBS MBSGNMAGovernment National Mortgage Association FHLMCFederal Home Loan Mortgage CorporationFNMAFederal National Mortgage AssociationMBSMBS Pass-Through CMOCollateralized Mortgage Obligation Pay-Through

4 MBS MBS SPCSpecial Purpose CompanyMBS MBS

5 MBS MBS ALMAsset Liability Management MBS MBS MBS MBS MBS MBS MBS MBS MBSNOMURA-BPI

6 CDO Collateralized Debt Obligation MBS ALM MBS MBS MBS MBSMBS CMOCollateralized Mortgage Obligation CMOABC A AB C SMBSMBSStripped Mortgage-Backed Securities

7 IOInterest Only POPrincipal Only IOPO IOPO MBSABS MBS

8 MBS MBS MBS AMBS MBS MBS MBS MBSMBS

9 MBS MBS MBS MBS MBS MBS MBS MBSMBS MBS mt c t i = i / m (i = 0,1,, mt ) AM(t i ) MBS

10 c A = M(t i ) M(t i+1 ) + M(t i ), m t 0 = 0 M ( 0) = = A 1 + c / m A 1 + c / m M ( t 1) c / m A + ( 1 + c / m ) + A + ( 1 + c / m ) mt = A 1 1/ ( 1 + c / m ) c / m mt, c/m(1+c/m) mt A = M(0), (1+c/m) mt 1 t i (1+c/m) mt (1+c/m) mt i M (t i ) = M(0), (1+c/m) mt 1 t i P(t i )

11 c/m(1+c/m) mt i1 P(t i ) = M(t i1 ) M(t i ) = M(0), (1+c/m) mt 1 t i I (t i ) c c (1+c/m) mt (1+c/m) mt i1 I (t i ) = M(t i1 ) = M(0). m m (1+c/m) mt 1 (t i1, t i ] SMM(t i ) t i S(t i ) S(t i ) i S (t i )=Π{1 SMM(t j )}, j =1 S(t i1 ) S(t i ) SMM(t i ) =. S(t i1 ) M (t i )S(t i ) M (t i )=M(t i )S(t i ). A (t i ) t i1 M (t i1 ) T t i1 c/m(1+c/m) m(tt i1 ) A (t i ) = M (t i1 ) = AS (t i1 ), (1+c/m) m(tt i1 ) 1 I (t i ) t i1 M (t i1 ) c I (t i ) = M (t i1 ) = I (t i )S(t i1 ), m P (t i )A (t i ) SMMSingle Monthly Mortality SMMCPRConditional Prepayment Rate

12 I (t i ) P (t i ) = A (t i ) I (t i ) = P(t i )S(t i1 ). t i t i1 M (t i1 )t i P (t i ) (t i1, t i ] PR(t i ) SMM(t i ) PR(t i ) = {M (t i 1 ) P (t i )} SMM(t i ). MBSCF(t i ) P (t i )I (t i )PR(t i ) CF (t i ) = P (t i ) + I (t i ) + PR(t i ) = P(t i )S(t i 1 ) + I (t i )S(t i1 ) + {M(t i 1 ) S(t i1 ) P(t i )S(t i1 )}SMM(t i ) = {M(t i 1 ) + I (t i )} S(t i1 ) M(t i ) S(t i ). FabozziKariya and Kobayashi

13 A ma m t cm(0) A =, 1 exp {ct} A 1 exp { c (T t )} M(t) = (1 exp { c (T t )}) = M (0). c 1 exp { ct } CF(t i )= A (t i ) + PR (t i ), A (t i )= AS (t i1 ), PR(t i ) = {M (t i 1 ) S(t i1 ) P(t i )S(t i1 )}SMM(t i ) ={M (t i 1 ) P(t i )} {S(t i1 ) S(t i )} = M (t i ){S(t i ) S(t i1 )}, t t i t i 1 0m dcf (t )=A S(t ) dt M (t ) ds (t ). MBS S(t) S(t)

14 S(t) MBS t ( 0)t + t f (t) t = Pr (t < t + t ) F ( t ) = Pr ( t ) = f ( s) ds, S ( t ) = Pr ( > t ) = f ( s) ds. t 0 t Pr (t < t + t > t ) h (t ) lim. t 0 t d h (t ) = ln S (t), dt t H(t ) h(s)ds, 0

15 S(t )= exp { H(t )}, t S ( t i ) exp = Π i j = 0 Π i j = 0 i j = 0 h ( t j ) t exp{ h ( t j ) t } { 1 h ( t j ) t }. SMM(t i ) z (t)t h(t ) h (t, z (t)) = h(t ) exp { z (t) }. h(t ) t Jegadeesh and Ju Sugimura

16 Schwartz and TorousSugimura h(t )= (t ) 1, (t ) 1 h(t ) =, 1+ (t ) h (t ) = t ln t ln t. (x)φ(x) z 1 (t ) ctr(t ) z 1 (t )= c R(t ),

17 z 1 (t )= c /R(t ), 1 R(t ) MBS Schwartz and Torous z (t ) z (t ) = ln AO (t ) AO (t ), AO (t )t AO(t ) AO (t ) McConnell and SinghStanton McConnell and Singh t r(t ) D (t, r(t)) F (t ) RF D (t, r(t)) (1+ RF ) F (t ),

18 r (t) r (t) (t) r (t) r (t) (t)+ if r (t) r (t), h (t) = (t) if r (t)> r (t). (t) MBS N S n (t )( n = 1,,, N )n n S (t) N = 1 S ( t ) = N, 1 n S n ( t ) n =. n= 1 n

19 MBS MBS MBS r (t) h(t) h(t) = h (t, r(t)), h(0) 0. {r (t), 0 t T } dr (t) =(r (t), t ) dt + (r (t), t ) dw(t). (r (t), t ) (r (t), t ) r (t)t W (t) MBSV V = E mt exp t i r ( s) ds CF ( t i =1 0 i ), V = E T exp t r( s) ds dcf ( t) 0, 0 MBS E[.] MBS

20 i mt 1 { M( t i 1 ) + I ( t i )} exp r ( t ) j t S ( t i 1) i =1 j = 0 mt i =1 i 1 M( t i ) exp r ( t j ) t j = 0 S ( t i ), Schwartz and TorousMcConnell and SinghStanton MBS CIRCox, Ingersoll and Ross dr (t) = a( r r (t)) dt + r (t) dw(t), r (0) 0, MBS t MBSV (t)l (t) L ( t ) = t exp r ( u) du V (t) + 0 t exp s du 0 r ( u) CF (s) ds 0 = t exp r ( u) du V (t 0 ) + t exp 0 r ( u) du { AS (s) + M ( s) h ( s ) S( s) } ds 0. L (t)mbsv (t)t CF (s) s

21 L (t) MBSV (t)rst V (t) V(r, S, t )S (t) ds (t) = h(t) S (t) dt, t 0, MBSV (r, S, t ) dv(t) = (r, S, t )dt + (r, S, t ) dw(t), = a ( r r (t)) V h( t) S( t ) V V r ( t) V r S t r = r( t) V. r, t exp Z ( t ) r ( u) du, t 0, 0 dz(t) = r (t) Z (t) dt, dl( t ) = V( t ) dz ( t ) + Z ( t ) dv( t ) + d Z, V ( t ) + Z ( t) { AS ( t ) + M( t) h ( t ) S( t) } dt = Z ( t )( r ( t ) V ( t ) + a ( r r ( t) ) V t V r h ( t) S( t ) V S ) dt r ( t) V + AS ( t) + M( t ) h ( t ) S( t) r + Z ( t ) r ( t) V r dw ( t). L (t) Z, V ZV quadratic covariation Musiela and RutkowskiAppendices B

22 V V r (t)v (t)+ a ( r r (t)) h(t) S (t) r S V 1 V + + r (t) + S (t)+ M (t) h(t) S (t) = 0, t r MBS V (T ) = 0 MBS MBS t t i t i 1 = 1/mN t T t n k(n, k) t n k (n, k)r (n, k)(n, k)(n + 1, l ) p (n; k, l )t n J n i t t i AN t T Schwartz and Torous

23 n t k A(n, k)n t ki tv (n, k; i ) A N A(n, k) =A v (n, k; i ). i =n +1 (n, k)h (n, k) t 1 h (n, k) t(n, k) C (n, k) C ( n, k ) = h (n, k ) t f (n, k ) = e r (n, k ) t (1h (n, k ) t) p(n; k, l ) C (n +1, l ). J l n +1 f (n, k)(n, k) f (n, k)= A(n, k) M(t n ), C (N, k) = 0 C ( 0, 0) V = A(0, 0) C (0, 0). h (n, k ) = 1 t if 0 otherwise, f (n, k ) e r (n, k ) t p(n; k, l ) C (n +1, l ), J l n +1 (n, k)n t v (n, k; N ) = E N j = 1 exp n r ( tj ) t r ( t n) = r ( n, k ) = e r (n, k ) t j N = 1 E exp n +1 r ( tj ) t r ( t n) = r ( n, k ) = e r (n, k ) t l J n +1 p (n; k, l ) v (n +1, l; N ), k v (N, k; N )=1

24 C (n, k ) = max f (n, k ), e r (n, k ) t p (n; k, l ) C (n +1, l ), J l n +1 MBS X (0) X ( 0) = E exp t i r ( s) ds X (t ) = v, t t ( 0 ) 0 i i E i [ X ( t i )], v (0, t i ) t i E t i [.] Pr t i MBS mt { i i } i =1 t V = M( t 1 ) + I ( t ) v ( 0, t ) E i [ S ( t ] i i ) 1 mt i =1 t M( t i ) v ( 0, ti ) E i [ S( t i )], v (0, t i )E t i [ S (t i )]E t i [ S (t i 1 )] MBS IO =E mt i =1 exp t i r ( s) ds I (t ) = i 0 mt i =1 t I (t i ) v ( 0, ti ) E i [ S ( t i 1) ],

25 PO =E mt i =1 t i exp r ( s) ds { P (t i ) + PR(t i )} 0 = mt t M( t i 1 ) v( 0, t ) E i [ S ( t i ) ] + i =1 i 1 mt i =1 M( t i ) v ( 0 t, t ) i E i [ S ( t ], i ) MBSIOPO Hull and White dr (t) = ((t) ar (t)) dt + dw (t), r (0) 0. Pr t i dr (t) = {(t) +b t i (t) ar (t)} dt + dw t i (t), 0 t ti. W t i (t) Pr t i 1e a(t i t ) b t i (t) =, a dx (t) = ax (t) dt + dw t i (t), X (0) = 0, {X (t), 0 t T }X (t) t i (t) r (t) = X (t)+ t i (t), dr (t) = { t i (t)+ a t i (t) ar (t)} dt + dw t i (t),

26 t i (t)+ a t i (t) = (t)+b t i (t), t i (0) = r (0), t i (t) t i ( t ) = at e ( ( s) + b ( s) t e as t i ) ds + r ( 0), 0 r (n, k) x(n, k) r (n, k) = x (n, k)+ t i (t n ). (t) t i (t)= (t) + t i (t), t i ( t ) = at e b ( s ) t e as t i ds 0 = a e a( t i t ) e a( t i + t ) + e a t 1. t i (t) (t) t i (t) MBS (n, k) Q(n, k) (n+1, l ) Q(n+1, l )=p(n;k, l )exp{h(n+1, l ) t}q(n, k), k J n

27 Q(0, 0)=1Q(n+1, l ) (n, k) (n+1, l ) E t i [ S (ti )] = Q(i, l), l J i E t i [ S (ti 1 )] = Q(i 1, k). k J i1 MBSIOPO MBS MBS MBS MBS

28 MBS MBS MBSV V = E = mt i =1 mt i =1 t i exp r ( s) 0 ds CF ( ti) {M( t i 1 ) + I (t i )} E exp r ( s) ds 0 t i 1 S (t i ) mt M(t i )E exp ds r ( s) 0 i =1 t i S (t i ), M(t i ) I (t i ) t i E exp r ( s) ds S ( t 0 i 1), t i E exp r ( s) ds S(t 0 i ), MBS t i E exp r ( s) ds S (t i 1) 0 E exp t i r ( s) ds S ( t i ) 0 = v ( 0, ti ) S( t i 1), = v ( 0, ti ) S( t i ), v (0, t i )S (t i ) MBS PSAS (t i ) PSAPSAPublic Securities AssociationMBS

29 CPR(t i ) PSA t i i i 6% if i CPR (t i ) = 6% if i > 30 = 6% min 1, i, 30 SMM (t i ) = 1 (1 CPR (t i )) 1/1 S ( t ) = i Π i j = 1 {1 SMM ( t ) j j } = 1 6% min 1,. j = Π i MBS MBS t i MBS 1

30 NakamuraMBS MBS MBS h(t) = e (Lr(t)). L {r (t), 0 t T } Vasicek dr (t) = a( r r (t)) dt + dw(t), r (0) 0. a r W(t) E exp r ( s) ds 0 t i 1 S(t i ) t = v ( 0, t ) E i [ S( t i )], i 1 E exp t i r ( s) ds S( t i ) 0 t = v ( 0, t ) E i [ S( t i )]. i v (0, t i )MBS E t i [ S (t i 1 )]E t i [ S (t i )] Pr t i {r (t), 0 t T } Cox

31 dr (t) = a((t)r (t)) dt + dw t i (t), 0 t ti, W t i (t) a (t) = r ( 1e a(t i t ) ), d lnh(t) = dr (t) = a ( (t) r(t) ) dt dw (t) t i lnh(t) = a (t) L + dt dw t i (t) t = a ( ( L (t)) lnh(t) ) dt dw i (t). (t) a(l (t)), d ln h(t) = ((t)a ln h(t)) dt + dw t i (t), h (0) 0, Black and Karasinski t E i [ S ( t i )] 1 = E t i exp t i 1 0 h( s) ds t E i [ S( t i )] E exp = t i ds h( s), 0 t i, MBS MBS MBS Brigo and Mercurio

32 R = 0.88 CPRSMM MBS

33 h (t) = (L r (t)), h (0) 0. L{r (t), 0 t T } dr (t) = a ( r r (t)) dt + dw (t), r (0) 0. a r W(t) dh(t) = dr (t) = a((t)r (t))dt dw t i (t) = a ((L(t))h(t))dt dw t i (t), dh(t) = ((t)ah(t)) dt + dw t i (t), Hull and White E t i [ S (t i )]E t i [ S (t i 1 )] E [ S (t)] (x) (1e ax )/a 1e a(t t ) b T (t) = = (T t), a a ( t) T = b T t T T = a ( L ) t (s) bt ( s) ds + a ( T ) a ( s) ( s) ds + 1 tt b T ( s) ds t T bt = r L (( T t) T t a + e + a ( T t) ( T t) ( )) ( T t ) + ( s) ds ( ( T t)) (( T t)),

34 E exp t E [ S( t) ]= h( s) ds 0 = exp{ a ( ) + b t ( 0) h ( 0) } t 0 = exp r L ( t ( t )) + e a a ( t ) a ( t) (t) + a (t) t ( t ) + (t) ( t) (L r ( 0)) = exp r L a ( t ) a 1 + ( e ) t r ( 0 ) r a ( t) a ( t ) + a e (t), t E [ S( t i) ] = exp r L a 1 + t r ( 0 ) r + i i ( ) ( t ) a i + a 1 (t i ), t E [ S ( t i ) 1 ] = exp r i L a 1 ti 1 + r ( 0 ) r + a e a (t i t i1 ) (1 + ) ( t i 1) ( a e t ) i 1, + a (t i t i1 ) MBS MBS MBS MBS

35 MBS DuffieKijima and Muromachi MBS h (t) = (L r (t)) + g (t), h (0) 0. Lg(t) {r (t), 0 t T } dr (t) = a( r r(t)) dt + dw 0 (t), r (0) 0, {g (t), 0 t T } dg(t) = b ( gg(t)) dt + dw 1 (t), a r b gw 0 (t)w 1 (t) dw 0 (t)dw 1 (t) = dt PSA g(t) SMM/ t +

36 t i E exp r ( s) ds S( t = E 0 i ) exp r ( s) ds 0 = E exp t i t i + 0 t i exp h( s) ds 0 ) ((1 r ( s) g( s)+ L) ds, t i ti ) E exp r ( s) ds S( 1 = E exp t i 0 ds r ( s) 0 exp t i 1 0 h( s) ds t i = E exp t r ( s) ds i1 0 ( r( s) + g( s)+ L) ds 0, MBS {r (t), t 0}OUOrnstein=Uhlenbeck r ( t) = r + ( r ( 0) r ) e at + 0 t e a (t s) dw 0 ( s), H( ) r ( t ) dt = r 0 dt + ( r ( 0) r ) e at 0 dt + 0 t 0 0 e a (t s) (x) (1e ax )/a H( )= t 0 0 e a (t s) dw 0 ( s) dt, 1 dw 0 ( s) dt a (t s) e = e dt dw, s 0 ( s) = 0 a ( s) dw 0 a 0 ( s) r + ( r ( 0) r ) ( ) ( s) + 0 dw 0 ( s), H() H () E [H()] = r + (r(0) r ) (),

37 ( ) H V [H( )] = ( s) ds = ( e a ( s) ) 0 a 1 ds 0 = ( 1 ) + a ( ). {g (t), t 0}OU g ( t) = g + bt ( g( 0) g t ) + 0 b (t s) e e dw 1 ( s), (x) (1e bx )/b G( ) g( t ) dt = g + g( 0) g 0 ( ) ( ) + ( s) dw 1 ( s), 0 G() ( ) E [ G ( )] = g + ( g( 0) g ) ( ), G V [G G ( ) ( )] = ( 1 b ) + ( ). H()G()cov (H(), G()) cov(h( ), G( )) = E ( s) dw0 ( s) 0 ( s) dw1 ( s) 0 = ab 0 b ( s ) a ( s ) ( 1 e ) ( 1 e ) ds = ab = ab 1 e a a ( ) ( ) + 1 e b b + 1 e a+b 1 e a+b (a+b) (a+b), H()H()cov(H(), H()) cov(h( ), H( )) = E ( s) dw0 ( s) 0 ( t ) dw0 ( t ) 0 min{,} a ( s ) = 0 ( 1 e ) ( 1 e ) ds a a ( s ) = a ( ) + a (1 e ) ( ) + e a ( ) ( ).

38 H()G()cov(H(), G()) cov(h( ), G ( )) = E ( s) dw0 ( s) 0 ( t ) dw1 ( t ) 0 t i = +. ab e a ( ) e e a b ( ) ( ) a ( ) a+b Y ( t i ) ((1 ) r( s) + g( s)+ L ) ds 0 t i = ( 1 ) r 0 t i ( s)ds + g( s)ds + L 0 Y(t i ) Y(t i ) t i = ( 1 ) H( t i ) + G( t i ) + L t i, Y (t i ) E [Y(t i )] = (1) H (t i )+ G (t i )+ Lt i, Y (t i ) V [Y(t i )] = V [(1)H(t i )+ G(t i )] = (1) H (t i )+ G (t i )+(1 )cov(h(t i ), G(t i )), cov(h(t i ), G(t i )) E exp t i ds r ( s) S( t i ) 0 E [ e ] = Y ( ti ) = exp t i t 1 Z ( t i ) r ( s) i ds + ( r ( s) + g( s) + ) 0 L ds 0 Y Y ( t ( t i ) + i ). = H ( t i ) H t i ) ( 1 + G 1 ( t i ) + L t i 1, Z(t i )Z(t i ) XN(, )m X () E [e X ] m X () = exp { + },

39 Z (t i ) E [Z(t i )] = H (t i ) H (t i 1 )+ G (t i 1 )+ Lt i 1, Z (t i ) V [Z(t i )] = V [H(t i ) H(t i 1 )+ G(t i 1 )] = H (t i )+ H (t i 1 )+ G (t i 1 )cov(h(t i ), H(t i 1 )) +cov(h(t i ), G(t i 1 )) cov(h(t i 1 ), G(t i 1 )), cov (H (t i ), H(t i 1 ))cov(h (t i ), G (t i 1 )) cov (H(t i 1 ), G(t i 1 )) E exp t i ds r ( s) S ( t i 1) 0 = Z ( ti ) E [ e ] = exp ( t ( t i ) + i ), MBS MBS g( t)= 0 Z Z MBS

40 MBS MBS {r (t), t 0} dr (t) = a( r r(t)) dt + dw(t), t 0, MBS 1 (t) h(t) = e (R r(t)), 1+(t) MBS MBS

41 a R r r (0) t

42 MBS MBSMBS MBS MBSIOPO ED V y V y ED = 100. V 0 y V 0 MBS y V y (V y ) y ( y )MBS y =0.1% MBS = 0 a R r r (0)

43 MBS MBS = 0 = 5 = 0

44 IO = 0IO IO POPO = 0

45 MBSPSA MBS g (t) PSA MBS PSAMBS =.0MBS b L g g(0)

46 r(t)g (t) MBS MBS PSA

47 MBS MBS MBSIOPO PSA MBS PSA MBS MBS

48 MBSMBS MBS

49 MBS {r (t), t 0} dr (t) = (r(t), t) dt + (r(t), t)dw(t), t 0, W (t ) (r, t)(r, t) (r, t) = 1 (t) + (t)r, (r, t) = 1 (t) + (t)r, affine modela T (T ) = b T (T) = 0 ( t ) b ( t ) = ( t ) bt ( t ) T ( t ) + 1, bt at 1 ( t ) b ( t ) = 1 ( t ) bt ( t ) T ( t ), a T (t )b T (t )v (t, T ) v (t, T ) = exp {a T (t) + b T (t) r (t)}, Y (t, T ) b T (t) a T (t) Y(t, T ) = r (t), T t T t

50 {r (t), t 0} dr (t) = a( r r(t)) dt + dw (t), t 0, (r, t) = a r ar, (r, t) =, at bt ( t ) = ( bt ( t ) + T t ) r ( t ) = 1 a (T t) e a a r (t) 4a b T ( t ),, {r (t), t 0} dr (t) = a( r r(t)) dt + r(t) dw (t), t 0, CIR (r, t) = a r ar, (r, t) = r, at ( t ) = a r ln e (a + ) (T t) / ( a+ )( e (T t) 1) +, bt ( t ) = ( e (T t) 1) ( a+ )( e (T t) 1 ) +, = a + CIRr (t)

51 {r (t), t 0} dr (t) = ((t) ar(t)) dt + (t) dw (t), t 0, (r, t) = (t) ar, (r, t) = (t), at T t ( t ) = ( s) bt ( s)ds + 1 T t ( s)b T ( s) ds, bt ( t ) = 1 a (T t) e a, (t) (t) X (0) X ( 0) = E exp T ds r ( s) X(T ) = v(0, T ) E T [X (T )], 0 v (0, T ) T E T [.] Pr T X (T ) T tv T (t, ) v (t, ) v T (t, ) = = exp {a (t) a T (t) + (b (t) b T (t)) r (t)}, v (t, T )

52 d ln v T (t, ) = ( b ( t ) bt ( t ) ( r, t ) b ( t ) bt ( t ) ( r, t ) dt + dw( t ), dv T (t, ) = (b (t) b T (t))(r, t ){b T (t)(r, t) dt + dw (t)}, v T (t, ) (r, t) = 1 (t) + (t)r dw T (t) = b T (t)(r, t) dt + dw (t), dv T (t, ) = (b (t) b T (t))(r, t)dw T (t), 0 t T, v T (t, ) W T (t) Pr T v T (t, )

53 MBS trinomial tree {r (t), t 0} dr (t) = ((t)a(t)r(t)) dt + (r (t), t)dw (t), t 0, a(t)(t)(r (t), t) dx(t) = a(t)x(t)dt + (X(t), t)dw (t), t 0, X (0)= 0, {X(t), t 0} (t) r(t) = (t) + X(t), t 0, (0) = r (0), dr (t) = { (t)+a(t)(t)a(t)r (t)}dt + (r (t), t)dw (t), (t) = (t)+a(t)(t), (r (t), t) = (X(t), t), (t) = exp t ( t ) a( u) du 0 0 t s exp a( u) du ( s) ds + r ( 0) 0, (t)shift function {X(t), t 0} (i, j)t i jx(t) x(i, j) r (t)r (i, j) = x(i, j) + (t i )

54 g(t)= 0 g(t) = 0 E exp t i ds r ( s) S ( t i ) = exp + 0 Y ( t i ) Y t i ( ) = exp (1 ) H ( t i ) Lt i + (1 ) H ( t i ), v (0, t i ) = E exp t i r ( s) ds = exp 0 H ( t i )+ H ( t ) i, v (0, t i ) exp ( t i ) Lt i + H 1 H ( t i ), exp H( t i ) Lt i + 1 ( t H i ) = exp ( r t i + (r(0 ) r )( t i ) Lt i = exp + a r L a 1 a 1 t i t i ( i ( ) + t ) 1 t + r ( 0 ) r + i ( ) ( t ) a i + a 1 (t ), i

55 E exp t i ds r ( s) S ( t i ) = exp Z ( t i ) Z t i ( ) = v ( 0, t ) exp ( t i ) Lt i + i H 1 1 H ( t i 1) cov( H( t i ), H( t i 1 ), exp H ( t i ) H ( t i 1) Lt i cov( H( t i ), H( t i 1 ) = exp ( r t i + (r (0) r 1 )( t i 1 ) Lt i t a i ( t i ) + ( t ) i a a ( t ) t i 1 ( 1 + e i t i 1 ) ( t i 1) + e a ( t i t i 1) ( i t ) = exp r L a 1 t i1 r ( 0 ) r a ( t 1) + ( ) ( t ) a 1 + e i t i + i 1 + a (t a ( t e i t i 1 ) i 1), g(t)= 0

56 JAFFE ABS MBSJAFFE Black, F., and P. Karasinski, Bond and Option Pricing when Short Rates are Lognormal, Finance Analysts Journal, 1991, pp Brigo, D., and F. Mercurio, Interest Rate Models Theory and Practice, Springer, 001. Collin-Dufresne, P., and R. S. Goldstein, Do Credit Spreads Reflect Stationary Leverage Ratios?, The Journal of Finance 56, 001, pp Cox, J. C., J. E. Ingersoll, and S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica 53, 1985, pp Duffie, D., First-to-Default Valuation, Working Paper, Dunn, K. B., and J. J. McConnell, Valuation of GNMA Mortgage-Backed Securities, The Journal of Finance 36, 1981, pp Fabozzi, F. J., The Handbook of Mortgage Backed Securities Fifth Edition, McGraw-Hill, 001. Hayre, L., Salomon Smith Barney Guide to Mortgage-Backed and Asset-Backed Securities, John Wiley & Co., 001. Hull, J., and A. White, Pricing Interest Rate Derivative Securities, The Review of Financial Studies 3, 1990, pp Jegadeesh, N., and X. Ju, A Non-Parametric Prepayment Model and Valuation of Mortgage- Backed Securities, The Journal of Fixed Income 10, 000, pp Kariya, T., and M. Kobayashi, Pricing Mortgage-Backed Securities (MBS) -A Model Describing the Burnout Effect-, Asia-Pacific Financial Markets 7, 1999, pp Kijima, M., and Y. Muromachi, Credit Events and the Valuation of Credit Derivatives of Basket Type, Review of Derivatives Research 4, 000, pp Musiela, M., and M. Rutkowski, Martingale Methods in Financial Modelling, Springer, 1997.

57 McConnell, J. J., and M. Singh, Rational Prepayments and the Valuation of Collateralized Mortgage Obligations, The Journal of Finance 49, 1994, pp Nakamura, N., Valuation of Mortgage-Backed Securities Based upon a Structural Approach, Asia-Pacific Financial Markets 8, 001, pp Sandmann, K., and D. Sondermann, A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures, Mathematical Finance 7, 1997, pp Schwartz, E. S., and W. N. Torous, Prepayment and the Valuation of Mortgage-Backed Securities, The Journal of Finance 44, 1989, pp Stanton, R., Rational Prepayment and the Valuation of Mortgage-Backed Securities, The Review of Financial Studies 8, 1995, pp Sugimura, T., A Prepayment Model for the Japanese Mortgage Loan Market: Prepayment-Type-Specific Parametric Model Approach, Asia-Pacific Financial Markets 9, 00, pp Vasicek, O. A., An Equilibrium Characterization of the Term Structure, Journal of Financial Economics 5, 1977, pp

58

「国債の金利推定モデルに関する研究会」報告書

「国債の金利推定モデルに関する研究会」報告書 : LG 19 7 26 2 LG Quadratic Gaussian 1 30 30 3 4 2,,, E-mail: kijima@center.tmu.ac.jp, E-mail: tanaka-keiichi@tmu.ac.jp 1 L G 2 1 L G r L t),r G t) L r L t) G r G t) r L t) h G t) =r G t) r L t) r L t)

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 100-8630 03 IMES Discussion Paper Series 99-J- 9 -J-19 1999 6 * * [1999] *(E-mail:

More information

CDOのプライシング・モデルとそれを用いたCDOの特性等の考察: CDOの商品性、国内市場の概説とともに

CDOのプライシング・モデルとそれを用いたCDOの特性等の考察: CDOの商品性、国内市場の概説とともに CDO CDO CDO CDO CDO CDO E-mail: kiyotaka_komiya@btm.co.jp CDOcollateralized debt obligation CDO CDO CDO CDO CDOCDO CDO CDO CDO CDOCDO CDO CDO CDO CDO CDO CDOABSasset backed securities CBOcollateralized

More information

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代 403 81 1 Black and Scholes 1973 Email:kfujiwar@mail.doshisha.ac.jp 82 404 58 3 1 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 Black and Scholes 1973

More information

16 7 5

16 7 5 16 7 5 1 2 1.1.......................................... 2 1.2....................................... 5 1.2.1.................................... 5 1.2.2............................... 6 1.2.3...............................

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

財政赤字の経済分析:中長期的視点からの考察

財政赤字の経済分析:中長期的視点からの考察 1998 1999 1998 1999 10 10 1999 30 (1982, 1996) (1997) (1977) (1990) (1996) (1997) (1996) Ihori, Doi, and Kondo (1999) (1982) (1984) (1987) (1993) (1997) (1998) CAPM 1980 (time inconsistency) Persson, Persson

More information

1-2 1 path dependence pathwise analysis forward pathwise node A B C D E F A B D A B E A C E A C F 2 3 A B C 1-3 1

1-2 1 path dependence pathwise analysis forward pathwise node A B C D E F A B D A B E A C E A C F 2 3 A B C 1-3 1 reference rate 1 1-1 pure floater risk free pure floater An Exposition on Pricing and Spread Analysis of Floaters - DI: - - Fax: - - E-mail: Kenichi.Tatsumi@gakushuin.ac.jp 1-2 1 path dependence pathwise

More information

text.dvi

text.dvi Abstract JP Morgan CreditMetrics (1) () (3) (4) 1 3 3 4 4 5 10 6 16 1 1 BIS 1 3 1 BIS 1 BIS 1 3 ALM (1) Value at Risk () (3) RAROC (Risk Ajusted Return On Capital) (4) 3 5 6 31 99% (= p ) ~x X Prf~x Xg

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

担保報告書.PDF

担保報告書.PDF (1) (2) (1) (2) 1 (1) (2) (1) (2) (1) (2) TOB (1) (2) 2 (1) (2) (1) (2) (1) (2) (3) (1) (2) (3) (1) (2) TOB (1) (2) (1) (2) 3 4 80 90 5 10 1 1 3 Q2 57.6% 47.5% 44.8% Q3 94.1%Q5 6 CP Commercial Paper 11

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

デフォルト相関係数のインプライド推計( )

デフォルト相関係数のインプライド推計( ) ,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10],

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

untitled

untitled IV2008#004.nb 1 13. MBS (Mortgage-Backed Securities) à http://www.sjam.co.jp/college/mbs.htm ü IV2008#004.nb 2 MBS MBS GNMA,FHLMC,FNMA MBS CMO( ) 6193 2 IV2008#004.nb 3 ü Bloomberg IV2008#004.nb 4 IV2008#004.nb

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

資産担保債券市場の現状

資産担保債券市場の現状 * ** 1 Asset Backed SecuritiesABS 1 * E-mail hideomi.miyazawa@boj.or.jp **E-mail hideaki.tanaka@boj.or.jp 96 9 1 97 99 98 30 99/9 (Collateralized Loan ObligationsCollateralized Bond Obligations 1 < timely

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF / ACLI-EBC-CLHIA 2 5800 2004 3 3 1 2004 3 55 7 ACLI EBC / CLHIA 3 3 20047 CTE 3 ACLI-EBC-CLHIA 3 CTE CTE CTE60 CTE 1) CTE(60) CTE(80) CTE(90) 2) 100 3) 8) 3 Mercer Oliver Wyman Actuarial Consulting ACLI-EBC-CLHIA

More information

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1 1. 1-1 00 001 9 J-REIT 1- MM CAPM 1-3 [001] [1997] [003] [001] [1999] [003] 1-4 0 . -1 18 1-1873 6 1896 L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L 6 1986 ( 19 ) -3 17 3 18 44 1 [1990]

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue 2012-06 Date Type Technical Report Text Version publisher URL http://hdl.handle.net/10086/23085 Right Hitotsubashi University Repository

More information

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2)

IS-LM (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 2 2 2 2.1 IS-LM 1 2.2 1 1 (interest) 100 (net rate of interest) (rate of interest) ( ) = 100 (2.1) (gross rate of interest) ( ) = 100 (2.2) 1 1. 2. 1 1 ( ) 2.3. 3 2.3 1 (yield to maturity) (rate of return)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

○松本委員

○松本委員 CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml Credi Risk Modeling Approaches 2003 11 17 Absrac This aricle originaes from a speech given by he auhor in he seminar

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

わが国のレポ市場について―理論的整理と実証分析―

わが国のレポ市場について―理論的整理と実証分析― GCGC SC GCSC SC SC E-mail: yasunari.inamura@boj.or.jp E-mail: naohiko.baba@boj.or.jp GC general collateralscspecial collateral Griffiths and Winters GCFF Jordan and JordanDuffie matched book GC GC SC DuffieKrishnamurthy

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) , ,, 2010 8 24 2010 9 14 A B C A (B Negishi(1960) (C) ( 22 3 27 ) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 1 2 3 Auerbach and Kotlikoff(1987) (1987)

More information

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2

() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2 1 (Basel Committee on Banking Supervision, BCBS) (BCBS(24), BCBS(215) ) *1 ( ) ( (1997) (213a,b) ) 2 *1 (214) 1 () ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR 2 1 1 ( ) ( ) Memmel (214) () 2

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

202 2 9 Vol. 9 yasuhisa.toyosawa@mizuho-cb.co.jp 3 3 Altman968 Z Kaplan and Urwitz 979 Merton974 Support Vector Machine SVM 20 20 2 SVM i s i x b si t = b x i i r i R * R r (R,R, L,R ), R < R < L < R

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

農林金融2007年08月号

農林金融2007年08月号 2005 1947 4.54 61 1.96 75 891.57 66 1.58 20051.26 061.32 2.07 1974 14 156465 1950 70 ageing society 94aged society 140612 20.9 72 47115 4024 052,777 2025 20362046 20558,993 1812 06 12 205550 2055 2105

More information

AT A GLANCE INDIVIDUAL GROUP 63.72% 1, % At a Glance INSTITUTIONAL GROUP 34.26% % GLOBAL MARKETS GROUP 5.56% % 2

AT A GLANCE INDIVIDUAL GROUP 63.72% 1, % At a Glance INSTITUTIONAL GROUP 34.26% % GLOBAL MARKETS GROUP 5.56% % 2 214 At a Glance 32 36 38 4 42 43 31 AT A GLANCE INDIVIDUAL GROUP 63.72% 1,293 32.4% 226 214 At a Glance INSTITUTIONAL GROUP 34.26% 695 76.26% 532 32 GLOBAL MARKETS GROUP 5.56% 112 4.2% 28 3 1% 1,5 5 1,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

米国住宅ローンの枠組みv2.PDF

米国住宅ローンの枠組みv2.PDF mortgage residential mortgage commercial FHA 1934 FHA $67,500 VA Fannie Mae, Federal National Mortgage Association 1938 (27.5 ) 01/12/19 1 Fannie Mae is a private, shareholder-owned company that works

More information

メイン寄せリスクと貸出債権価値の評価:ゲーム論的リアルオプションによるアプローチ

メイン寄せリスクと貸出債権価値の評価:ゲーム論的リアルオプションによるアプローチ 2 i ii RIETI E-mail: tshibata@tmu.ac.jp E-mail: tetsuya.yamada@boj.or.jp / /2008.11 1 1. 2007 2 1 DCF DCF Leland [1994] Mella-Barral and Perraudin [1997] DCF DCF 2 /2008.11 1 1 3 2 Mella-Barral and Perraudin

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

PFI

PFI PFI 23 3 3 PFI PFI 1 1 2 3 2.1................................. 3 2.2..................... 4 2.3.......................... 5 3 7 3.1................................ 7 3.2.................................

More information

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo

[1][2] [3] *1 Defnton 1.1. W () = σ 2 dt [2] Defnton 1.2. W (t ) Defnton 1.3. W () = E[W (t)] = Cov[W (t), W (s)] = E[W (t)w (s)] = σ 2 mn{s, t} Propo @phykm 218 7 12 [2] [2] [1] ([4] ) 1 Ω = 2 N {Π n =1 A { 1, 1} N n N, A {{ 1, 1}, { 1}, {1}, }} B : Ω { 1, 1} P (Π n =1 A 2 N ) = 2 #{ A={ 1},{1}} X = j=1 B j B X +k X V[X ] = 1 ( ) 1 1 dt dx W (t) = t/dt

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Stepwise Chow Test a Stepwise Chow Test Takeuchi 1991Nomura

More information

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199 Nelson-Siegel Nelson-Siegel 1992 2007 15 1 Nelson and Siegel(1987) 2 FF VAR 1996 FF B) 1 Nelson-Siegel 15 90 1 Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel

More information

, Exchange & Finamce

, Exchange & Finamce 10 35 50 10 20 1210 18 15 15, 7.5 10 13 50 10 10 10 10 10 10 1225 7.5 10 1.3 10 6.8 5.5 142 25 Exchange & Finamce 1210 10 2.75 2.5 2.5 1210 10 12 1.5 10 10 1.7 1.5 1.5 1.2 1.5 1.5 10 1.4 1.3 1.3 10 12,900

More information

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x + (.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d

More information

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008) ,, 23 4 30 (i) (ii) (i) (ii) Negishi (1960) 2010 (2010) ( ) ( ) (2010) E-mail:fujii@econ.kobe-u.ac.jp E-mail:082e527e@stu.kobe-u.ac.jp E-mail:iritani@econ.kobe-u.ac.jp 1 1 16 (2004 ) 2 (A) (B) (C) 3 (1987)

More information

マクロ経済スライド下における積立金運用でのリスク

マクロ経済スライド下における積立金運用でのリスク 2004 2005 ALM 2030 2050 50 JEL Classification: H55, G11 Key words: 2 H16 007 102-0073 4-1-7 FAX: 03-5211-1082, E-mail: kitamura@nli-research.co.jp E-mail: nakasima@nli-resaech.co.jp E-mail: usuki@nli-research.co.jp

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

金融システムレポート(2008年3月号)

金融システムレポート(2008年3月号) inancial ystem eport 1 Box 1 5 1 1 1 1 3 17 5 7 Box 9 Box 3 3 Box 3 Box 5 36 Box 6 38 Box 7 1 1 1 3 3 5 Box 8 58 Box 9 6 6 1 6 66 Box 1 7 7 1 3 Box 1 7 7 8 1 1 3 Box Box 1 B1-1 B1-1 origination distribution

More information

FRB EU EU.GM JFE AIG HD

FRB EU EU.GM JFE AIG HD FRB EU EU.GM JFE AIG HD BNP CEO JP AIG S & LSaving and Loan Association S & L SIVStructured Investment Vehicle FRB IMF OECD IMF CDS Crejit Default Swap CDOCollateralized Debt Obligation AIG CDS SIV CDO

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

商学 65‐5☆/14.植田

商学 65‐5☆/14.植田 708 709 2000 2000 1 3 hedge speculative ponzi G Π DS G Πt DSt t 1,2,...,n 1 G Πt DSt 1 t j 2 G Πt DSt j 1 t n 3 710 G Πt DSt 1 t n 1 4 G Πt DSt t n 5 2 Minsky Foley 2003 Charles 2008 a Lima and Meirelles

More information

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1 1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp.218 223 ) 1 2 ) (i) (ii) / (iii) ( ) (i ii) 1 2 1 ( ) 3 ( ) 2, 3 Dunning(1979) ( ) 1 2 ( ) ( ) ( ) (,p.218) (

More information

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A)

autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] (A) Discussion Paper Series A No.425 2002 2 186-8603 iwaisako@ier.hit-u.ac.jp 14 1 24 autocorrelataion cross-autocorrelataion Lo/MacKinlay [1988, 1990] 1990 12 13 (A) 12370027 13 1 1980 Lo/MacKinlay [1988]

More information

II III II 1 III ( ) [2] [3] [1] 1 1:

II III II 1 III ( ) [2] [3] [1] 1 1: 2015 4 16 1. II III II 1 III () [2] [3] 2013 11 18 [1] 1 1: [5] [6] () [7] [1] [1] 1998 4 2008 8 2014 8 6 [1] [1] 2 3 4 5 2. 2.1. t Dt L DF t A t (2.1) A t = Dt L + Dt F (2.1) 3 2 1 2008 9 2008 8 2008

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr 1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-French (FF) 3 [5] (Capital Asset Pricing Model; CAPM

More information

2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2

2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2 stakagi@econ.hokudai.ac.jp June 24, 2011 2.... 3... 4... 7 8... 9.... 10... 11... 12 IPV 13 SPSB... 15 SPSB.... 17 SPSB.... 19 FPSB... 20 FPSB.... 22 FPSB.... 23... 24 Low Price Auction.... 27 APV 29...

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

2 A A 3 A 2. A [2] A A A A 4 [3]

2 A A 3 A 2. A [2] A A A A 4 [3] 1 2 A A 1. ([1]3 3[ ]) 2 A A 3 A 2. A [2] A A A A 4 [3] Xi 1 1 2 1 () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi 1 0 2 ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr

More information

untitled

untitled Discussion Paper Series No. J98 2008 9 2008 9 1919 1 1938 12 1928 1 1936 4 1 10 1931 1932 2008 19530274 1. 2 1930 5 1 1931 6 12 1936 11 2 1 1919 1 1938 12 1963 1927 1 1936 4 1 2 3 4 7 10 1927 1 1936 4

More information

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 2, 3, 5 I- HML-FL 1 Fama-French

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について

相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について IMES DISCUSSION PAPER SERIES 相互取引に伴う債権債務の依存構造を考慮した金融 機関の与信評価について にしでかつまさ 西出勝正 Discussion Paper No. 2015-J-6 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 日本銀行金融研究所 103-8660 東京都中央区日本橋本石町 2-1-1

More information

商学 66‐6☆/7.松浦

商学 66‐6☆/7.松浦 1139 2008 9 2008 9 FRB : Federal Reserve Board FRB FRB 1140 1 2008 9 1 1999 2013 Bureau of Economic Analysis, Survey of Current Bunisess, International Data http : //www.bea.gov. 2014 8 10 1141 2000 1

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

GDPギャップと潜在成長率

GDPギャップと潜在成長率 2003 output gap 80 1 20 90 20 70 2 1 2 output gap potential output 1 2 (2001) 3 potential rate of growth 2000 Meyer (2000) European Central Bank: (1999b) 2002 10 4 3 (2000) 4 4 () 5 5 5 6 () () 7 Total

More information

大規模データベースを用いた信用リスク計測の問題点と対策(変数選択とデータ量の関係)

大規模データベースを用いた信用リスク計測の問題点と対策(変数選択とデータ量の関係) ( ) CRD 450,000 86 2, CRD,, CRD 1 1 4 2 5 2.1........................................ 5 2.2............................... 6 3 2 7 3.1 2.................................... 7 3.2.............................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4 [2642 ] Yuji Chinone 1 1-1 ρ t + j = 1 1-1 V S ds ds Eq.1 ρ t + j dv = ρ t dv = t V V V ρdv = Q t Q V jdv = j ds V ds V I Q t + j ds = ; S S [ Q t ] + I = Eq.1 2 2 Kroneher Levi-Civita 1 i = j δ i j =

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information